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Abstract

A spurious regression mode is one in which the dependent and independent variables are non-stationary, but
not cointegrated, and the data arenot filtered (e.g., by differencing) before the modd is estimated. It is well
known that in this case the asymptotic behaviour of the least squares parameter estimates, their “t-ratios’,
the Durbin-Watson statistic and the R?, are all non-standard. In particular, the parameter estimates and R?
converge weakly to functionals of standard Brownian motions; the “t-ratios’ diverge in distribution; and the
Durbin-Watson statistic convergesin probability to zero. In this paper we show that similar results apply to
other common tests of a spurious regression model’s specification. In particular, standard tests of the
Normality and homoskedasticity of the error term are doomed to aways reect the null hypotheses,

asymptotically. These results further reinforce the need to avoid the estimation of spurious regressions.
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1. Introduction

Testing and alowing for non-stationary time-series data has been one of the mgor themes in econometrics
over the past quarter-century or so. Intheir influential and relatively early contribution, Granger and Newbold
(1974) drew our attention to some of the likely consequences of estimating a “spurious regression” model.
They argued that the “levels’ of many economic time-series are integrated or nearly so, and that if such data
are used in aregresson model a high R? valueislikely to be found evenwhen the series are independent of
each other. Moreover, they illustrated that the regression residuals are likely to be autocorrelated, as
evidenced by avery low vauefor the Durbin-Watson (DW) statistic. Students of econometrics soon, rather

smplisticaly, equated a“ spurious regression” with one in which RZ

> DW . Granger and Newbold (1977)
and Plosser and Schwert (1978) added to our awareness and understanding of spuriousregressions, but it was
Phillips (1986) who providedaformal analytical explanation for the behaviour of the Ordinary Least Squares
(OLYS) coefficient estimator, the associated “t-statistics’ and “F-dtatistic”, and the R? and DW datisticsin

the context of such modédls.

Phillips (1986) devel oped a sophi sticated asymptotic theory that he used to provethat in aspuriousregression,
inter alia, the DW datistic converges in probability to zero, the OL S parameter estimators and R? converge
weakly to non-standard limiting distributions, and the “t-ratios’ and “F-gatistic” diverge in distribution as

T- ¥ . Inshort, Phillips “solved” the spurious regression problem, and in the process he proved that the
unfortunate consegquences of modelling with integrated data cannot be eiminated by increasing the sample
size. This paper uses Phillips non-standard asymptotic theory to demonstrate that the pitfalls of estimating
a spurious regression extend to the application of standard diagnostic tests for the normality or
homoskedasticity of the model’ s error term. We prove that the associated test statistics divergein distribution
as the sample size grows, so that one is led inevitably to the false conclusion that there is a “problem” with
the usual assumptions about the error term. In fact, thered “problem” isafailureto take account of the non-

stationarity of the data when specifying the model.

The next section establishes some of the basic asymptotic results that we use in the later analysis. Section
3 establishes and illustrates the asymptotic behaviour of the Jarque and Bera (1980) normality test; and some
sample variants of the homoskedasticity tests proposed by Breusch and Pagan (1980) and Godfrey (1988) are



examined in asimilar way in section 4. Some concluding remarks are given in section 5.

2. Some Basic Asymptotic Results

For our purposes, it is sufficient to consider the simple univariate regression model, estimated by Ordinary
Least Squares (OLS):

e @
The regression is “spurious’ because both the dependent variable and the regressor follow independent (1)

Processes:
Ve =Ve1tVi: v ~iid(0,52) @
X=X 1t W v ~iid (05 ) &)

with V4 and W independent for al t, and (without loss of generality) Vg = Wg = O In fact [Phillips (1986,

p.313)] V; and vy may be heterogeneous, a point that is relevant in section 4 below. So, the true values of

the parametersare a = b = 0.

From Phillips (1986, pp.315 and 326) we know that, by the strong law of McLeish (1975, Theorem 2.10) for
weakly dependent sequences, and the Functiona Central Limit Theorem[e.g., Hamilton (1994, pp. 479-480)]:

1
T-S/Zé X[ p SW(\j/V(r)dr :walv Say (4)
t 0
and
T4 vy P s,(¥(Ndr=sh,, sy ©

where P denotes weak convergence of the associated probability measuresas T- ¥ ,and W(r) and
V(r) are independent Wiener processes on C[0,1], the space of all real-vaued functionson [0,1]. Using the

same approach as Phillipsit is aso readily shown that
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1
T 223 X p skw())dr=slx, . sy, k=1,234, ... (6)
t 0

and

1
TR yp sivn)dr=sth, sy k=1234 ... (7
t 0

From Phillips (1986, p.315) we aso know that

T2 (.- X)2Pp svzv(xz- xf) ©
t
T28 (%,- V)2P s2(h,- h?) ©
t
and
T2A XY P S8V u (10
t
where
1 . .
yi = W) (V(r)'dr: ii=1234,.. (1)
[0}
3. Asymptotic Behaviour of the Jarque-Bera Test

The test of Jarque and Bera (1980) is perhaps the one that is used most widely by econometricians to test
for the Normality of OLS regression errors, and the test satistic is

JB= (T/6)[m +(m, - 3? /4] (12)

where, in generd,



and

m=gT g (G- 0)°/$y

D

m=T"a (- /s

(13)

(14)

(15)

If the mode! includes an intercept, then of course U = O, and for a regression model with stationary data,

the limiting null digribution of B is C 5 . However, in the case of a spurious regression the situation is

fundamentally different.

Theorem 1

When applied to the spurious regression model (1), (T *JB) converges weakly as T - ¥ , and so

JB itself diverges at therate “ T .

Pr oof

From Phillips (1986, pp. 330-331):

and

So, by the Continuous Mapping Theorem [e.g., Billingdey (1968, pp. 30-31)],

and

b P (s,/8,)[(V n-xh) /0 - x| =(s,/s.)a . sy

T'$p svz[hz- h?-q(x, - xf)] :

b“p (s,/s,)q"; k=

(16)

17)

(18)

(19)



First, consider Myin (13). Defining y: = (yt - y)ad X: = (X%t - X) , note that
AW=4 Yy -30A X +DA Y -pAX. @
t t t t t

From results A.1 - A.4 in the Appendix,

T23 X' b s V3V[x3 - XX, + 2x13] (21)
t
7928 y*p sih,- 3, +2h]] @
t

TRV P (555,12 2 - xh+20])] @
t

T_S/Zé. X:ZYI p (szxsv)[y 2 2XY 11 - (X% +2X12)] . (2

t

So, applying the Continuous Mapping Theorem to (20), and using results (18) and (21) - (24), the quantity
T92 é Of convergesweakly as T - ¥ . Finaly, using thisresult and (19) (with k = 3, and applying the

t

Continuous Mapping Theorem to the termsin (13), we see that mMyconverges weakly with increasing “T”.

Second, consider 1), in (14), and note that

* *

A0 =8y +6b2d vix2-4b § VX - 4b°Q v X+ d X (25)
t t t t t t

From results A.5 - A.9 in the Appendix,

-39

& v P si[n,- ahh,+6hh, - 3] (26)

t
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TEA X P s [X, - 4%, + 6%, - 3/ @
t
TP VP (sis2)y 2 - 20w X0 +hix, - 2hy oy +4xhy ;- 3] @)
t

T_Sé. yt*gx’(* P (S \/35 w)[y 13~ 3hly 12 ° X1h3+3hlzy 1 ° 3X1hlg] (29)
t

Thsé. X[*syt* P (S v v3v)[y 31" 3(Jy 21~ h1X3 +3(1 1 ° 311)(13] (30)
t

Again, goplying the Continuous Mapping Theorem to (25), and using results (18) and (26) - (30), the quantity

T3 0* converges weakly as T - ¥ . Findlly, using this result and (19) (withk = 4), and applying the
t

Continuous Mapping Theorem to the terms in (13), we see that ™M, converges weekly with increasing “T".

Finally, it follows immediately from (12) that (T *JB) convergesweskly, so JB diverges at the rate “T"

as T-¥. (

The implication of this result is analogous to that associated with Phillips (1986, pp. 333-334) result that

(T~ DW) converges weakly in the case of a spurious regression, and hence DW itself has a zero

probability limitas T - ¥ . That isto say, testing for seria independence or for Normality in the errors of a

spurious regression will always lead to a rejection of the associated null hypotheses, for large enough T,
whether these hypotheses are false or true. The application of these diagnostic testsis pointlesswhen the data
are non-stationary (and not cointegrated). It should aso be noted that these results are quite independent of

theinitid values and distributions of V; and W, in (2) and (3). In particular, these random errors need not be

Normally distributed. Of course, the latter point is of particular interest in the case of the Jarque-Bera test.
Table 1 presents some Monte Carlo evidence to illustrate this point, and the results there also demonstrate the

rate of divergence of the JB statisticas T - ¥ . The Monte Carlo experiment involved 5,000 replications

with the values of \; and v\ generated as Standard Normal, Uniform(0,1), the inverse of Standard Normdl,
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and log-Norma independent random variables. The simulations were conducted using the SHAZAM (2001)

econometrics package.

4. Asymptotic Behaviour of the Breusch-Pagan-Godfrey Test
for Homoskedasticity

Asiswell known, many of the familiar tests for the homoskedasticity of regression errors can be formulated
as Lagrange Multiplier (LM) tests. For example, see Breusch and Pagan (1980) and Godfrey (1988). One
ample example of the Breusch-Pagan-Godfrey (BPG) test involves an aternative hypothesis in which the

regression error’ svarianceis proportiona to alinear combination of the regressors. For the simple regression

model, the implementation of the test involves obtaining the OL S residudls, Clt , from (1), and then fitting the
following auxiliary regression:

07 =a+bx, +e, . (31)

Let Aand bbethe OLS estimatorsof @and b, and as before let S* = T'lé (72 . Then the coefficient
t

of determination associated with the estimation of (31) can be expressed as.

/AO

t

(@ - £ @

&S

Rzzgszé Xt*z
e t

[t m Y g
D
[t mY g

and an LM test of the homoskedasticity of the errorsin (1) can be constructed using the statistic (TRZ) . For

this model, if the variablesin (1) were stationary then the test statistic would converge in distribution to 012 if

the null hypothesis were true. As is discussed by Godfrey (1988, Chap. 4) and Greene (2000, pp.509-510), an
asymptoticaly equivalent LM test can be based on the statistic (SSR/ 2), where “ SSR” denotes the

“regression” (“explained”) sum of the squares from OL S estimation of the model

(G2/s?) = at+b®, +e¢. ()

In the case of a spurious regression, these two test statistics no longer converge in distribution to Cl2 under



the null of homoskedasticity. Aswasthe case for the JB test for normality of the errors, the statistics for both

the (TR?) and (SSR/ 2) variants of the LM test diverge in distribution as T - ¥ , aswe now show.

Theorem 2
When applied to the spurious regression model (1), R? defined in (32) convergesweakly as T - ¥ ,

andso (TR) divergesattherate“T".

Pr oof

We can write (32) as

eegroafeaiyrac- oy o
t u
First, note that
~ @& . LOU & wo U
T ¥p= eT'azgeé‘ X G2- S8 X 29/ aT 28 X7 (35)
e t t a0 é t u
: * l‘J A - * l\J
= &T928 X2/ 6T 24 X2y @)
e t ue t u
S0
e 6 8 & v
X _ [o] * A .2 O * ph _2 0 ~
Rzzet’:q. 28 x 022 /g?- 28 Xt2+9/gT 38 (4, - SZ)ZL'J- (39)
t g t ﬂg e t u
Now, note that
T3é-(’\2_ SZ)ZZT 35. q4+TZS4 2-|-1§(T2é ’\2) (39)
t t t



and so using (17) - (19), and (25) - (30) above, the expression in (39) converges weakly as T - ¥ , by the
Continuous Mapping Theorem.

Further, we can write

M-

52%2

THAKE=T

8:

.U
X Ye +baxt 2ba>qu (40)

Q)

t

and by using (18), (21), (23) and (24), the expression in (40) aso convergesweskly as T - ¥ . Findly, usng
(8), (39) and (40), the Continuous Mapping Theorem ensures the weak convergence of R2 in (38).

Accordingly, (TR?) divergesat therate“T" as T- ¥ . (

Theorem 3

When applied to the spurious regression model (1),the statistic (T~ 1SSR) converges weakly as

T- ¥ ,andsothe LM test statistic (SSR/ 2) divergesat therate“ T".

Pr oof

We can write

SSR=(b9°4 x° . (41)

where b ¢is the OLS estimator of bdin (33). Noting that the sample mean of the dependent variable in (33)

is unity, we have

> (D~
o

X (/) &8 X2 @)
u u

M

and so
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A 1€ o0 LU € o 5 U
G2 =T 121— 528 X Zl,] I&T lSZ)aTZXtZL] 43
e t u e t u
and
s 2 2
. 20 x90€_. o =«,oU ,€e___ o - »U
Tl$?=§e|_ za th+gT S/Zaxttfa /é(T 152)a-|-2)<[2(J (44)
t ge t u e t u

0, using results (8), (17) and (40), it follows by the Continuous Mapping Theorem that (SSR/ 2) itsdf

divergesat therate“T" as T- ¥ . (

From Theorems 2 and 3, we see that however it is formulated, there is no point in using this smple variant of

the BPG test for homoskedasticity in the context of a spurious regression. Recall from section 2 that V; and

W need not be homoskedastic for our various asymptotic results to hold. So, regardiess of whether the null

hypothesis under test here is true or false, it will be rejected with increasing probability as the sample size

grows. Thisisillustrated in Tables 2 and 3 for the case where the null hypothesisis true, and anomina 10%

significance leve (based on the asymptotic C 12 distribution that would apply for stationary data) is used. The

experimenta design is the same asin section 3 above. The rates of divergence of the two test statistics, and
the commensurate size distortionsfor the LM tests, can be seen in these tables for various distributions for the
errors. Except for the (SSR/ 2) version of the test, with T = 10 and either normal or uniform errors, there
is positive size distortion. As the sample size grows, applying the BPG test in the context of a spurious
regression leads one to increasingly come to the wrong conclusion that the errors are heteroskedagtic.
Although this point hasbeen illustrated here with avery smple aternative hypothesis (namely that the variance
of the regression errorsis proportional to the sole regressor), it is clear that the same basic result also applies

to more generd variants of the BPG test in which the error varianceis proportional to some linear combination

of variables under the aternative hypothesis. These results aso apply to either the (SSR/ 2)or

11



(TRZ) versons of White's(1980) test for homoskedasticity against an arbitrary heteroskedastic alternative,

and to other smilar tests.

5. Conclusions

Many of the basic pitfalls associated with the use of non-stationary datain regression analysis have been well
documented. In particular, Phillips (1986) exposed the underlying reasons for severa observed empirical
features of “spurious regressions’. Among other things, he showed that the standard “t-test” and “F-test”
statisticsdivergeas T- ¥ , and the Durbin-Watson statistic converges to zero in probability. Thus, each of
the associated null hypotheses will be rejected with increasing probability as the sample size grows, even
though in fact they are actually true. This paper follows this theme and extends these results by considering
what will be encountered by an applied researcher who (wisely) undertakes some other common types of

regression diagnostic testing, but (unwisaly) does so in the context of a spurious regression model.

We have shown that just asit is pointless to test for the independence of the model’ s errors via the Durbin-
Watson tes, it is equaly futile to test for the normality or homoskedasticity of these errors in the spurious
regression context. As the sample size grows, these standard diagnostic tests will increasingly reject these
hypotheses, even when they are true. To then conclude that the model needs to be reformulated in order to
deal with discovered “problems’ associated with the error term would be as spurious as the estimation of the
origind model itself. Although our forma proofs are set in the context of asimple regression modd, it is clear

from Phillips (1986, pp.319-322) that they extend directly to the multiple regresson modd.

All of this underscores the importance of testing appropriately for unit roots (and cointegration) prior to the
formulation and estimation of aregression model based on time series data, apoint that was made very clearly
by Granger and Newbold (1974, p.117):

“In our opinion the econometrician can no longer ignore the time series properties of the

variables with which heis concerned - except at his peril. The fact that many economic ‘levels

are near random walks or integrated processes means that considerable care has to be taken

12



in specifying one’s equations.”

Acknowledgment

| am most grateful to Lauren Dong for her helpful comments on an earlier version of this paper.

13



Tablel
Mean Values and Rejection Ratesfor JB Test Statistic
(Monte Carlo Simulation, 5000 Repetitions, Nominal 10% Significance Level)?

N(0,1) u(0,1) [UN(0,1)] exp[N(0,1)]
T RR Mean RR Mean RR Mean RR Mean
(%) (%) (%) (%)

10 134 0.91 054 0.78 10.02 2.03 4.24 128
20 3.36 145 134 1.08 23.06 8.22 11.26 290
50 13.84 297 8.06 2.30 55.64 49.38 26.94 7.09
100 45.78 5.95 35.10 4.48 81.08 158.42 55.28 11.37
250 79.68 14.29 67.84 8.77 93.54 1036.56 71.72 20.90
500 9114 29.57 8936 2225 97.20 6594.69 91.28 31.61
1000 95.90 57.94 9534  45.02 98.74 19997.91 95.86 53.83
2000 098.08 121.83 9796 90.52 99.24 92016.16 97.74 100.63
5000 9930 290.83 9918 231.64 99.76 39813.92 99.04 233.01
10000 9950 600.22 9950 451.83 99.82 60762.71 99.64 479.90
1 The 10% critical value for the Chi Square distribution with 2 degrees of freedom is 4.60517. “RR” denotes the

“rejection rate” - i.e., the percentage of the 5,000 simulated values for JB that exceeded thiscritical value.
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Table2
Mean Values and Rejection Rates for BPG Test Statistic:
SSR Version
(Monte Carlo Simulation, 5000 Repetitions, Nominal 10% Significance L evel)!

N(0,1) U(,2) [1/N(0,1)] exp[N(0,1)]

T RR Mean RR Mean RR Mean RR Mean
(%) (%) (%) (%)

10 4.88 0.73 6.14 0.79 15.50 1.40 15.08 127
20 12.16 113 14.40 122 34.00 291 27.84 223
50 30.32 2.38 34.88 2.87 56.28 7.53 45.56 474
100 45.74 4.73 50.34 5.71 68.24 14.61 57.68 8.35
250 64.92 11.74 6760 14.38 79.78 39.61 70.60 17.96
500 74.72 23.84 7594 2830 86.68 78.11 77.34 32.34
1000 82.76 48.17 8290 56.61 90.84 15311 84.42 63.12
2000 86.46 94.37 88.16 11492 92.80 303.22 89.56 122.28
5000 9212 22855 91.56 284.06 95.36 774.02 92.50 296.50
10000 9398  460.56 94.78 57044 97.10 1605.40 94.02 556.36
1 The 10% critical value for the Chi Square distribution with 1 degrees of freedom is 2.70554. “RR” denotes the

“rejection rate” - i.e., the percentage of the 5,000 simulated values for BPG that exceeded this critical value.
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Mean Values and Rejection Rates for BPG Test Statistic:

Table3

TR? Version

(Monte Carlo Simulation, 5000 Repetitions, Nominal 10% Significance L evel)!

N(0,1) u(0,1) [UN(0,1)] exp[N(0,1)]

T RR Mean RR  Mean RR Mean RR Mean
(%) (%) (%) (%)

10 12.68 114 14.30 120 25.32 1.86 25.36 174
20 19.54 155 21.58 159 39.58 317 35.54 2.60
50 38.88 3.24 42.86 3.56 58.76 7.52 52.28 530
100 5314 6.26 57.94 7.00 70.80 14.98 63.82 9.49
250 69.82 1544 7294 1757 80.80 70.70 74.96 20.76
500 78.00 3154 7994  34.37 87.54 75.01 81.06 38.27
1000 84.84 64.62 8534 70.01 90.80 14941 86.84 75.54
2000 8854 12367 90.14 14097 93.22 20848 91.08 147.95
5000 9334 304.76 93.06 339.70 95.80 736.72 93.50 358.96
10000 9478 614.62 95.86 698.52 97.44 1575.00 94.94 675.14

1

The 10% critical value for the Chi Square distribution with 1 degrees of freedom is 2.70554. “RR” denotes the

“rejection rate” - i.e., the percentage of the 5,000 simulated values for BPG that exceeded this critical value.
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Appendix

Results Used for the Proof of Theorem 1
A.1: Derivation of Equation (21)

*

_ o
T 5/2a X
t

~

3 :T-s/zé (th _ 3X127+3th2 _ )—(3)
t

=T 4 X - ST(TR %)@ x) +3TH & %) (T8 x)- T*(T*3 x)°
t t t t

t t

=(T28 %) - AT (TP ) +3T*2 G )T x) - (T*°4 x)°

Then, repeatedly applying result (6) in section 2 (with k = 1, 2, 3), and appedling to the Continuous Mapping

Theorem, we obtain:
*3
T8 X P s 3[x- 3%, + 2]
t

A.2: Derivation of Equation (22)
This follows as for equation (21) above. Then, repeated application of result (7) in section 2 yields:

T8 y° b si[h,- ah, +20]

t

A.3: Derivation of Equation (23)

Qo

- * * - % — — — — —
T8 v’ =T rea Xy - 27 Xy, +Vax-Xa y+2ya vi-a v’
t t t t t t t

17



=T x¥)- AT & Y)(T*8 xy)- (T8 x)(T*4 ¥)

+ 2(T—3/2é X)(T_ 3/2 é yt)2
t t

Then, by the Continuous Mapping Theorem, using definition (11) and results (4), (5), (10) in section 2, and

generdizing the last of these three results in a natural manner, we get:

TA YK P (5isuy - 2w u-x(h,+2h))] -
t

A.4: Derivation of Equation (24)
Thisfollows as for equation (23) in A.3 above. Interchanging variables, we get:

T-S/Zé Xt*zy: P (SV%S v)[y 21" 2X1y 1- hl(XZ +2X12)] '
t
A.5: Derivation of Equation (26)

2 0 " 20D _ o _ 50 _ a2 0 o 0
T’a yt“=T"’ga yi - 4ya yo+6y’a v - 4v°a yray's

=(T78y)- AT A y)(T"a y) +6(T 8 y) (T3 )

_ 4(T—3/2é yt)4+(-|-—3/2é yt)4 .
t t

Then, using the Continuous Mapping Theorem, result (7) from section 2 repeatedly, and gathering terms, we
get:

T3§ vi“Pp s?lh,- 4hh, +6nh, - !

t

A.6: Derivation of Equation (27)
Thisfollows as for equation (26) in A.5 above. Interchanging variables, we get:

TS X P s [, - axx, +6¢x,- 3]

18



A.7: Derivation of Equation (28)

TPQ yiox° =T 22(y0x - 2%% Y, + X°Y7 - 29y, X7 +AXX,Y,
t

- szyt + yzxtz - 2X—y2Xt + izyz)

=(T28 xy0)- 2(T¥23 x)(T 78 xyO) + (T4 x)*(T24 v2)
- 2T y (T4 yod) +HT 24 x)(T %4 v)(T 24 %Y.
_ Z(T-3/2é yt)z(-l--s/zé Xt)z +(T-3/2yt)2(-|--2é th)

- 2(T28 x)X(T A v)? +(T 8 x)* (T4 v.)°

By the Continuous Mapping Theorem, using definition (11) and results (6), (7) and (10) in section 2, and

generdizing the last of these three resultsin a natural manner, we get:

T_Bé yt*zxt*z P (S VZS vzv)[y 2" ijy 12 +X12h2 +h12X2 - 2h1y 21+4X1h1y 1 ° 3hlZX12 )
t

A.8: Derivation of Equation (29)

T'Sét Yi*X =T"°’(<'§t1 Xtyf-yé:l ><tyf+7<yf+5<w§1 y? - 2Yé:1 X Y7 +2y§} X Y?
+272ét X Vi +2Wét y; - 2><_y2§t1 yt+372§1t XY, - ‘zié} y, +TXy%)
:(T‘%%} XY7) - 3<T'3’2é:1 yth‘S’Zé} XY0)- (T'”z‘gl xt)(T'“ét ¥;)
(T2 x )T y)(T?a ¥)+3AT 8 y)* (T8 x¥)

-T2 x)T2Q v,)°
t t
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Again, by the Continuous Mapping Theorem, using definition (11) and results (7) and (10) in section 2, and

generalizing the last of these three results in a natural manner, we get:

T-gé. yt*3xt* P (5 \/33 w) Y- 311)’ 127 X1h3 +3h12y 1" 3X1hl3 +3X1h1h2
t

A.9: Derivation of Equation (30)
Thisfollows as for equation (29) in A.8 above, with the use of result (6). Interchanging variables, we get:

T_gé. Xt*gyt* P (S vSvgv)[y < 3X1y 21" h1X3 + 3X12y 11~ 3F]1X13 + :'hlxlxz]
t
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