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Abstract

Using historical time-series data, we test for convergence and common trends in real per

capita output for New Zealand and her four major trading partners. Both bivariate and 

multivariate time-series methods are used, and we also implement the fuzzy c-means 

clustering algorithm as an alternative basis for detecting convergence. The results of our 

time-series analysis accord with earlier studies - we find limited evidence of (only

bivariate) convergence, but ample evidence of a small number of common trends. 

In contrast, our fuzzy clustering analysis reveals very strong evidence of a particular form

of output convergence when the five trading countries are considered as a group.
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1. Introduction

In recent years a substantial empirical literature has emerged in relation to testing for the

convergence of per capita output across different economies. Essentially, this literature may be

viewed as a test of the prediction of the neoclassical growth model (Solow, 1956), as opposed to

that of the “new” (endogenous) growth models (e.g., Romer, 1986; Lucas, 1988). Broadly

speaking, the neoclassical model predicts (under rather strong assumptions) that per capita output

in an economy will converge to the same level, regardless of the initial capital endowment. On

the other hand, the “new” growth models incorporate features (such as production

nonconvexities) that permit the emergence of multiple equilibria in long-term output paths, so

that similarly endowed economies need not converge.

Empirical testing of the convergence hypothesis has been based on both cross-section and time-

series data. In the former case, a negative correlation (across countries) between initial per capita

output levels and subsequent growth rates is interpreted as evidence in favour of so-called “beta-

convergence”. In the latter case, (stochastic) convergence implies that output differences between

economies cannot contain unit roots or time trends, and the output levels in different countries

must be cointegrated. The empirical results have been extremely mixed - on balance, those

associated with cross-section data have tended to favour convergence, while those based on time-

series data have not. For further details, see Baumol (1986), Dowrick and Nguyen (1989), Barro

(1991), Mankiw et al. (1992), Bernard (1992), Quah (1993), Barro and Sala-i-Martin (1991,

1992, 1995), Bernard and Durlauf (1995, 1996), Greasley and Oxley (1997), Cellini and Scorcu

(2000), among others, and the excellent survey by Durlauf and Quah (1999). St. Aubyn (1999,

p.24) offers some explanations for the apparent discrepancy between the cross-section and time-

series evidence. In addition to cointegration testing he also uses a procedure based on the Kalman

filter, and with the latter he finds evidence of convergence, after World War 2, between the

U.S.A. and every G-7 country except Canada.

Interestingly, and as Slaughter (1997) has noted, this literature on testing for convergence has

largely ignored the role of international trade. For instance, in a “Solow world” countries exist

independently of each other, and so international linkages such as trade, factor mobility and the

transfer of technology cannot be considered. Convergence in output arises as a result of

convergence in per capita capital stock. In contrast, some authors have focussed on the empirical

connection between international trade and output convergence. Recent examples include Ben-
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David (1993, 1996), and Sachs and Warner (1995), who find historical periods of convergence

among economies that either started out by being relatively open with respect to each other, have

high trade volumes, or liberalized their trade policies. Similarly, Ben-David and Kimhi (2000)

provide evidence that an increase in trade between major trading partners (especially increased

exports by poorer countries to their wealthier trading partners) is related to an increase in output

convergence. Slaughter (1997) points out that the existence of convergence among trading

partners does not imply that trade causes convergence. He also discusses (and critiques) potential

ways in which trade and convergence may be linked: via factor-price equalization; by

international flows of technology; and by trade in capital goods. On the negative side, O'Rourke

(1996) finds that migration was more important than trade for international convergence in the

late nineteenth century; and Bernard and Jones (1996) conclude that freer trade diverges incomes

cross countries. Using a “difference in differences” methodology developed by Meyer (1994),

Slaughter (1998) finds that various post-1945 trade liberalizations appear to have led to income

divergence, rather than convergence.

Trade theory provides an ambiguous answer to the question, “Does increased international trade

lead to per capita output (income) convergence across different economies?” The precise

mechanisms linking trade and convergence are unclear, as are the relative contributions of trade-

related and non-trade factors. In this paper we do not attempt to address the above question, per

se – this is the subject of other research in progress. Instead, we search for more positive time-

series-based convergence results than have typically been found, by concentrating on a very open

group of economies with a high degree of trade-dependence, and by considering a new

methodological approach. More specifically, we consider the case of New Zealand and her four

major trading partners over the period 1950 to 1992. These partners were Australia, Japan, the

United Kingdom, and the U.S.A.. Our data are per capita GDP, in 1985 international prices and

adjusted for terms of trade, taken from the Penn World Tables (Summers and Heston, 1995). The

(logarithms of the) data are plotted in Figure 1. As can be seen there, each series is quite strongly

trended, with no significant structural breaks (except perhaps for a shift in the trend of the

Japanese series in 1973-74.

In addition to considering some established time-series tests for both bilateral and multilateral

output convergence, we also demonstrate the use of “fuzzy clustering” techniques as an

alternative way of measuring convergence. This particular approach has not been used previously

to examine convergence, although alternative classification and clustering notions have been
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adopted in this context by Durlauf and Johnson (1995) and Hobijn and Franses (1999). Our fuzzy

clustering results provide an interesting contrast with those from the more conventional time-

series analysis. The various tests that we use are described in sections 2 and 3, and the

corresponding results appear in sections 4 and 5. The final section offers some conclusions and

suggestions for further research.

2. Convergence and Common Trends

Bernard and Durlauf (1995, p.99) define stochastic convergence in output as follows.

If yi,t is log real per capita output for country i at time t, and It is the information set at time t, then

countries p = 1, 2, ....., n converge if the long-term forecasts of outputs for all countries are equal

at a fixed time t:

Limit E(y1, t+k - yp,t+k | It) = 0 ; ~ p g 1.
k<�

When p = 2, for example, this definition of convergence requires that the two countries' outputs

must be cointegrated, with a cointegrating vector [1 , -1]. So, in practice convergence would be

rejected if the series (yi - yj) contains a unit root, and we consider two types of unit root tests in

our analysis below. In the multivariate case, convergence requires that there must be (p-1)

cointegrating vectors of the form [1 , -1] or one common long-term trend. Accordingly, we can

test for convergence by constructing a time-series based on the (p-1) deviations, Dyi,t = (y1,t - yi,t),

applying Johansen’s (1988) multivariate cointegration analysis, and using his likelihood ratio

“trace test” to determine the rank of the cointegrating matrix.

If the output series do not converge, they may still have common trends, and there may be a small

number of stochastic trends affecting output which differ across countries (Bernard and Durlauf,

1995, pp. 99-100). Countries p = 1, 2, ...., n contain a single common trend if the long-term

forecasts of output are simply proportional at a fixed time t:

Limit E(y1, t+k - �p' y
*

,t+k | It) = 0
k<�

where y*
t = (y2,t, y3,t, ....., yp,t). When p = 2, for example, countries i and j have a common trend if

yi and yj are cointegrated with a cointegrating vector [1, -�], and this is readily tested using the
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Engle-Granger (1987) procedure. In the multivariate case, Johansen's maximum likelihood

analysis can again be used in conjunction with the original output data for all of the countries to

determine the number of cointegrating vectors (common trends).

Using data for fifteen OECD countries over the period 1900 to 1987, Bernard and Durlauf (1995)

find little evidence of convergence, but strong evidence of common trends. For all countries as a

group, they conclude that there are three to six long-run shocking forces that help to determine

economic growth; and four or five long-run processes for the outputs of the eleven European

countries.  So, economic growth cannot be explained simply by country-specific factors. There

appears to be a small group of common long-run characteristics that (together with the country-

specific features) determine international growth rates. On can conjecture that international trade

may play a role in the transmission and linking of these common factors.

Greasley and Oxley (1997), St. Aubyn (1999) and Cellini and Scorcu (2000) focus on the

bivariate case (p = 2) in their application of Bernard and Durlauf's analysis, and they emphasise

the need to take account of structural breaks in the data when using unit root tests to test for

convergence. Using Perron's (1989) modification of the Dickey-Fuller (1979, 1981) unit root test

(and the same data as Bernard and Durlauf), Greasley and Oxley (1997) find evidence of bivariate

convergence between Belgium and the Netherlands, France and Italy, Australia and the United

Kingdom, and Sweden and Denmark. St. Aubyn's (1999) analysis also allows for exogenous

structural breaks in the data. Of the countries and time-period that we are concerned with in our

own study, he finds evidence of (pair-wise) convergence between the U.S.A. and each of the

United Kingdom, Australia, and Japan using his Kalman filter methodology. He also finds

evidence of stochastic convergence between the U.S.A. and Japan using bivariate cointegration

testing. Also focussing on the latter approach, Cellini and Scorcu (2000) allow for endogenous

structural breaks by means of the Gregory and Hansen (1996) test, and for our countries and time-

period they detect stochastic convergence only for the U.S.A. and Canada, and the U.S.A. and the

United Kingdom.

2. Fuzzy Clustering

One of the novel features of this paper is that we propose using “fuzzy sets” to cluster the output

data for the different countries, and then track the distance between the centres of these clusters

over time. If the centres of the fuzzy clusters move towards each other over time, this represents a
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particular type of convergence in output. We will refer to this as “cluster convergence”. As this

type of analysis has not been used previously in this context, a somewhat detailed discussion is

warranted.

The theoretical basis for fuzzy sets is usually attributed to Zadeh (1965). In conventional set

theory, elements either belong to some particular set or they do not. Another way of expressing

this is to say that the “degree of membership” of a particular element with respect to a particular

set is either unity or zero. The boundaries of the sets are “crisp”. In contrast, in the case of fuzzy

sets, the degree of membership may be any value on the continuum between zero and unity, and

any particular element is associated with more than one set. Generally this association involves

different degrees of membership with each of the fuzzy sets.

In our analysis we need to determine the partitioning of the output data for each country into a

number of clusters, year by year. These clusters have “fuzzy” boundaries, in the sense that each

data value belongs to each cluster to some degree or other. Having decided upon the number of

such clusters to be used, some procedure is then needed to locate their mid-points and to

determine the associated membership functions and degrees of membership for the data-points.

We follow Giles and Draeseke (2001) and use a variant of the “fuzzy c-means” (FCM) algorithm.

This algorithm apparently dates from Ruspini (1970), although some of the underlying concepts

were explored by MacQueen (1967). The FCM algorithm is closely associated with such early

contributors as Bezdek (1973) and Dunn (1974, 1977), and is widely used in such fields as pattern

recognition.

The algorithm provides a method of dividing up the “n” data-points into “c” fuzzy clusters (where

c < n), while simultaneously determining the locations of these clusters in the appropriate space.

The metric that forms the basis for the usual FCM algorithm is “squared error distance”, and the

mathematical basis for this procedure is as follows. Let xk be the k’th (possibly vector) data-point

(k = 1, 2, ...., n). Let vi be the center of the i’th. (fuzzy) cluster (i = 1, 2, ....., c). Let dik = || xk - vi ||

be the distance between xk and vi , and let uik be the “degree of membership” of data-point “k” in

cluster “i”, where :

( ) .u ik

i

c

=
=
∑ 1

1
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The objective is partition the data-points into the “c” clusters, and simultaneously locate those

clusters and determine the associated “degrees of membership”, so as to minimize the functional

There is no prescribed manner for choosing the exponent parameter, “m”, which must satisfy 1 <

m < �. In practice, m = 2 is a common choice. In the case of crisp (hard) memberships, m = 1.

The FCM algorithm involves the following broad steps:

1. Select the initial location for the cluster centres.

2. Generate a (new) partition of the data by assigning each data-point to its closest cluster

centre.

3. Calculate new cluster centres as the centroids of the clusters.

4. If the cluster partition is stable then stop. Otherwise go to step 2 above.

In the case of fuzzy memberships, the Lagrange multiplier technique generates the following

expression for the membership values to be used at step 2 above:

If the memberships of data-points to clusters are “crisp” then

uik = 0 ; � i � j,

ujk = 1 ; j s.t. djk = min.{dik, i = 1, 2, ...., c}.

The updating of the cluster centres at step 3 above is obtained via the expression

The fixed-point nature of this problem ensures the existence of a solution. See Bezdek (1981,

Chapter 3) for more complete mathematical details. The FCM algorithm is simple to program,

and we have used SHAZAM (2001) programming commands from Giles and Draeseke (2001) in

this application. Once the centres of the fuzzy clusters have been determined, each of the “n”

data-points can be allocated to the cluster with the closest centre. In our application we have n = 5

J U v u d
k

n
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i

c
m

ik( , ) ( ) ( ) .=
==

∑∑
11

2

u d dik ik

j

n

jk
m=

=

−∑1 2

1

2 1 1/ [( ) / ( ) ]{ } ./ ( )

v u x u i ci ik
m

k

n

k ik
m

k

n

= =
= =

∑ ∑[ ( ) ] / [ ( ) ] ; , , . . . . , .
1 1

1 2



8

countries, which severely constrains the number of clusters that can be considered. Accordingly

we consider c = 2 and c = 3.

4. Results of Stochastic Convergence Tests

In Table 1 we show the results of testing for unit roots in each of the (log) output series, allowing

for the possibilities of I(2), I(1) or I(0) processes. We have used both the “augmented” Dickey-

Fuller (ADF) tests, in which the null hypothesis is non-stationarity, and the tests of Kwiatowski et

al. (KPSS) (1993) in which the null hypothesis is stationarity. We have used a 10% significance

level to compensate for the low powers of these tests, although the results are not sensitive to this

choice.

In applying the ADF tests, the augmentation level (“L”) has been chosen by the default method in

the SHAZAM (2001) package, as Dods and Giles (1995) show that this approach leads to low

size-distortion when “pre-testing” in samples of our size. We have used the sequential strategy of

Dolado et al. (1990) to determine the inclusion/exclusion of drift and trend terms in the Dickey-

Fuller regressions. In Table 1, tdt denotes the ADF unit root “t-test” with drift and trend terms

included in the fitted regression; Fut  is the corresponding ADF “F-test” for a unit root and zero

trend; td is the unit root “t-test” with a drift but no trend in the fitted regression; Fud is the

corresponding “F-test” for a unit root and a zero drift; and t is the ADF unit root test when the

fitted regression has no drift or trend term included. Finite-sample critical values for our “t-tests”

and “F-tests” come from MacKinnon (1991), and from Dickey and Fuller (1979, 1981),

respectively. The results in Table 1 clearly indicate that all of the series are I(1).  Applying

Perron's (1989) unit root test to allow for the possible structural break in the trend for Japanese

output did not alter this conclusion.

In the case of the KPSS tests we have used values for the Bartlett window parameter, l, based on

both the “l4 rule” and the “l12 rule”. The “lk rule” sets l(k) = int.[k(T/100)1/4], so this implies l = 3

and l = 9, for k = 4 and k = 12 respectively, for our sample size. KPSS give asymptotic critical

values for the test with null hypotheses of both level-stationarity and trend-stationarity. Cheung et

al. (1995) provide response-surface results that allow us to calculate finite-sample critical values

in the trend-stationary case for any l values, and more recently Hornok and Larsson (2000)

provide exact critical values for both null cases and our choices of l. The KPSS results in Table 1

confirm that all of the series are I(1) - the null of level-stationarity is rejected at the 10% (and 5%)
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level for all series; and the null of trend-stationarity is rejected at the 10% level in all cases except

for the United Kingdom.

So, there is the possibility of cointegration between these series, and we test for this both pair-

wise and for the five output series as a group. As noted earlier, in the pair-wise case the existence

of cointegration implies that the two series have common trends. Moreover, if the cointegrating

vector is [1, -1] then the two series converge. Following Greasley and Oxley (1997), we test the

latter by testing for a unit root in the (log-) difference between a pair of series. The results (again

based on both the ADF and KPSS tests) appear in Table 2, and we see that there is very little

evidence of convergence. The ADF results suggest stochastic convergence between the output of

Japan and those of each of the United Kingdom and the U.S.A. (and possibly also Australia and

New Zealand); while the KPSS results suggest convergence between Australia and the United

Kingdom, and possibly between New Zealand and each of Australia and the U.S.A.. Interestingly,

the Australia-United Kingdom and U.S.A.-Japan convergence are two of the few examples that

Greasley and Oxley (1977) and St. Aubyn (1999), respectively, find using different data. In Table

3 we show the results of applying the Engle-Granger (1987) cointegrating regression ADF test, in

which the null is “no cointegration”, using MacKinnon’s (1991) exact critical values. We see that

the only (weak) evidence of cointegration arises with the Australia-U.S.A. and New Zealand-

Japan pairs, and possibly for Australia-New Zealand. These are the only cases where there is

(bivariate) evidence of common trends in the output data. As these country pairings do not

include all of those associated with stochastic convergence above, all of these bivariate results

should be treated with considerable caution.

The results of applying Johansen’s (1988) likelihood ratio “trace test” to examine stochastic

convergence between the five output series as a group appear in Table 4. Recalling the discussion

in section 2 about the way in which this test is applied, the four inter-country (log-) differences in

the data have been constructed relative to the New Zealand output series. All of these differences

exhibit a trend, so following the suggestion of Franses (2001) we include a drift and trend in the

cointegrating equation, and a drift but no trend in the VAR models when applying Johansen's

procedure. This corrsponds to “case 4” in the EViews (1998) econometrics package. As we can

see, the results are not sensitive to the lag length chosen for the VAR's, and as the number of

cointegrating equations is found to be two or three (and hence less than four) this implies non-

convergence for this group of outputs. Table 5 shows the corresponding results when we use

Johansen's procedure to test for common trends by examining cointegration between the actual
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(log-) levels of the five series. “Case 4” in EViews is again appropriate, and the results clearly

indicate that there are three cointegrating equations. So, when considering all five countries as a

group we find clear evidence of a small number of common trends in output, but no evidence of

stochastic convergence.

5. Results of Cluster Convergence Analysis

The results of our fuzzy clustering analysis of the output data for the five countries are

summarized in Figures 2 and 3, for (c =) 2 and (c =) 3 fuzzy clusters respectively. Figure 1 shows

the ratio of the centres of the two fuzzy clusters (each of which are measured in 1985 constant

international dollars), year by year. Figure 2 shows the ratio of the centre of the “highest” cluster

to that of the “lowest”, year by year, where the ordering of the clusters is again on the constant

dollar scale associated with the output measurement. These ratios are unitless, of course, and this

facilitates inter-year comparisons. In each case we see that there is fairly steady decline in the

ratio towards unity, over time. This strongly suggests a different (non-stochastic) type of

convergence - “cluster convergence” - in the outputs of the various countries over our sample

period - one that is intuitively sensible in view of the output data shown in Figure 1.

It is also interesting to consider the changes that take place, year by year, in the composition of

the fuzzy clusters. Recall that each country’s membership of a cluster is not “crisp” – actually,

each country belongs to every cluster, with some varying “degree of membership”. For the

purposes of the present discussion, we assign a country to the cluster for which it has the highest

degree of membership, in each year, and the results appear in Table 5. Not surprisingly, and again

consistent with the data in Figure 1, these results clearly show the relative rise of Japanese per

capita output, and the relative fall of New Zealand and U.K. per capita outputs, over the sample

period.

6. Conclusions

In this paper we have re-visited the issue of testing for convergence and common trends in real

per capita output using historical time-series data. In doing so, our focus has been two-fold. First,

we have limited ourselves to a small group of countries that traded actively with the very open

New Zealand economy over the period 1950 to 1992. Thus, our emphasis has been on the

possibility of convergence in the context of active international trade. Second, we have
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introduced a new way of measuring convergence in the context of time-series data, by adapting

the fuzzy c-means clustering algorithm. In common with most other related studies our unit

root/cointegration analysis suggests a general absence of stochastic convergence (except in a few

bilateral cases), but it also suggests the existence of three common trends in the five output series.

On the other hand, the fuzzy clustering analysis provides the clear impression that the different

countries’ outputs have become steadily more closely grouped over our time-horizon.

Recently, several authors have considered the effect of increased trade on the convergence of

output across different countries. At this stage the evidence is rather mixed, and further research

is certainly warranted. The fuzzy clustering methodology that we have illustrated in this paper

seems to have considerable promise, and work that is in progress involves the use of this

methodology to investigate the trade expansion/output convergence relationship in some detail.
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Figure 1.  Real per capita Output - All Countries
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Figure 2.   Ratio of Fuzzy Cluster Centres
(c = 2)
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Figure 3.   Ratio of Largest to Smallest Fuzzy Cluster Centres
(c = 3)
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Table 1.    Unit root test results (logarithms of the data)

a. Augmented Dickey-Fuller tests

L tdt Fut td Fud t Outcome

 Australia

H0  : I(2) 2 -5.199 n.a. n.a. n.a. n.a. Reject I(2)

H0  : I(1) 2 -0.757 1.867 -1.898 14.523 n.a. I(1)

New Zealand

H0  : I(2) 4 -3.053 4.694 -2.849 4.076 n.a. Reject I(2)

H0  : I(1) 4 -2.42 1.332 -1.253 3.923 n.a. I(1)

Japan

H0  : I(2) 1 -3.267 5.337 n.a. n.a. n.a. Reject I(2)

H0  : I(1) 1 -0.678 2.017 -2.028 5.695 n.a I(1)

United Kingdom

H0  : I(2) 2 -4.284 9.220 n.a. n.a. n.a. Reject I(2)

H0  : I(1) 0 -2.492 3.538 -1.120 20.326 n.a. I(1)

United States

H0  : I(2) 3 -3.138 5.157 -3.128 4.892 n.a. Reject I(2)

H0  : I(1) 0 -2.026 2.279 -0.969 9.750 n.a. I(1)

b. KPSS tests

Level-Stationary Trend-Stationary Outcome

l4 (l=3) l12 ( l=9) l4 (l=3)  l12 ( l=9) 

Australia

H0  : I(0) 1.138 0.535 0.201 0.118 I(1)

New Zealand

H0  : I(0) 1.090 0.531 0.196 0.144 I(1)

Japan

H0  : I(0) 1.134 0.537 0.282 0.145 I(1)

United Kingdom

H0  : I(0) 1.162 0.559 0.154 0.107 I(1)

United States

H0  : I(0) 1.157 0.543 0.154 0.107 I(1)
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Table 2.    Pair-wise convergence test results (logarithms of the data)

a. Augmented Dickey-Fuller tests

L tdt Fut td Fud t Outcome

 Australia

N.Z. 0 -3.144 4.956 -1.731 1.659 -0.651 I(1)

Japan 2 -0.775 3.313 -2.610 15.108 n.a. ?

U.K. 2 -0.700 0.878 -0.737 0.474 -0.774 I(1)

U.S.A 2 -2.760 4.893 -2.595 3.833 n.a. ?

New Zealand

Japan 0 -1.857 4.186 -2.590 18.990 n.a. ?

U.K. 4 -1.839 1.899 -0.458 1.142 -1.487 I(1)

U.S.A. 0 -2.782 3.877 -2.469 3.275 0.150 I(1)

Japan

U.K. 1 -0.985 1.417 -1.653 3.418 -2.017 I(0) = convergence

U.S.A. 0 -1.637 2.736 -2.151 3.463 -2.649 I(0) =convergence

United Kingdom

U.S.A. 0 -2.288 2.621 -1.602 1.808 -1.190 I(1)

b. KPSS tests

Level-Stationary Trend-Stationary Outcome

l4 (l=3) l12 ( l=9) l4 (l=3) l12 ( l=9) 

Australia

N.Z. 0.915 0.482 0.089 0.104 ?

Japan 1.119 0.534 0.292 0.150 I(1)

U.K. 0.196 0.124 0.186 0.112 I(0) = convergence

U.S.A. 0.810 0.445 0.149 0.138 I(1)

New Zealand

Japan 1.137 0.539 0.268 0.145 I(1)

U.K. 0.904 0.512 0.170 0.151 I(1)

U.S.A. 0.535 0.394 0.104 0.131 ?

Japan

U.K. 1.086 0.513 0.283 0.146 I(1)

U.S.A. 1.107 0.529 0.287 0.150 I(1)

United Kingdom

U.S.A. 0.708 0.447 0.142 0.099 I(1)
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Table 3.    Pair-wise common trends test results (logarithms of the data)

Engle-Granger cointegration tests

No Trend in Cointegrating Regression With Trend in Cointegrating Regression

Australia

N.Z. -3.038 -3.027

Japan -1.723 -2.269

U.K. -0.959 -0.856

U.S.A -3.676* -3.218

New Zealand

Japan -3.327* -3.333

U.K. -1.802 -2.000

U.S.A. -2.786 -2.699

Japan

U.K. -1.737 -1.618

U.S.A. -2.276 -2.066

United Kingdom

U.S.A. -2.271 -2.683

Note: * Significant at the 10% level. This implies cointegration, and hence the existence of common 

trends.
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Table 4.    Group convergence trends test results (logarithms of the data)

VAR lag-length = 1

Trace 5 Percent 1 Percent Hypothesized
Eigenvalue Statistic Critical Value Critical Value No. of CE(s)

 0.764411  108.3134  62.99  70.05    None **
 0.460274  49.04098  42.44  48.45    At most 1 **
 0.343024  23.75650  25.32  30.45    At most 2
 0.147276  6.532113  12.25  16.26    At most 3

VAR lag-length = 2

Trace 5 Percent 1 Percent Hypothesized
Eigenvalue Statistic Critical Value Critical Value No. of CE(s)

 0.587624  84.88103  62.99  70.05    None **
 0.421204  49.44828  42.44  48.45    At most 1 **
 0.376197  27.57604  25.32  30.45    At most 2 *
 0.195456  8.699186  12.25  16.26    At most 3

VAR lag-length = 3

Trace 5 Percent 1 Percent Hypothesized
Eigenvalue Statistic Critical Value Critical Value No. of CE(s)

 0.570254  80.45461  62.99  70.05    None **
 0.421421  47.51675  42.44  48.45    At most 1 *
 0.321696  26.17674  25.32  30.45    At most 2 *
 0.246509  11.03851  12.25  16.26    At most 3

Notes: “CE” denotes “Cointegrating Equation”.

 * (**) denotes rejection of the null hypothesis at 5% (1%) significance level.
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Table 5.    Group common trends test results (logarithms of the data)

VAR lag-length = 1

Trace 5 Percent 1 Percent Hypothesized
Eigenvalue Statistic Critical Value Critical Value No. of CE(s)

 0.813485  140.1672  87.31  96.58    None **
 0.478535  71.31824  62.99  70.05    At most 1 **
 0.382243  44.62260  42.44  48.45    At most 2 *
 0.357933  24.87452  25.32  30.45    At most 3
 0.150947  6.708980  12.25  16.26    At most 4

VAR lag-length = 2

Trace 5 Percent 1 Percent Hypothesized
Eigenvalue Statistic Critical Value Critical Value No. of CE(s)

 0.692973  114.7872  87.31  96.58    None **
 0.455066  67.55439  62.99  70.05    At most 1 *
 0.378755  43.27078  42.44  48.45    At most 2 *
 0.301528  24.22961  25.32  30.45    At most 3
 0.218766  9.875224  12.25  16.26    At most 4

VAR lag-length = 3

Trace 5 Percent 1 Percent Hypothesized
Eigenvalue Statistic Critical Value Critical Value No. of CE(s)

 0.802888  133.3293  87.31  96.58    None **
 0.501232  69.99391  62.99  70.05    At most 1 *
 0.374928  42.86493  42.44  48.45    At most 2 *
 0.300118  24.53926  25.32  30.45    At most 3
 0.238426  10.62235  12.25  16.26    At most 4

Notes: “CE” denotes “Cointegrating Equation”.

 * (**) denotes rejection of the null hypothesis at 5% (1%) significance level.
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Table 6.    Composition of fuzzy clusters

a. c = 2

Year            C1                    C2              Year            C1                     C2             Year             C1              C2

1950 J A N K U 1964 J A N K U 1978 A N J K U
1951 J A N K U 1965 J A N K U 1979 A N J K U
1952 J A N K U 1966 J K A N U 1980 N Z K A U
1953 J A N K U 1967 A N J K U 1981 N Z K A U
1954 J A N K U 1968 A N J K U 1982 A N J K U
1955 J A N K U 1969 A N J K U 1983 N Z K A U
1956 J A N K U 1970 N J K A U 1984 A N J K U
1957 J A N K U 1971 A N J K U 1985 A N J K U
1958 J A N K U 1972 A N J K U 1986 A N J K U
1959 J A N K U 1973 A N J K U 1987 A N J K U
1960 J A N K U 1974 J K A N U 1988 A N J K U
1961 J A N K U 1975 N Z K A U 1989 A N J K U
1962 J A N K U 1976 J K A N U 1990 A N J K U
1963 J A N K U 1977 A N J K U 1991 N K A J U

1992 A N K J U

b.  c = 3

Year            C1                    C2              C3                Year            C1                  C2             C3

1950 J N K A U 1972 J  K A  N U
1951 J A N K U 1973 J  K A  N U
1952 J A N K U 1974 J  K A  N U
1953 K A N J U 1975 J  K A  N U
1954 J A N K U 1976 J  K A  N U
1955 K A N J U 1977 N J K A U
1956 K A N J U 1978 N J K A U
1957 J A N K U 1979 N J K A U
1958 K A N J U 1980 N J K A U
1959 J A N K U 1981 N J K A U
1960 K A N J U 1982 N J K A U
1961 J A N K U 1983 N J K A U
1962 J A N K U 1984 N J K A U
1963 J A N K U 1985 N J K A U
1964 J A N K U 1986 N J K A U
1965 J A N K U 1987 N J K A U
1966 J A N K U 1988 N J K A U
1967 J A N K U 1989 N K A J U
1968 J A N K U 1990 N K A J U
1969 J  K A  N U 1991 N K A J U
1970 N J K A U 1992 N K A J U
1971 J  K A  N U

Note: Ci denotes cluster “i”; A = Australia; N = New Zealand; J = Japan; K = U.K.; U = U.S.A.


