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Abstract

A spurious regression model is one in which the dependent and independent variables are non-stationary, but

not cointegrated, and the data are not filtered (e.g., by differencing) before the model is estimated. It is well

known that in this case the asymptotic behaviour of the least squares parameter estimates, their “t-ratios”,

the Durbin-Watson statistic and the R2, are all non-standard. In particular, the parameter estimates and R2

converge weakly to functionals of standard Brownian motions; the “t-ratios” diverge in distribution; and the

Durbin-Watson statistic converges in probability to zero. In this paper we show that similar results apply to

other common tests of a spurious regression model’s specification. In particular, standard tests of the

Normality and homoskedasticity of the error term are doomed to always reject the null hypotheses,

asymptotically. These results further reinforce the need to avoid the estimation of spurious regressions.
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1. Introduction

Testing and allowing for non-stationary time-series data has been one of the major themes in econometrics

over the past quarter-century or so. In their influential and relatively early contribution, Granger and Newbold

(1974) drew our attention to some of the likely consequences of estimating a “spurious  regression” model.

They argued that the “levels” of many economic time-series are integrated or nearly so, and that if such data

are used in a regression model a high R2 value is likely to be found even when the series are independent of

each other. Moreover, they illustrated that the regression residuals are likely to be autocorrelated, as

evidenced by a very low value for the Durbin-Watson (DW) statistic. Students of econometrics soon, rather

simplistically, equated a “spurious regression” with one in which . Granger and Newbold (1977)R DW2 >

and Plosser and Schwert (1978) added to our awareness and understanding of spurious regressions, but it was

Phillips (1986) who provided a formal analytical explanation for the behaviour of the Ordinary Least Squares

(OLS) coefficient estimator, the associated “t-statistics” and “F-statistic”, and  the R2 and DW statistics in

the context of such models.

Phillips (1986) developed a sophisticated asymptotic theory that he used to prove that in a spurious regression,

inter alia, the DW statistic converges in probability to zero, the OLS parameter estimators and R2 converge

weakly to non-standard limiting distributions, and the “t-ratios” and “F-statistic” diverge in distribution as

. In short, Phillips “solved” the spurious regression problem, and in the process he proved that theT ↑ ∞

unfortunate consequences of modelling with integrated data cannot be eliminated by increasing the sample

size. This paper uses Phillips’ non-standard asymptotic theory to demonstrate that the pitfalls of estimating

a spurious regression extend to the application of standard diagnostic tests for the normality or

homoskedasticity of the model’s error term. We prove that the associated test statistics diverge in distribution

as the sample size grows, so that one is led inevitably to the false conclusion that there is a “problem” with

the usual assumptions about the error term. In fact, the real  “problem” is a failure to take account of the non-

stationarity of the data when specifying the model.

The next section establishes some of the basic asymptotic results that we use in the later analysis. Section

3 establishes and illustrates the asymptotic behaviour of the Jarque and Bera (1980) normality test; and some

simple variants of the homoskedasticity tests proposed by Breusch and Pagan (1980) and Godfrey (1988) are
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examined in a similar way in section 4.  Some concluding remarks are given in section 5.

2. Some Basic Asymptotic Results

For our purposes, it is sufficient to consider the simple univariate regression model, estimated by Ordinary

Least Squares (OLS):

. (1)$ $ $ $yt xt ut= + +α β

The regression is “spurious” because both the dependent variable and the regressor follow independent I(1)

processes:

;  (2)yt yt vt= − +1 vt iid v~ ( , )0 2σ

;  (3)xt xt wt= − +1 wt iid w~ ( , )0 2σ

with and independent for all t, and (without loss of generality) . In fact [Phillips (1986,vt wt v w0 0 0= =

p.313)]  and may be heterogeneous, a point that is relevant in section 4 below. So, the true values ofvt wt

the parameters are .α β= = 0

From Phillips (1986, pp.315 and 326) we know that, by the strong law of McLeish (1975, Theorem 2.10) for

weakly dependent sequences, and the Functional Central Limit Theorem [e.g., Hamilton (1994, pp. 479-480)]:

,    say (4)T x W r drt
t

w w
− ∑ ∫⇒ =3 2

0

1

1
/ ( )σ σ ξ

and

,    say (5)T y V r drt v v
t

− ⇒ =∫∑3 2
1

0

1
/ ( )σ σ η

where denotes weak convergence of the associated probability measures as , and and⇒ T ↑ ∞ W r( )

are independent Wiener processes on C[0,1], the space of all real-valued functions on [0,1]. Using theV r( )

same approach as Phillips it is also readily shown that



4

 ,    say;     k = 1, 2, 3, 4, ........ (6)( )T x W r drk
t
k

w
k

t

k

w
k

k
− + ⇒ =∑ ∫( ) / ( )2 2

0

1

σ σ ξ

and

,    say ;     k = 1, 2, 3, 4, ........ (7)( )T y V r drk
t
k

v
k

t

k

v
k

k
− + ⇒ =∑ ∫( ) / ( )2 2

0

1

σ σ η

From Phillips (1986, p.315) we also know that

(8)( )T x xt
t

w
− − ⇒ −∑2 2 2

2 1
2( ) σ ξ ξ

(9)( )T y yt
t

v
− − ⇒ −∑2 2 2

2 1
2( ) σ η η

and

, (10)T x yt t w v
t

− ⇒∑2
11σ σ ψ

where

;     i, j = 1, 2, 3, 4, ...... (11)( ) ( )ψ ij

i j
W r V r dr= ∫ ( ) ( )

0

1

3. Asymptotic Behaviour of the Jarque-Bera Test

The test of Jarque and Bera (1980)  is perhaps the one that is used most widely by econometricians to test

for the Normality of OLS regression errors, and the test statistic is

(12)[ ]JB T m m= + −( / ) ( ) /6 3 43 4
2

where, in general,
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(13)m T u u st
t

3
1 3 3

2

= −









− ∑ ( $ ) /

(14)m T u u st
t

4
1 4 4= −− ∑ ( $ ) /

and

. (15)s T u ut
t

2 1 2= −− ∑ ( $ )

If the model includes an intercept, then of course , and for a regression model with stationary data,u = 0

the limiting null distribution of JB is . However, in the case of a spurious regression the situation isχ2
2

fundamentally different.

Theorem 1

When applied to the spurious regression model (1), converges weakly as , and so( )T JB−1 T ↑ ∞

itself diverges at the rate “T”.JB

Proof

From Phillips (1986, pp. 330-331):

,   say (16)[ ]$ ( / ) ( ) / ( ) ( / )β σ σ ψ ξη ξ ξ σ σ θ⇒ − − =v w v w11 1 1 2 1
2

and

. (17)[ ]T s v
− ⇒ − − −1 2 2

2 1
2 2

2 1
2σ η η θ ξ ξ( )

So, by the Continuous Mapping Theorem [e.g., Billingsley (1968, pp. 30-31)],

;      k = 1, 2, 3, ....... (18)$ ( / )β σ σ θk
v w

k k⇒

and 

;      k = 1, 2, 3, ...... (19)[ ]T sk k
v

k k− ⇒ − − −2 2
2 1

2 2
2 1

2σ η η θ ξ ξ( )



6

First, consider in (13). Defining and , note thatm
3 yt yt y* ( )= − xt xt x* ( )= −

. (20)$ $ $ $*3 *2 * * *2 *3u y y x y x xt
t

t t t t t t
tttt

3 2 33 3∑ ∑∑∑∑= − + −β β β

From results A.1 - A.4 in the Appendix,

(21)[ ]T xt w
t

− ⇒ − +∑5 2 3 3
3 1 2 1

33 2/ * σ ξ ξ ξ ξ

           (22)[ ]T yt
t

v
− ∑ ⇒ − +5 2 3

3 1 2 1
33 2/ *3 σ η ηη η

(23)[ ]T y xt t v w
t

− ⇒ − − +∑5 2 2
12 1 11 1 2 1

22 2/ *2 * ( ) ( )σ σ ψ η ψ ξ η η

           . (24)[ ]T x yt t w v
t

− ⇒ − − +∑5 2 2
21 1 11 1 2 1

22 2/ *2 * ( ) ( )σ σ ψ ξψ η ξ ξ

So, applying the Continuous Mapping Theorem to (20), and using results (18) and (21) - (24), the quantity

converges weakly as . Finally, using this result and (19) (with ), and applying theT ut
t

− ∑5 2 3/ $ T ↑ ∞ k = 3

Continuous Mapping Theorem to the terms in (13), we see that converges weakly with increasing “T”.m3

Second, consider in (14), and note that m4

. (25)$ $ $ $ $*4 *2 *2 *3 * * *3 *4u y y x y x y x xt
t

t t t t t t
tt

t
tt

t
t

4 2 3 46 4 4∑ ∑∑∑∑ ∑= + − − +β β β β

From results A.5 - A.9 in the Appendix,

(26)[ ]T yt v
t

− ⇒ − + −∑3 4
4 1 3 1

2
2 1

44 6 3*4 σ η η η η η η
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       (27)[ ]T xt w
t

− ⇒ − + −∑3 4
4 1 3 1

2
2 1

44 6 3*4 σ ξ ξ ξ ξ ξ ξ

     (28)( )[ ]T y xt t v w
t

− ⇒ − + + − + −∑3 2 2
22 1 12 1

2
1 1

2
2 1 21 1 1 11 1

2
1
22 2 4 3*2 *2 σ σ ψ ξψ ξ η η ξ ηψ ξ ηψ η ξ

    (29)[ ]T y xt t v w
t

− ⇒ − − + −∑3 3
13 1 12 1 3 1

2
11 1 1

33 3 3*3 * ( )σ σ ψ η ψ ξ η η ψ ξ η

    (30)[ ]T x yt t v w
t

− ⇒ − − + −∑3 3
31 1 21 1 3 1

2
11 1 1

33 3 3*3 * ( )σ σ ψ ξψ η ξ ξ ψ η ξ

Again, applying the Continuous Mapping Theorem to (25), and using results (18) and (26) - (30), the quantity

converges weakly as . Finally, using this result and (19) (with ), and applying theT ut
t

− ∑3 4$ T ↑ ∞ k = 4

Continuous Mapping Theorem to the terms in (13), we see that converges weakly with increasing “T”.m
4

Finally, it follows immediately from (12 ) that converges weakly, so diverges at the rate “T”( )T JB−1 JB

as . (T ↑ ∞

The implication of this result is analogous to that associated with Phillips’ (1986, pp. 333-334) result that

converges weakly in the case of a spurious regression, and hence itself has a zero( )T DW× DW

probability limit as . That is to say, testing for  serial independence or for Normality in the errors of aT ↑ ∞

spurious regression will always lead to a rejection of the associated null hypotheses, for large enough ,T

whether these hypotheses are false or true. The application of these diagnostic tests is pointless when the data

are non-stationary (and not cointegrated). It should also be noted that these results are quite independent of

the initial values and distributions of and in (2) and (3). In particular, these random errors need not bevt wt

Normally distributed. Of course, the latter point is of particular interest in the case of the Jarque-Bera test.

Table 1 presents some Monte Carlo evidence to illustrate this point, and the results there also demonstrate the

rate of divergence of the statistic as . The Monte Carlo experiment involved 5,000 replicationsJB T ↑ ∞

with the values of and generated as Standard Normal, Uniform(0,1), the inverse of Standard Normal,vt wt
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and log-Normal independent random variables. The simulations were conducted using the SHAZAM (2001)

econometrics package. 

4. Asymptotic Behaviour of the Breusch-Pagan-Godfrey Test

for Homoskedasticity

As is well known, many of the familiar tests for the homoskedasticity of regression errors can be formulated

as Lagrange Multiplier (LM) tests. For example, see Breusch and Pagan (1980) and Godfrey (1988). One

simple example of the Breusch-Pagan-Godfrey (BPG) test involves an alternative hypothesis in which the

regression error’s variance is proportional to a linear combination of the regressors. For the simple regression

model, the implementation of the test involves obtaining the OLS residuals, , from (1), and then fitting the$ut

following auxiliary regression:

. (31)$u a bxt t t
2 = + + ε

Let and be the OLS estimators of and , and as before let . Then the coefficient$a $b a b s T ut
t

2 1 2= − ∑ $

of determination associated with the estimation of (31) can be expressed as:

(32)R b x u st
t

t
t

2 2 2 2= 





−





∑ ∑$ / ( $ )*2

and an LM test of the homoskedasticity of the errors in (1) can be constructed using the statistic . For( )TR 2

this model, if the variables in (1) were stationary then the test statistic would converge in distribution to ifχ1
2

the null hypothesis were true. As is discussed by Godfrey (1988, Chap. 4) and Greene (2000, pp.509-510), an

asymptotically equivalent LM test can be based on the statistic , where “ ” denotes the( / )SSR 2 SSR

“regression” (“explained”) sum of the squares from OLS estimation of the model

. (33)( $ / )u s a b xt t t
2 2 = ′ + ′ + ′ε

In the case of a spurious regression, these two test statistics no longer converge in distribution to underχ1
2
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the null of  homoskedasticity. As was the case for the JB test for normality of the errors, the statistics for both

the and variants of the LM test diverge in distribution as , as we now show.( )TR 2 ( / )SSR 2 T ↑ ∞

Theorem 2

When applied to the spurious regression model (1), defined in (32) converges weakly as ,R2 T ↑ ∞

and so  diverges at the rate “T”.( )TR2

Proof

We can write (32) as

. (34)( )R T b T x T u st
t

t
t

2 1 2
2

2 3 2 2= 













 −









− − −∑ ∑/ *2$ / ( $ )

First, note that

(35)T b T x u s x T xt t t
tt

t
t

− − −= −























∑∑ ∑1 2 5 2 2 2 2/ / * * *2$ $ /

, (37)= 











− −∑ ∑T x u T xt t
t

t
t

5 2 2 2/ * *2$ /

so 

. (38)R T x u T x T u st t
t

t
t

t
t

2 5 2 2

2

2 3 2 2=




























−










− − −∑ ∑ ∑/ * *2$ / / ( $ )

Now, note that

(39)T u s T u T s T s T ut t t
ttt

− − − − −− = + − ∑∑∑3 2 2 2 3 4 2 4 1 2 2 22( $ ) $ ( $ )
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and so using (17) - (19), and (25) - (30) above, the expression in (39) converges weakly as , by theT ↑ ∞

Continuous Mapping Theorem.

Further, we can write

, (40)T x u T x y x x yt t t t t t t
tttt

− −= + −





∑∑∑∑5 2 2 5 2 2 2/ * / * *2 *3 *2 *$ $ $β β

and by using (18), (21), (23) and (24), the expression in (40) also converges weakly as . Finally, usingT ↑ ∞

(8), (39) and (40), the Continuous Mapping Theorem ensures the weak convergence of in (38).R2

Accordingly, diverges at the rate “T” as . (( )TR 2 T ↑ ∞

Theorem 3

When applied to the spurious regression model (1),the statistic  converges weakly as( )T SSR−1

, and so the LM test statistic  diverges at the rate “T”.T ↑ ∞ ( / )SSR 2

Proof

We can write

, (41)SSR b xt
t

= ′ ∑( $ ) *22

where is the OLS estimator of in (33). Noting that the sample mean of the dependent variable in (33)$′b ′b

is unity, we have

(42)$ ( $ / ) /* *2′ =


















∑ ∑b x u s xt t

t
t

t

2 2

and so
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(43)( $ ) $ / ( )/ * *2′ =




















− − − −∑ ∑b T T x u T s T xt t
t

t
t

2 1 5 2 2
2

1 2 2
2

and

(44)T SSR T x T x u T s T xt
t

t t
t

t
t

− − − − −=
























∑ ∑ ∑1 2 5 2 2

2
1 2 2

2
*2 / * *2$ / ( )

so, using results (8), (17) and (40), it follows by the Continuous Mapping Theorem that itself( / )SSR 2

diverges at the rate “T” as . (  T ↑ ∞

  

From Theorems 2 and 3, we see that however it is formulated, there is no point in using this simple variant of

the BPG test for homoskedasticity in the context of a spurious regression. Recall from section 2 that  andvt

need not be homoskedastic for our various asymptotic results to hold. So, regardless of whether the nullwt

hypothesis under test here is true or false, it will be rejected with increasing probability as the sample size

grows. This is illustrated in Tables 2 and 3 for the case where the null hypothesis is true, and a nominal 10%

significance level (based on the asymptotic distribution that would apply for stationary data) is used. Theχ1
2

experimental design is the same as in section 3 above. The rates of divergence of the two test statistics, and

the commensurate size distortions for the LM tests, can be seen in these tables for various distributions for the

errors. Except for the  version of the test, with T = 10 and either normal or uniform errors, there( / )SSR 2

is positive size distortion. As the sample size grows, applying the BPG test in the context of a spurious

regression leads one to increasingly come to the wrong conclusion that the errors are heteroskedastic.

Although this point has been illustrated here with a very simple alternative hypothesis (namely that the variance

of the regression errors is proportional to the sole regressor), it is clear that the same basic result also applies

to more general variants of the BPG test in which the error variance is proportional to some linear combination

of variables under the alternative hypothesis. These results also apply to either the or( / )SSR 2
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versions of White’s (1980) test for homoskedasticity against an arbitrary heteroskedastic alternative,( )TR2

and to other similar tests.

5. Conclusions

Many of the basic pitfalls associated with the use of non-stationary data in regression analysis have been well

documented. In particular, Phillips (1986) exposed the underlying reasons for several observed empirical

features of “spurious regressions”. Among other things, he showed that the standard “t-test” and “F-test”

statistics diverge as , and the Durbin-Watson statistic converges to zero in probability. Thus, each ofT ↑ ∞

the associated null hypotheses will be rejected with increasing probability as the sample size grows, even

though in fact they are actually true. This paper follows this theme and extends these results by considering

what will be encountered by an applied researcher who (wisely) undertakes some other common types of

regression diagnostic testing, but (unwisely) does so in the context of a spurious regression model.

We have shown that just as it is pointless to test for the independence of the model’s errors via the Durbin-

Watson test, it is equally futile to test for the normality or homoskedasticity of these errors in the spurious

regression context. As the sample size grows, these standard diagnostic tests will increasingly reject these

hypotheses, even when they are true. To then conclude that the model needs to be reformulated in order to

deal with discovered “problems” associated with the error term would be as spurious as the estimation of the

original model itself. Although our formal proofs are set in the context of a simple regression model, it is clear

from Phillips (1986, pp.319-322) that they extend directly to the multiple regression model.

All of this underscores the importance of testing appropriately for unit roots (and cointegration) prior to the

formulation and estimation of a regression model based on time series data, a point that was made very clearly

by Granger and Newbold (1974, p.117):

“In our opinion the econometrician can no longer ignore the time series properties of the

variables with which he is concerned - except at his peril. The fact that many economic ‘levels’

are near random walks or integrated processes means that considerable care has to be taken
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in specifying one’s equations.”
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Table 1

Mean Values and Rejection Rates for JB Test Statistic

(Monte Carlo Simulation, 5000 Repetitions, Nominal 10% Significance Level)1

N(0,1) U(0,1)           [1/N(0,1)] exp[N(0,1)]

T       RR           Mean        RR         Mean    RR        Mean           RR             Mean

      (%)        (%)    (%)           (%)

10     1.34          0.91      0.54        0.78  10.02    2.03        4.24 1.28

20     3.36          1.45      1.34        1.08  23.06        8.22      11.26 2.90

50    13.84          2.97      8.06        2.30  55.64            49.38      26.94 7.09

100    45.78          5.95    35.10        4.48  81.08          158.42      55.28          11.37

250    79.68        14.29    67.84        8.77  93.54        1036.56      77.72          20.90

500    91.14        29.57    89.36      22.25  97.20        6594.69      91.28          31.61

1000    95.90        57.94    95.34      45.02  98.74      19997.91      95.86          53.83

2000    98.08      121.83    97.96      90.52  99.24      92016.16      97.74        100.63

5000    99.30      290.83    99.18    231.64  99.76      39813.92      99.04        233.01

10000    99.50      600.22    99.50    451.83  99.82      60762.71      99.64        479.90

1. The 10% critical value for the Chi Square distribution with 2 degrees of freedom is 4.60517. “RR” denotes the

“rejection rate” - i.e., the percentage of the 5,000 simulated values for JB that exceeded this critical value.
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Table 2

Mean Values and Rejection Rates for BPG Test Statistic:

SSR Version

(Monte Carlo Simulation, 5000 Repetitions, Nominal 10% Significance Level)1

N(0,1) U(0,1)           [1/N(0,1)] exp[N(0,1)]

T       RR           Mean        RR         Mean    RR        Mean           RR             Mean

      (%)        (%)    (%)           (%)

10      4.88          0.73      6.14        0.79  15.50    1.40      15.08 1.27

20    12.16          1.13    14.40        1.22  34.00                2.91      27.84 2.23

50    30.32          2.38    34.88        2.87  56.28              7.53      45.56 4.74

100    45.74          4.73    50.34        5.71  68.24            14.61      57.68            8.35

250    64.92        11.74    67.60      14.38  79.78            39.61      70.60          17.96

500    74.72        23.84    75.94      28.30  86.68            78.11      77.34          32.34

1000    82.76        48.17    82.90      56.61  90.84          153.11      84.42          63.12

2000    86.46        94.37    88.16    114.92  92.80          303.22      89.56        122.28

5000    92.12      228.55    91.56    284.06  95.36          774.02      92.50        296.50

10000    93.98      460.56    94.78    570.44  97.10        1605.40      94.02        556.36

1. The 10% critical value for the Chi Square distribution with 1 degrees of freedom is 2.70554. “RR” denotes the

“rejection rate” - i.e., the percentage of the 5,000 simulated values for BPG that exceeded this critical value.
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Table 3

Mean Values and Rejection Rates for BPG Test Statistic:

TR2 Version

(Monte Carlo Simulation, 5000 Repetitions, Nominal 10% Significance Level)1

N(0,1) U(0,1)           [1/N(0,1)] exp[N(0,1)]

T       RR           Mean        RR         Mean    RR        Mean           RR             Mean

      (%)        (%)    (%)           (%)

10     12.68         1.14    14.30        1.20  25.32    1.86       25.36 1.74

20     19.54         1.55    21.58        1.59  39.58               3.17       35.54 2.60

50    38.88          3.24    42.86        3.56  58.76             7.52       52.28 5.30

100    53.14          6.26    57.94        7.00  70.80            14.98      63.82            9.49

250    69.82        15.44    72.94      17.57  80.80            70.70      74.96          20.76

500    78.00        31.54    79.94      34.37  87.54            75.01      81.06          38.27

1000    84.84        64.62    85.34      70.01  90.80          149.41      86.84          75.54

2000    88.54      123.67    90.14    140.97  93.22          298.48      91.08        147.95

5000    93.34      304.76    93.06    339.70  95.80          736.72      93.50        358.96

10000    94.78      614.62    95.86    698.52  97.44        1575.00      94.94        675.14  

 

 

1. The 10% critical value for the Chi Square distribution with 1 degrees of freedom is 2.70554. “RR” denotes the

“rejection rate” - i.e., the percentage of the 5,000 simulated values for BPG that exceeded this critical value.
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Appendix

Results Used for the Proof of Theorem 1

A.1: Derivation of Equation (21)

          ( )T x T x x x x x xt
t

t t t
t

− −∑ ∑= − + −5 2 3 5 2 3 2 2 33 3/ * /

= − + −− − − − − − −∑ ∑∑∑∑∑T x T T x x T x T x T T xt t
t

t t t t
ttttt

5 2 3 5 2 1 2 1 2 5 2 3 2 1 33 3/ / / /( )( ) ( ) ( ) ( )

                 

= − + −− − − − − − ∑∑∑∑∑∑( ) ( )( ) ( ) ( ) ( )/ / / / /T x T x T x T x T x T xt t t t t t
tttttt

5 2 3 3 2 2 2 3 2 2 3 2 3 2 33 3

Then, repeatedly applying result (6) in section 2 (with k = 1, 2, 3), and appealing to the Continuous Mapping

Theorem, we obtain:

.[ ]T xt w
t

− ⇒ − +∑5 2 3 3
3 1 2 1

33 2/ * σ ξ ξ ξ ξ

A.2: Derivation of Equation (22)

This follows as for equation (21) above. Then, repeated application of result (7) in section 2 yields:

.[ ]T yt
t

v
− ∑ ⇒ − +5 2 3

3 1 2 1
33 2/ *3 σ η η η η

A.3: Derivation of Equation (23)

T y x T x y y x y y x x y xy y xyt t t t t t t
tt

t t
ttttt

− −= − + − + −






∑∑ ∑∑∑∑∑5 2 5 2 2 2 2 22 2/ *2 * /
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= − −− − − − −∑∑∑ ∑∑( ) ( )( ) ( )( )/ / /T x y T y T x y T x T yt t t t t
ttt

t t
tt

5 2 2 3 2 2 3 2 2 22

+ − − ∑∑2 3 2 3 2 2( )( )/ /T x T yt t
tt

Then, by the Continuous Mapping Theorem, using definition (11) and results (4), (5), (10) in section 2, and

generalizing the last of these three results in a natural manner, we get:

.[ ]T y xt t v w
t

− ⇒ − − +∑5 2 2
12 1 11 1 2 1

22 2/ *2 * ( ) ( )σ σ ψ η ψ ξ η η

A.4: Derivation of Equation (24)

This follows as for equation (23) in A.3 above. Interchanging variables, we get:

.[ ]T x yt t w v
t

− ⇒ − − +∑5 2 2
21 1 11 1 2 1

22 2/ *2 * ( ) ( )σ σ ψ ξψ η ξ ξ

A.5: Derivation of Equation (26)

      T y T y y y y y y y yt t t t t
tttttt

− −= − + − +





∑∑∑∑∑∑3 3 4 3 2 2 3 44 6 4*4

= − +− − − − − ∑∑∑∑∑( ) ( )( ) ( ) ( )/ / /T y T y T y T y T yt t t t t
ttttt

3 4 3 2 5 2 3 5 2 2 2 24 6

.− +− − ∑∑4 3 2 4 3 2 4( ) ( )/ /T y T yt t
tt

Then, using the Continuous Mapping Theorem, result (7) from section 2 repeatedly, and gathering terms, we

get:

.[ ]T yt v
t

− ⇒ − + −∑3 4
4 1 3 1

2
2 1

44 6 3*4 σ η η η η η η

A.6: Derivation of Equation (27)

This follows as for equation (26) in A.5 above. Interchanging variables, we get:

.[ ]T xt w
t

− ⇒ − + −∑3 4
4 1 3 1

2
2 1

44 6 3*4 σ ξ ξ ξ ξ ξ ξ
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A.7: Derivation of Equation (28)

T y x T y x xx y x y yy x xyx yt t t t t t t t t t t
t

− −= − + − +∑3 3 2 2 2 2 2 22 2 4*2 *2 / (

− + − +2 22 2 2 2 2 2yx y y x xy x x yt t t )

= − +− − − − −∑ ∑∑∑∑( ) ( )( ) ( ) ( )/ / /T x y T x T x y T x T yt t t t t t
t

t
tttt

3 2 2 3 2 5 2 2 3 2 2 2 22

− +− − − − −∑∑ ∑∑∑2 43 2 5 2 2 3 2 3 2 2( )( ) ( )( )( )/ / / /T y T y x T x T y T x yt t t t t
tt

t t
ttt

   − +− − − − ∑∑∑2 3 2 2 3 2 2 3 2 2 2 2( ) ( ) ( ) ( )/ / /T y T x T y T xt t t t
ttt

.− +− − − − ∑∑∑∑2 3 2 2 3 2 2 3 2 2 3 2 2( ) ( ) ( ) ( )/ / / /T x T y T x T yt t t t
tttt

By the Continuous Mapping Theorem, using definition (11) and results (6), (7) and (10) in section 2, and

generalizing the last of these three results in a natural manner, we get:

.( )[ ]T y xt t v w
t

− ⇒ − + + − + −∑3 2 2
22 1 12 1

2
2 1

2
2 1 21 1 1 11 1

2
1
22 2 4 3*2 *2 σ σ ψ ξ ψ ξ η η ξ η ψ ξ η ψ η ξ

A.8: Derivation of Equation (29)

    T y x T x y y x y xy xy y y x y y x yt t t t
t

t t t t t t t t
ttttt

− −= − + + − +∑ ∑∑∑∑∑3 3 3 2 3 2 2 22 2*3 * (

+ + − + − +∑∑ ∑∑∑2 2 22 2 2 2 2 3y x y xy y xy y y x y y x y Txyt t t t t t
tt

t
ttt

)

               = − −− − − − − ∑∑∑∑∑( ) ( )( ) ( )( )/ / / /T x y T y T x y T x T yt t t t t t t
ttttt

3 3 3 2 5 2 2 3 2 5 2 33

+ +− − − − − ∑∑∑∑∑3 33 2 3 2 2 2 3 2 2 2( )( )( ) ( ) ( )/ / /T x T y T y T y T x yt t t t t t
ttttt

   .− − − ∑∑3 3 2 3 2 3( )( )/ /T x T yt t
tt
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Again, by the Continuous Mapping Theorem, using definition (11) and results (7) and (10) in section 2, and

generalizing the last of these three results in a natural manner, we get:

.[ ]T y xt t v w
t

− ⇒ − − + − +∑3 3
13 1 12 1 3 1

2
11 1 1

3
1 1 23 3 3 3*3 * ( )σ σ ψ η ψ ξ η η ψ ξ η ξ η η

A.9: Derivation of Equation (30)

This follows as for equation (29) in A.8 above, with the use of result (6). Interchanging variables, we get:

[ ]T x yt t v w
t

− ⇒ − − + − +∑3 3
31 1 21 1 3 1

2
11 1 1

3
1 1 23 3 3 3*3 * ( )σ σ ψ ξψ η ξ ξ ψ η ξ η ξ ξ
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