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Abstract

Various authors have proposed using the jackknife technique to approximate a standard error for the Gini
coefficient. It has aso been shown that the Gini measure can be obtained smply from an artificial OLS
regresson based on the data and their ranks. Accordingly, we show that obtaining an exact analytical
expression for the standard error isatrivial matter. In addition, by extending the regression framework to one
involving Seemingly Unrelated Regressions, several interesting hypothesesregarding the sensitivity of the Gini
coefficient to changes in the data are readily tested in aforma manner.
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Introduction

Although the Gini coefficient is probably the most widely used empirical measure of income inequdlity, it is
usualy reported without any acknowledgement of the fact that it is Ssmply asample statistic. As such, it has
asampling variance, and ideally a standard error should be reported. This has long been understood (e.g.,
Hoeffding, 1948), but the standard error associated with the Gini coefficient has been reported only rarely
in practice. Thereason for thisisthat most of the formulations of this standard error that have been proposed
in the literature are mathematically complex, or they require a considerable amount of numerical
computationt. The latter disadvantage applies, in particular, to the gpplication of the jackknife technique? to
smulate avariance for the Gini coefficient, as suggested by Sandstrom, Wretman and Walden (1985, 1988)

and others.

Recently, Karagiannis and Kovacevic (2000) and Ogwang (2000) have re-considered thisissue. In particular
they discuss waysin which the computational burden associated with the jackknife approximation of the Gini
coefficient's variance can be reduced to a level where this method can be applied even when redigtically
large data samples are involved. In addition, Ogwang provides a particular regression-based interpretation
of the Gini coefficient that not only formsthe basis of his approach, but unwittingly exposesthefact that there
is really no need to resort to the jackknife technique at al in this context! The purposes of this note are to
expose the latter point, and to show how this regression-based interpretation is also helpful with regard to
various hypothesis tests that are of practical interest. We illustrate our results with empirical applications.

Basic Results

Let Y beavector of incomes, with extremevaues Y jnand Y o »Mean M, and cumulative distribution

function F(y). Itiswell known that the Gini coefficient of inequality is:

G={g F(IL- FyIH/m . ®



Supposethat the observed dataareinincreasing order, withi’th. vaue y; . Then Ogwang (2000, p.124) notes

that the Gini coefficient can also be expressed as®:

G=[(n?- 1/ (6n)](b /), )

where ¥ isthe sample arithmetic mean of 'y, D isthe OLS estimator of b in the model
y,=a+bi+e;, C)

and the € ;' Sare zero-mean, independent, and homoskedastic errors. He also showsthat G can be written
as:

G=(29/n)- 1- A/n), @
where qA is the weighted least squares (WLS) estimator of 2 in the model

i=q+n;, ©)
where the N, Sare heteroskedastic errors with variances of the form (s 2/ Yy i) . S0, in the formulation

of the Gini coefficient in (4), we have:

0 =1&1y)/ @y ®

Ogwang's (2000) principal contribution is to use equation (4) as the basis for applying the jackknife principle
to develop a standard error for G. Hisinnovation dramatically reduces the computational burden of using the
jackknife in this context, as it usudly involves computing G from every possible sub-sample that is created
by dropping one observation. The key to his result is that the data are first ranked in the construction of (4)
from (5) and (6).

As useful as the proposals made by Karagiannis and Kovacevic (2000) and by Ogwang (2000) are, infact
acloser examination of the latter’ s approach reveals that the adoption of the jackknife technique is actualy

unnecessary, and the construction of an appropriate standard error for the Gini coefficient is trivia. To see



this, note that from (4):
var.(G) = 4var.(q) / n? G

and so the standard error of G is;

se(G)=2[se()]/n . )

Of course, S.€ (0] ) comesdirectly from the WL S estimation of (5), or equivalently from the OLS estimation

of the regression mode!:
(VYi) =y +u;, ©)
where U; = (4/Y; )N . Inother words, the desired standard error can be obtained directly from standard

OL S regression output! Precisely this approach has been used by Selvanathan (1991), Giles and McCann
(1994), Crompton (2000) and othersto calculate standard errors for Laspeyres, Paasche, and other types of
price indices. It should also be stressed that resampling procedures such as the jackknife are justified only
in terms of their asymptotic properties. For instance, Shao (1991) provides a detailed anadysis of these
properties, and establishes the weak consistency of the jackknife variance estimator. This estimator is not
necessarily appedling in finite samples - for instance, Efron and Stein (1981) prove that it is biased upwards

in small samples, so at least it provides a conservative measure.
Numerical Illustrations

First, weillustrate the rel ationship between the exact standard error given by (8), and itsjackknife counterpart,
usngan artificia data-set®. Table 1 showsthe Gini coefficient and its standard error for various sample sizes,
and the corresponding jackknife calculations. The asymptotic convergence of the latter to the former is
evident, asis the upward biasin the jackknife Gini estimate and its standard error in finite samples. Ogwang
(2000), and the other associated authors noted above, propose that the“ exact” Gini coefficient should be used
with the “jackknife’ standard error. The percentage distortion in [G/ s.e.(G)] that would be associated with
this approach is just the percentage distortion in s.e.(G). Thisisalsoshownin Table 1 for our artificia data-



Next, we consider a small application using data from the Penn World Tables®. Our data measure real per
capita consumption, in internationally comparable terms, for 133 countriesin the years’ 1970, 1975, 1980 and
1985. In Table 2 we again compare the Gini coefficients and their standard errors obtained by the smple
regression approach described above, and by using the jackknife. As before, the finite-sample bias of the
latter measures is obvious, and in fact is much more pronounced (in percentage terms) than in Table 1. To
construct a 95% confidence interval for the Gini coefficient based on the OLS/WL S results we can use the
critical t-value® of 1.978 and the standard errors. For each year this confidence interval easily covers the
associ atedjackknife Gini estimate. The inter-temporal patternin consumptioninequality implied by the various
measures is also interesting. Both sets of Gini coefficient estimates exhibit an increase in value (and hence
in consumption inequality) from 1970 to 1975, asmall decreasein 1980, and an increase to amaximum vaue
in 1985. Interestingly, if consumption inequality is measured by the coefficient of variation (“c.v.” in Table
2), adifferent picture emerges. By this measure, inequality declines from 1970 to 1975, and to 1980. It then
increases to its maximum value in 1985. The regression model (5) that these results are based upon has an
error term that is assumed to exhibit a particular form of heteroskedasticity. Accordingly, we have used
Harvey’ s(1976) test to test the hypothesis of homoskedastic errors against the alternative hypothesisthat the

error variance s proportional to (1/Y.) . In each case the null hypothesis isrejected, lending support to the

assumptions underlying the caculation of our Gini coefficients’.

The OLS/WLS approach to calculating the standard errors for the Gini coefficient aso facilitates various
interesting hypothesis tests that cannot be conducted readily if the jackknife approximation is used. For
example, we can test the hypothesis that the Gini coefficient isthe samein different years by stacking up the
single-year regressions of theform (5) or (9), using Seemingly Unrelated Regressions (SUR) estimation, and
testing the equality of the appropriate coefficients across the equations. Part (a) of Table 3 shows the SUR
estimates of the Gini coefficient and the standard errors for our consumption data. The coefficients
themselves are smaller than those obtained year by year (asin Table 1), and the gain in asymptotic efficiency
associated with SUR estimation is reflected in the smaller standard errors. The latter, of course mean that

the percentage distortion in the jackknife standard errors is even greater than the Table 2 results suggest.



The relevance of using SUR estimation rather than year-by-year OLS is clear when we test the diagonality
of themodel’ serror covariance matrix. The Breusch-Pagan Lagrange multiplier test statistic is 796.12, while
the corresponding likelihood retio test statistic is'® 2787.50. Table 3(a) also shows the results of testing the
equdity of the dope coefficients (and hence the Gini coefficients) across the eguations of the model, and
hence across years. With the exception of the 1975/1980 pair, we strongly reject the hypothesisthat the Gini
coefficient is the same in two different years'!. Not surprisingly, the Wald dtatistic for testing equivalence
across all of the years is 65.10, leading to a clear rejection of this hypothesis®?. In part (b) of Table 7 we
show the results when the 1975 and 1980 coefficients are restricted to be the same. With theinclusion of this
additional (data-supported) information, the Gini coefficient standard errors are further reduced, and so the

distortions associated with the jackknife approximation are more pronounced.

As afina example of the usefulness of the SUR approach to calculating both the Gini coefficient and its
estimated variability, we consider thesignificance of the effect on this measure of international consumption
inequdity if one or more countries are deleted from the sample. In each year, the U.S.A. hasthe highest real
per capita consumption among the countriesin our sample, and Ethiopia has the smallest. Table 4 showsthe
results of testing the robustness of the Gini coefficient estimates, in each year (based on restricted SUR

estimation), to the deletion of one or both of these extreme sample values'®.

Comparing Tables 3(b) and 4, we seethat the Gini coefficient is dightly more sensitive to the omission of the
U.S.A. from the sample than to the omission of Ethiopia. Not surprisngly, it is even more senstive to the
omission of both countries. The Wald statistics relate to the equivalence of the Gini values before and after
the various omissions - they are asymptotically chi-square distributed with degrees of freedom equal to the
number of countries deleted. I nterestingly, when we focus on statistical significance rather then the numerical
vaues of the Gini coefficients, adifferent picture emerges. When the U.S.A. isdropped from the sample we
cannot regject the null hypothesis, that the Gini coefficient isunatered, at the 15% significance leve or lower.
On the other hand, when Ethiopia is dropped from the sample, we reject this null hypothesis at the 5% level,
though not at the 2.5% level or lower. Finally, when both countries are dropped, we again r ej ect the stability
of the Gini coefficient a the 5% leve, though not at the 4% level or lower.



Concluding Remarks

The Gini coefficient is the most common economic measure of inequality. A standard error is needed if
confidence intervas or tests are to be constructed for this coefficient, and various authors have proposed
using the jackknife technique to get alarge-sample approximation for this standard error. However, because
the Gini coefficient can be obtained from a simple OL S regress on-based approach, the exact cal culation of
its standard error is actualy trivial. Thisinsght aso provides the basis for constructing various tests of the
robustness of the Gini coefficient to changesin the sample of data, using SUR estimation asthe basisfor this
analysis. Such tests are not readily constructed if the jackknife methodology is used.



Tablel

Gini Cosfficients and Standard Errors - Artificial Data

n “Exact” (OLS/WLYS) Jackknife % Distortion in
G s.e(G) G s.e(G) Jackknife s.e.(G)
25 0.2291 0.1054 0.2800 0.1125 6.7
50 0.2291 0.0738 0.2541 0.0767 3.9
100 0.2291 0.0520 0.2415 0.0533 25
500 0.2291 0.0231 0.2316 0.0235 1.7
1000 0.2291 0.0164 0.2303 0.0166 1.2
5000 0.2291 0.0073 0.2293 0.0074 1.4
10000 0.2291 0.0052 0.2292 0.0052 0.0
Table2

Gini Coefficients and Standard Errors - PWT Consumption Data
(133 Countries)

“Exact” (OLSIWLYS) Jackknife % Distortion in c.v
Y ear G s.e(G) G s.e.(G) Jackknife s.e.(G) (%)
1970 0.4705 0.0417 0.4816 0.0481 15.3 93.16
1975 0.4796 0.0405 0.4908 0.0460 13.6 93.04
1980 0.4785 0.0396 0.4897 0.0448 13.1 91.16

1985 0.4940 0.0391 0.5053 0.0441 12.8 95.20



Table3

Gini Cosfficients and Standard Errors - PWT Consumption Data
(SUR Estimation)

Year G s.e(G) % Distortion in Z-tests
Jackknife s.e.(G) 1970 1975 1980

(a) Unrestricted Estimation

1970 0.3369 0.0238 102.1

1975 0.3454 0.0231 99.1 -5.61

1980 0.3478 0.0226 75.2 -394 -143

1985 0.3575 0.0232 68.5 -6.74 -6.20 -6.56

(b) Restricted Estimation

1970 0.3478 0.0222 116.7
1975 0.3552 0.0217 112.0 -5.80
1980 0.3552 0.0217 106.5 -580 na

1985 0.3653 0.0213 107.0 -808 -7.13 -7.13



Y ear

1970

1975

1980

1985

Table4

Testsfor Robustness of Gini Coefficient

(Restricted SUR Estimation)

Omit U.SA.

G Wald
[s.e(G)] [p-value]
0.3505 1.9826
[0.0223] [0.160]
0.3578 2.0266
[0.0218] [0.155]
0.3578 2.0266
[0.0218] [0.155]
0.3679 2.0566
[0.0214] [0.152]

Omit Ethiopia

G

s.e.(G

0.3488
[0.0222]
0.3562
[0.0217 ]
0.3562
[0.0217 ]
0.3663
[0.0213]

Omit U.SA. & Ethiopia

ald

[p-value]

43938
[0.038]
43382
[0.037]
43382
[0.037]
42339
[0.040]

G Wald
[s.e.(G)] [p-value]
0.3514 6.3849
[0.0223] [0.041]
0.3588 6.37545
[0.0218] [0.041]
0.3588 6.3745
[0.0218] [0.041]
0.3689 6.3001
[0.0214] [0.042]
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Footnotes

1 For example, see Glasser (1962), Sendler (1979), Sandstrom, Wretman and Wal den (1985, 1998), and
other authors cited by Ogwang (2000, p. 123).

2. See Efron (1982), especialy Chapter 3, for details of the theoretical judtification for the jackknife
and other related resampling techniques. The jackknife was first suggested by Quenouille (1949,
1956) as a non-parametric method for estimating bias, and it was extended by Tukey (1958) to the
problem of estimating varaince. Yitzhaki (1991) discusses the application of the jackknife to arange
of measures related to the Gini index.
See, dso, Lerman and Yitzhaki (1984) and Shalit (1985).

4, For a genera discussion of the stochastic approach to price index construction, see Clements and
|zan (1987).

5. The basic data, forn=25,is{1765678436421345678987654}.
The sample size isincreased by assuming that the data are “fixed in repeated samples’. That is, if
n = 25j, the above sample is repeated “j” times. Accordingly, the “exact” (OLS) Gini coefficient
vaues shown in Table lareinvariant to the sample size. All of the calculations were undertaken with
the SHAZAM (2001) econometrics package.

6. See Summers and Heston (1995). The datawere extracted using the Windows-based freeware also
available at the NBER website at http://www.nber.org/pub/pwt56/.

7. The Penn World Tables data-set covers more countries than this, over the period 1950-1992. We
have chosen a selection of recent years for which the data of interest are available for a large
proportion of the countries. The list of countries and data used in our sample are available at
http://web.uvic~dgiles/ewp0202datax|s.

8. The Student-t assumption follows if the errorsin (5) or (9) are Normdly distributed. Asymptoticaly
this will be areasonable approximation, but theexact finite-sample distribution of G isanother matter
that we don’t pursue in this paper.

9. The t-statistics (and their p-values) for 1970, 1975, 1980 and 1985 are -0.3817 (0.739), -0.3790
(0.741),0.4232 (0.714) and -0.6615 (0.576) respectively. Any remaining concerns about other types
of heteroskedasticity could be addressed by using White's (1980) heteroskedasticity-consi stent

estimator of the covariance matrix, and hence of the standard errors.
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10.

11.

13.

Both statistics are asymptotically chi-square with six degrees of freedom under the null hypothesis,
so we clearly rgject the null of a diagonal covariance matrix.

The p-vaue associated with the z-gtatistic for 1975/1980 1515.22%.

This gatigtic is asymptoticaly chi-square with three degrees of freedom under the null hypothesis,

so the 1% critica value is 11.3449, and the p-value is essentialy zero.

These tests are readily implemented through the use of smple dummy variables to isolate the

observations (countries) of interest.
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