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I. INTRODUCTION 

 

Granger’s (1969) popular concept of causality, based on work by Weiner (1956), is typically 

defined in terms of predictability for one period ahead. Recently, Dufour and Renault (1998) 

generalized the concept to causality at a given horizon h, and causality up to horizon h, where h is 

a positive integer that can be infinite (1≤h<∞); see also Sims (1980), Hsiao (1982) and Lütkepohl 

(1993a) for related work. They show that the horizon h is important when auxiliary variables are 

available in the information set that are not directly involved in the noncausality test, as causality 

may arise more than one period ahead indirectly via these auxiliary variables, even when there is 

one period ahead noncausality in the traditional sense. For instance, suppose we wish to test for 

Granger noncausality (GNC) from Y to X with an information set consisting of three variables – 

X, Y and Z, and suppose that Y does not Granger cause X, in the traditional one-step sense.  This 

does not preclude two-step Granger causality, which will arise when Y Granger causes Z and Z 

Granger causes X; the auxiliary variable Z enables predictability to result two periods ahead.  

Consequently, it is important to examine for causality at horizons beyond one period when the 

information set contains variables that are not directly involved in the GNC test. 

 

Dufour and Renault (1998) do not provide information on testing for GNC when h>1; our aim is 

to contribute in this direction. In this chapter we provide an initial investigation of testing for two-
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step GNC by suggesting two sequential testing strategies to examine this issue.  We also provide 

information on the sampling properties of these testing procedures through simulation 

experiments.  We limit our study to the case when the information set contains only three 

variables for reasons that we explain in Section II. 

 

The layout of this chapter is as follows. In the next section we present our modeling framework 

and we discuss the relevant noncausality results. Section III introduces our proposed sequential 

two-step noncausality tests and provides details of our experimental design for the Monte Carlo 

study. Section IV reports the simulation results. The proposed sequential testing strategies are 

then applied to a trivariate data set concerned with money-income causality in the presence of an 

interest rate variable in Section V. Some concluding remarks are given in Section VI.                                                     

 

II. DISCUSSION OF NONCAUSALITY TESTS 

 

A. Model Framework 

 

We consider an n-dimensional vector time series {yt: t=1,2,..., T}, which we assume is generated 

from a vector autoregression (VAR) of finite order p1: 

 yt = ∑
=

− ε+Π
p

1i
titiy        (1) 

where Πi is an (n×n) matrix of parameters, ε t is an (n×1) vector distributed as IN(0, Σ), and (1) is 

initialized at t=-p+1,...,0; the initial values can be any random vectors including constants.  Let yt 

be partitioned as yt = (X T
t , Y T

t , Z T
t )T , where, for Q=X,Y,Z, Qt is an (nQ×1) vector, and 

nX+nY+nZ=n.  Also, let Πi be conformably partitioned as 

                                                             
1 We limit our attention to testing GNC within a VAR framework to remain in line with the vast applied 
literature; the definitions proposed by Dufour and Renault (1998) are more widely applicable. 
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where, for Q,R=X,Y,Z, πi,QR is an (nQ×nR) matrix of coefficients.   

 

B. h-step Noncausality 

  

Suppose we wish to determine whether or not Y Granger noncauses X one period ahead, denoted 

as Y
1

→/ X, in the presence of the auxiliary variables contained in Z.  Traditionally, within the 

framework we consider, this is examined via a test of the null hypothesis H01: PXY=0 where PXY = 

[π1,XY, π2,XY,..., πp,XY] using a Wald or Likelihood Ratio (LR) statistic.  What does the result of 

this hypothesis test imply for GNC from Y to X at horizon h (>1), which we denote as Y
h

→/ X, 

and for GNC from Y to X up to horizon h that includes one-period ahead, denoted by Y
)h(

→/ X?  

There are three cases of interest. 

1. nZ=0; i.e., there are no auxiliary variables in Z so that all variables in the information set are 

involved in the GNC test under study.  Then, from Dufour and Renault (1998) Proposition 2.2, 

the four following properties are equivalent: 

(i) Y
1

→/ X; (ii) Y
h

→/ X; (iii) Y
)h(

→/ X; (iv) Y
)(∞

→/ X. 

That is, when all variables are involved in the GNC test, support for the null hypothesis H0: 

PXY=0 is also support for GNC at, or up to, any horizon h.  This is intuitive as there are no 

auxiliary variables available through which indirect causality can occur.  For example, the 

bivariate model satisfies these conditions. 

 

2. nZ=1; i.e., there is one auxiliary variable in the information set that is not directly involved in 

the GNC test of interest.  Then, from Dufour and Renault (1998) Proposition 2.4 and Corollary 
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3.6, we have that Y
)2(

→/ X (which implies Y
)(∞

→/ X) if and only if at least one of the two following 

conditions is satisfied: 

C1. Y
1

→/ (XT, Z)T; 

C2. (YT, Z)T

1
→/ X. 

The null hypothesis corresponding to condition C1 is H02: PXY=0 & PZY=0 where PXY is as 

defined previously and PZY = [π1,ZY, π2,ZY,..., πp,ZY], while that corresponding to condition C2 is 

H03: PXY=0 & PXZ=0, where PXZ = [π1,XZ, π2,XZ,..., πp,XZ]; note that the restrictions under test are 

linear. When one or both of these conditions holds there cannot be indirect causality from Y to X 

via Z, while failure of both conditions implies that we have either one-step Granger causality, 

denoted as Y
1

→ X, or two-step Granger causality, denoted by Y
2

→ X via Z; that is, Y
)2(

→ X.  As Z 

contains only one variable it directly follows that two-step GNC implies GNC for all horizons, as 

there are no additional causal patterns, internal to Z, which can result in indirect causality from Y 

to X.  For example, a trivariate model falls into this case.   

 

3. nZ >1.  This case is more complicated as causality patterns internal to Z must also be 

taken into account.  If Z can be appropriately partitioned as Z = (Z T
1 , Z T

2 )T such that (YT, 

Z T
2 )T

1
→/ (XT, Z T

1 )T, then this is sufficient for Y
)(∞

→/ X.  Intuitively, this result follows because the 

components of Z that can be caused by Y (those in Z2) do not cause X so that indirect causality 

cannot arise at longer horizons.  Typically, the zero restrictions necessary to test this sufficient 

condition in the VAR representation are nonlinear functions of the coefficients.  Dufour and 

Renault (1998: 1117) note that such “restrictions can lead to Jacobian matrices of the restrictions 

having less than full rank under the null hypothesis”, which may lead to nonstandard asymptotic 

null distributions for test statistics.   
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For these reasons, and the preliminary nature of our study, we limit our attention to univariate Z 

and, as the applied literature is dominated by cases with nX=nY=1, consequently to a trivariate 

VAR model; recent empirical examples of the use of such models to examine for GNC include 

Friedman and Kuttner (1992), Kholdy (1995), Henriques and Sadorsky (1996), Lee et al. (1996), 

Riezman et al. (1996), Thornton (1997), Cheng (1999), Black et al. (2000) and Krishna et al. 

(2000), among many others. 

 

C. Null Hypotheses, Test Statistics and Limiting Distributions  

 

The testing strategies we propose to examine for two-step GNC within a trivariate VAR 

framework involve the hypotheses H01, H02 and H03 detailed in the previous sub-section and the 

following conditional null hypotheses: 

H04: PZY=0|PXY=0;  

H05: PXZ=0|PXY=0. 

 

The null hypotheses involve linear restrictions on the coefficients of the VAR model and their 

validity can be examined using various methods, including Wald statistics, LR statistics and 

model selection criteria.  We limit attention to the use of Wald statistics, though we recognize that 

other approaches may be preferable; this remains for future exploration. 

 

Each of the Wald statistics that we consider in Section III is obtained from an appropriate model, 

for which the lag length p must be determined prior to testing; the selection of p is considered in 

Section III below.  In general, consider a model where θ is an (m×1) vector of parameters and let 

R be a known nonstochastic (q×m) matrix with rank q.  To test H0: Rθ=0, a Wald statistic is 
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 W = T θ̂ TRT{R V̂ [ θ̂ ]RT}-1R θ̂      (2) 

where θ̂ is a consistent estimator of θ and V̂ [ θ̂ ] is a consistent estimator of the asymptotic 

variance-covariance matrix of T ( θ̂ -θ).  Given appropriate conditions, W is asymptotically 

distributed as a χ2(q) variate under H0. 

 

The conditions needed for W’s null limiting distribution are not assured here, as yt may be 

nonstationary with possible cointegration.  Sims et al. (1990) and Toda and Phillips (1993, 1994) 

show that W is asymptotically distributed as a χ2 variate under H0 when yt is stationary or it is 

nonstationary with “sufficient” cointegration; otherwise W has a nonstandard limiting null 

distribution that may involve nuisance parameters.  The basic problem with nonstationarity is that 

a singularity may arise in the asymptotic distribution of the least squares (LS) estimators, as some 

of the coefficients or linear combinations of them may be estimated more efficiently with a faster 

convergence rate than T . Unfortunately, there seems no basis for testing for “sufficient” 

cointegration within the VAR model, so that Toda and Phillips (1993, 1994) recommend that, in 

general, GNC tests should not be undertaken using a VAR model when yt is nonstationary. 

 

One possible solution is to map the VAR model to its equivalent vector error correction model 

(VECM) form and to undertake the GNC tests within this framework; see Toda and Phillips 

(1993, 1994).  The problem then is accurate determination of the cointegrating rank, which is 

known to be difficult with the currently available cointegration tests due to their low power 

properties and sensitivity to the specification of other terms in the model, including lag order and 

deterministic trends. Giles and Mirza (1999) use simulation experiments to illustrate the impact of 

this inaccuracy on the finite sample performance of one-step GNC tests; they find that the 

practice of pretesting for cointegration can often result in severe over-rejections of the noncausal 

null. 
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An alternative approach is the “augmented lags” method suggested by Toda and Yamamoto 

(1995) and Dolado and Lütkepohl (1996), which results in asymptotic χ2 null distributions for 

Wald statistics of the form we are examining, irrespective of the system’s integration or 

cointegration properties. They show that overfitting the VAR model by the highest order of 

integration in the system eliminates the covariance matrix singularity problem. Consider the 

augmented VAR model 

yt = ∑ ∑
=

−−
=

+− ε+Π+Π
p

1i
tipt

d

1i
ipiti yy       (3) 

where we assume that yt is at most integrated of order d (I(d)).  Then, Wald test statistics based on 

testing restrictions involving the coefficients contained in Π1,...Πp have standard asymptotic χ2 

null distributions; see Theorem 1 of Dolado and Lütkepohl (1996) and Theorem 1 of Toda and 

Yamamoto (1995).  This approach will result in a loss in power, as the augmented model contains 

superfluous lags and we are ignoring that some of the VAR coefficients, or at least linear 

combinations of them, can be estimated more efficiently with a higher than usual rate of 

convergence. However, the simulation experiments of Dolado and Lütkepohl (1996), Zapata and 

Rambaldi (1997) and Giles and Mirza (1999) suggest that this loss is often minimal with it often 

resulting in more accurate GNC outcomes than the VECM method, which conditions on the 

outcome of preliminary cointegration tests.  Accordingly, we limit our attention to undertaking 

Wald tests using the augmented model (3). 

 

Specifically, assuming a trivariate augmented model with nX=nY=nZ=1, let θ be the 9(p+d) vector 

given by θ=vec[Π1, Π2, ..., Πp+d],  where vec denotes the vectorization operator that stacks the 

columns of the argument matrix.  The LS estimator of θ is θ̂ .  Then, the null hypothesis H01: 

PXY=0 can be examined using the Wald statistic given by (2) with R being a selector matrix such 
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that Rθ=vec[PXY].  We denote the resulting Wald statistic as W1.  Under our assumptions, W1 is 

asymptotically distributed as a χ2(p) variate under H01. 

 

The Wald statistic for examining H02: PXY=0 & PZY=0, denoted W2, is given by (2) where θ̂  is the 

estimator of θ=vec[Π1, Π2, ..., Πp+d] and R is a selector matrix such that Rθ=vec[PXY, PZY].  

Under our assumptions, the statistic W2 has a limiting χ2(2p) null distribution.  Similarly, let W3 

be the Wald statistic for examining H03: PXY=0 & PXZ=0. The statistic W3 is then given by (2) 

with the selector matrix chosen to ensure that Rθ=vec[PXY, PXZ]; under our assumptions W3 is an 

asymptotic χ2(2p) variate under H03. 

 

We denote the Wald statistics for testing the null hypotheses H04: PZY=0|PXY=0 and H05: 

PXZ=0|PXY=0 as W4 and W5 respectively.  These statistics are obtained from the restricted model 

that imposes PXY=0; then let *θ be the vector of remaining unconstrained parameters and *θ̂ be the 

LS estimator of *θ , so that to test the conditional null hypothesis H0: R
*θ*=0, a Wald statistic is 

W* = T *θ̂ TR*T{R* V̂ [ *θ̂ ]R*T}-1R* *θ̂ , where V̂ [ *θ̂ ] is a consistent estimator of the asymptotic 

variance-covariance matrix of T ( *θ̂ -θ*).  Under our assumptions, W* is asymptotically 

distributed as a χ2 variate under H0 with the rank of R* determining the degrees of freedom; 

Theorem 1 of Dolado and Lütkepohl (1996) continues to hold in this restricted case as the 

elements of Πp+1,...,Πp+d  are not constrained under the conditioning or by the restrictions under 

test.   Our statistics W4 and W5 are then given by W* with, in turn, the vector R*θ* equal to 

vec(PZY) and vec(PXZ); in each case p is the degrees of freedom.  We now turn, in the next 

section, to detail our proposed testing strategies. 
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III. PROPOSED SEQUENTIAL TESTING STRATEGIES AND MONTE CARLO DESIGN 

 

A. Sequential Testing Strategies 

 

Within the augmented model framework, the sequential testing procedures we consider are:  

 
(M1) 
 

Test H02 & test H03 






→/

→/

.XYofhypothesisnulltheportsup,Otherwise

.XYofhypothesisnullthereject,rejectedareH&HIf

)2(

)2(
0302

 

 
 
(M2) 
 
















→/

→/

→/

.XYofhypothesisnulltheportsup,Otherwise

.XYreject,rejectedareH&HIf
Htest&Htest,Otherwise

.XYofhypothesisnullthereject,rejectedisHIf

HTest

2

2
0504

0504

1
01

01  

 
 

The strategy (M1) provides information on the null hypothesis H0A: XY
)2(

→/  as it directly tests 

whether the conditions C1 and C2, outlined in the previous section, are satisfied. Each hypothesis 

test tests 2p exact linear restrictions.  The approach (M1) does not distinguish between one-step 

and two-step GNC; that is, rejection here does not inform the researcher as to whether the 

causality arises directly from Y to X one-step ahead or whether there is GNC one-step ahead with 

the causality then arising indirectly via the auxiliary variable at horizon two. This is not a relevant 

concern when interest is in only answering the question of the presence of Granger causality at 

any horizon.   

 

The strategy (M2), on the other hand, provides information on the horizon at which the causality, 

if any, arises.  The first hypothesis test, H01, undertakes the usual one-step test for direct GNC 
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from Y to X, which when rejected implies that no further testing is required as causality is 

detected.  However, the possibility for indirect causality at horizon two via the auxiliary variable 

Z is still feasible when H01 is supported, and hence the second layer of tests that examine the null 

hypothesis H0B: XY
2

→/ | XY
1

→/ .  We require both of H04 and H05 to be rejected for a conclusion 

of causality at horizon two, while we accept H0B when we support one or both of the hypotheses 

H04 and H05.  Each test requires examining the validity of p exact linear restrictions. 

 

That the sub-tests in the two strategies have different degrees of freedom may result in power 

differences that may lead us to prefer (M2) over (M1). In our simulation experiments described 

below, we consider various choices of nominal significance level for each sub-test, though we 

limit each to be identical at say 100α%. We can say the following about the asymptotic level of 

each of the strategies.  In the case of (M1) we are examining nonnested hypotheses using 

statistics that are not statistically independent.  When both H02 and H03 are true we know from the 

laws of probability that the level is smaller than 200α%, though we expect to see asymptotic 

levels less than this upper bound dependent on the magnitude of the probability of the union of 

the events. When one of the hypotheses is false and the other is true, so that Y
)2(

→/  X still holds, 

the asymptotic level for strategy (M1) is smaller than or equal to 100α%.  

 

An asymptotic level of 100α% applies for strategy (M2) for testing for Y 
1
→/ X, while it is at most 

200α% for testing for H0B when H04 and H05 are both true, and the level is at most 100α% when 

only one is true. As noted with strategy (M1), when both hypotheses are true we would expect 

levels that are much smaller than 200α%.  Note also that W4 and W5 are not (typically) 

asymptotically independent under their respective null hypotheses, though the statistics W4 and 

W1 are asymptotically independent under H04 and H01, given the nesting structure.   
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Finally, we note that the testing strategies are consistent, as each component test is consistent, 

which follows directly from the results presented by e.g., Dolado and Lütkepohl (1996: 375). 

 

B. Monte Carlo Experiment 

 

In this sub-section, we provide information on our small-scale simulation design that we use to 

examine the finite sample performance of our proposed sequential test procedures.  We consider 

two basic data generating processes (DGPs), which we denote as DGPA and DGPB; for each we 

examine three cases: DGPA1, DGPA2, DGPA3, DGPB1, DGPB2 and DGPB3.  To avoid 

potential confusion, we now write yt as yt=[y1t, y2t, y3t]
T to describe the VAR system and the GNC 

hypotheses we examine; we provide the mappings to the variables X, Y and Z from the last sub-

section in a table. For all cases the series are I(1).  The first DGP, denoted as DGPA, is 

 

















ε
ε

ε

+
































−
=

















−

−

−

t3

t2

t1

1t3

1t2

1t1

t3

t2

t1

y

y

y

15.0a

05.01

001

y

y
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We consider a=1 for DGPA1, which implies one cointegrating vector.  The parameter a is set to 

zero for DGPA2 and DGPA3, which results in two cointegrating vectors among the I(1) 

variables.   Toda and Phillips (1994) and Giles and Mirza (1999) also use this basic DGP.  The 

null hypotheses H01 to H05 are true for the GNC effects we examine for DGPA1 and DGPA3.  

Using Corollary 1 of Toda and Phillips (1993, 1994) it is clear that there is insufficient 

cointegration with respect to the variables whose causal effects are being studied for all 

hypotheses except H05.  That is, Wald statistics for H01 to H04 applied in the non-augmented 

model (1) do not have their usual χ2 asymptotic null distributions, though the Wald statistics we 

use in the augmented model (3) have standard limiting null distributions for all the null 

hypotheses.  
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Our second basic DGP, denoted as DGPB, is 
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We set the parameter b=-0.265 for DGPB1 and b=0 for DGPB2 and DGPB3; for each DGP there 

is two cointegrating vectors.  Zapata and Rambaldi (1997) and Giles and Mirza (1999) also use a 

variant of this DGP in their experiments.  The null hypotheses H01, H02 and H04 are each true for 

DGPB1 and DGPB2, while H03 and H05 are false.  The cointegration for this DGP is sufficient 

with respect to the variables whose causal effects are being examined so that standard Wald 

statistics in the non-augmented model for H01, H02 and H04 are asymptotic χ2 variates under their 

appropriate null hypotheses.   

 

We provide summary information on the DGPs in Table 1.  We include the mappings to the 

variables X, Y and Z used in our discussion of the sequential testing strategies in the last sub-

section, the validity of the null hypotheses H01 to H05, and the GNC outcomes of interest.  Though 

our range of DGPs is limited, they enable us to study the impact of various causal patterns on the 

finite sample performance of our strategies (M1) and (M2). 

 

The last row of the table provides the ‘1-step GC map’ for each DGP, which details the pair-wise 

1-step Granger causal (GC) patterns. For example, the 1-step GC map for DGPB1 in terms of X, 

Y and Z is 

  

YZ

X
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This causal map is an example of a ‘directed graph’, because the arrows lead from one variable to 

another; they indicate the presence of 1-step GC, e.g., YX
1

→ .  In addition to being a useful way 

to summarize the 1-step GC relationships, the 1-step GC map allows us to visualize the 

possibilities for 2-step GC.  To illustrate, we consider the GC relations from Y to X.  The map 

indicates that XY
1

→/ , so that for XY
2

→  we require ZY
1

→ and XZ
1

→ ; directly from the map 

we see that the latter causal relationship holds but not the former – Z is not operating as an 

auxiliary variable through which 2-step GC from Y to X can occur.   

 

As our aim is to examine the finite-sample performance of (M1) and (M2) at detecting 2-step 

GNC, and at distinguishing between GC at the different horizons, each of our DGPs imposes 

that XY
1

→/ , but for two DGPs – DGPA2 and DGPB3 – XY
2

→ , while for the other DGPs we 

have XY
2

→/ .   This allows us to present rejection frequencies when the null hypothesis 

XY
2

→/ (or XY
)2(

→/ ) is true and false.   

 

When the null is true we denote the rejection frequencies as FI(α), because they estimate the 

probability that the testing strategy makes a Type I error when the nominal significance level is α, 

that is, the probability that the testing strategy rejects a correct null hypothesis.   The strategy 

(M1) provides information on the null hypothesis H0A: Y
)2(

→/ X, which is true when we support 

both H02 and H03 or when only one is accepted.  Let PIA(α) be the probability of a Type I error 

associated with testing H0A, at nominal significance level α, using (M1), so PIA(α) = 

A0HPr (reject H03 & reject H02|Y
)2(

→/ X). We estimate PIA(α) by FIA(α) = 1N − ∑
=

N

1i

(I P3i ≤α & P2i 

≤α), where N denotes the number of Monte Carlo samples, Pji is the ith Monte Carlo sample’s P 
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value associated with testing H0j that has been calculated from a χ2(2p) distribution using the 

statistic Wj for j=2,3, and I(⋅) is the indicator function.   

 

We desire FIA(α) to be ‘close’ to the asymptotic nominal level for the strategy, which is bounded 

by 100α% when only one of H02 or H03 is true and by 200α% when both are true, though FIA(α) 

will differ from the upper bound because of our use of a finite number of simulation experiments 

and the asymptotic null distribution to calculate the P values; the latter is used because our 

statistics have unknown finite sample distributions.  In particular, our statistics, though 

asymptotically pivotal, are not pivotal in finite samples, so FIA(α) (and also PIA(α)) depends on 

where the true DGP is in the set specified by H0A.  One way of solving the latter problem is to 

report the size of the testing strategy, which is the supremum of the PIA(α) values over all DGPs 

contained in H0A.  In principle, we could estimate the size as the supremum of the FIA(α) values, 

though this task is in reality infeasible here because of the multitude of DGPs that can satisfy H0A.  

Accordingly, we report FIA(α) values for a range of DGPs.   

 

The testing strategy (M2) provides information on two null hypotheses: H01: Y
1

→/ X and H0B: 

Y
2

→/ X|Y
1

→/ X.  The statistic W1, used to test H01, has asymptotic level 100α%.  We estimate the 

associated probability of a Type I error, denoted as PI1(α) =
01HPr (reject H01), by FI1(α) = N-1× 

∑
=

N

1i

(I P1i ≤α), where P1i is the P value associated with testing H01 for the ith Monte Carlo sample 

and generated from a χ2(p) distribution, α is the assigned nominal level, and I(⋅) is the indicator 

function.  Further, let PIB(α) denote the probability of a Type I error for using (M2) to test H0B, 

and let FIB(α) = 1
*1N − ∑

=

*1N

1i

(I P5i ≤α & P4i ≤α) be an estimator of PIB(α), where N1* is the number 
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of Monte Carlo samples that accepted H01, and Pji is the P value for testing H0j for the ith Monte 

Carlo sample calculated from a χ2(p) distribution, j=4,5. We report FI1(α) and FIB(α) values for 

our DGPs that satisfy H01 and H0B. Recall that the upper bound on PIB(α) is 100a% when only 

one of H04 or H05 is true and it is 200α% when both are true. 

 

We also report rejection frequencies for the strategies when Y
2

→ X; these numbers aim to 

indicate ‘powers’ of our testing strategies.  In econometrics, there is much debate on how powers 

should be estimated with many studies advocating that only so-called ‘size-corrected’ power 

estimates be provided.  Given the breadth of the set under the null hypotheses of interest here, it is 

computationally infeasible to contemplate obtaining ‘size-corrected’ power estimates for our 

study.  Some researchers approach this problem by obtaining a critical value for their particular 

DGP that ensures that the nominal and true probability of a Type I error are equal; they then 

claim, incorrectly, that the reported powers are ‘size-corrected’.  A further complication in 

attempting to provide estimates of size-corrected power is that the size-corrected critical value 

may often be infinite, which implies zero power for the test (e.g, Dufour, 1997).   

 

Given these points, when dealing with a composite null hypothesis, Horowitz and Savin (2000) 

suggest that it may be preferable to form power estimates from an estimate of the Type I critical 

value that would be obtained if the exact finite-sample distribution of the test statistic under the 

true DGP were known.  One such estimator is the asymptotic critical value, though this estimator 

may not be accurate in finite-samples.  Horowitz and Savin (2000) advocate bootstrap procedures 

to estimate the pseudo-true value of the parameters from which an estimate of the finite sample 

Type I critical value can be obtained; this approach may result in higher accuracy in finite 

samples. In our study, given its preliminary nature, we use the asymptotic critical value to 

estimate the powers of our strategies; we leave the potential application of bootstrap procedures 
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for future research. We denote the estimated power for strategy (M1) that is associated with 

testing H0A by FIIA(α) =
1N − ∑

=

N

1i

(I P3i ≤α & P2i ≤α), and the estimated powers for strategy (M2) 

for testing H0B by FIIB(α) = 1
*1N − ∑

=

*1N

1i

(I P5i ≤α & P4i ≤α) respectively.  

 

For each of the cases outlined in Table 1 we examine four net sample sizes: T=50, 100, 200, 400.  

The number of Monte Carlo simulation repetitions is fixed to be 5000, and for each experiment 

we generate (T+100+6) observations from which we discard the first 100 to remove the effect of 

the zero starting values; the other 6 observations are needed for lagging. We limit attention to an 

identity innovation covariance matrix, though we recognize that this choice of covariance matrix 

is potentially restrictive and requires further attention in future research2.  We generate FI and FII 

values for twelve values of the nominal significance level: α=0.0001, 0.0005, 0.001, 0.005, 0.01, 

0.025, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.30.  

 

The conventional way to report the results is by tables, though this approach has two main 

drawbacks. First, there would be many tables and secondly, it is often difficult to see how 

changes in the sample size, DGPs and α values affect the rejection frequencies. In this paper, as 

recommended by Davidson and MacKinnon (1998), we use graphs to provide the information on 

the performance of our testing strategies.  We use P value plots to report the results on FIA, FI1 

and FIB; these plot the FI values against a nominal level.  In the ideal case, each of our P values 

would be distributed as uniform (0,1), so that the resulting graph should be close to the 45o line.  

Consequently, we can easily see when a strategy is over-rejecting, or under-rejecting or rejecting 

                                                             
2 Note that Yamada and Toda (1998) show that the finite sample distribution of Wald statistics, such as 
those considered here, are invariant to the form of the innovation covariance matrix when the lag length 
order of the VAR is known.  However, this result no longer holds once we allow for estimation of the lag 
order. 
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the right proportion reasonably often. The asymptotic nominal level for DGPB1 and DGPB2 is α 

for each of H01, H0A and H0B, it is α for H01 for DGPA1 and DGPA3, and the upper bound is 2α 

for H0A and H0B.  However, we anticipate levels less than 2α, as this upper bound ignores the 

probability of the union event, so we use α as the level to provide the 45o line for the plots. 

 

We provide so-called ‘size-power’ curves to report the information on the power of our testing 

strategies; Wilk and Gnanadesikan (1968) and Davidson and MacKinnon (1998).  In our case we 

use FI values rather than size estimates and our power estimates are based on the FII values; 

accordingly, we call these graphs FI-FII curves.  The horizontal axis gives the FI values, 

computed when the DGP satisfies the null hypothesis, and the vertical axis gives the FII values, 

generated when the DGP does not satisfy Y
2

→/ X in a particular way.  The lower left hand corner 

of the curve arises when the strategy always supports the null hypothesis, while the upper right 

hand corner results when the test always rejects the null hypothesis.  When the power of a testing 

strategy exceeds its associated probability of a Type I error, the FI-FII curve lies above the 45o 

line, which represents the points of equal probability.   

 

To undertake the hypothesis tests of interest, we need to choose the lag order for the VAR, which 

is well known to impact on the performance of tests; see, Lütkepohl (1993b), Dolado and 

l (1996), Giles and Mirza (1999), among others.  We examine four approaches to 

specifying the lag order: p is correctly specified at 1, which we denote as the ‘True’ case; p is 

always over estimated by 1, that is, p=2, which we denote as ‘Over’; and p is selected by two 

common goodness-of-fit criteria – Schwarz’s (1978) Bayesian criterion (SC) and Akaike’s (1973) 

information criterion (AIC). The AIC does not consistently estimate the lag order (e.g., Nishi, 

1988; Lütkepohl, 1993b), as there is a positive probability of over estimation of p, which does 

not, nevertheless, affect consistent estimation of the coefficients, though over estimation may 
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result in efficiency and power losses. The SC is a consistent estimator of p, though evidence 

suggests that this estimator may be overly parsimonious in finite-samples, which may have a 

detrimental impact on the performance of subsequent hypothesis tests.  In our experiments that 

use the AIC and SC we allow p to be at most 6.  Though the ‘True’ case is somewhat artificial, 

we include it as it can be regarded as a best-case scenario. The over-specified case illustrates 

results on using a pre-specified, though incorrect, lag order. 

 

IV. SIMULATION RESULTS 

 

A. P Value Plots 

 

Figure 1 shows P value plots for the testing strategy (M1) for DGPA1 when T=50, 100, 200 and 

400 and for the four lag selection methods we outlined in the previous section.  It is clear that the 

strategy systematically results in levels that are well below α irrespective of the sample size. For 

instance, the estimated probability of a Type I error is typically close to α/2 when T=200, 

irrespective of the specified nominal level. In contrast, the strategy seems to work better for the 

smaller sample of 50 observations. 

 

As expected from our discussion these observed features for DGPA1 differ with DGPB1 and 

DGPB2 when only one of the hypotheses is true.  In Figure 2 we provide the P value plots for 

DGPB1, from which we see that the strategy (M1) systematically over-rejects, with the degree of 

over-rejection becoming more pronounced as T falls.  Qualitatively, the P value plots for DGPA3 

and DGPB2 match those for DGPA1 and DGPB1 respectively, so we do not include them here. 
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Over-specifying or estimating the lag order does little to alter the P value plots from those for the 

correctly specified model when T≥200, though there are some observable differences when T is 

smaller, in particular for T=50.  The performance of the AIC and Over cases is always somewhat 

worse than for the SC, although we expect that this is a feature of the low-order VAR models that 

we examine for our DGPs.  Figure 1 and Figure 2 show that the AIC rejects more often than does 

Over for small α, but this is reversed for higher levels, say greater than 10%. 

 

We now turn to the P value plots for the procedure (M2). We provide the P value plots for testing 

H01: Y
1

→/ X for DGPA3 in Figure 3. This hypothesis forms the first part of strategy (M2) and is 

undertaken using the Wald statistic W1. The plots for the other DGPs are qualitatively similar.  It 

is clear that the test systematically over-rejects H01, especially when T≤100 and irrespective of the 

lag selection approach adopted. 

 

Figure 4 shows P value plots for the second part of strategy (M2) that examines Y
2

→/ X| Y
1

→/ X 

for DGPA1. It is clear that there is a pattern of the FI values being less than α, with the difference 

increasing with T, irrespective of the lag selection approach. This systematic pattern is similar to 

that observed for strategy (M1) with this DGP, and also with DGPA3. Like then we do not 

observe this feature with DGPB1 and DGPB2, as we see from Figure 5 that shows P value plots 

for DGPB1, which are representative for both DGPB1 and DGPB2.  Here the testing procedure 

works well, though there is a small tendency to over-reject for T≥100, while only the Over 

approach leads to over-rejection when T=50 with the other lag selection cases slightly under-

rejecting.  These over- and under-rejections become more pronounced as the nominal level rises.   
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B. FI-FII Plots 

 

Figure 6 presents FIA-FIIA curves associated with strategy (M1) generated from DGPA1 (for 

which the null Y
)2(

→/ X is true) and DGPA3 (for which the null Y
2

→/ X is false in a particular way) 

when T=50 and T=100; the consistency property of the testing procedure is well established for 

this DGP and degree of falseness of the null hypothesis by T=100, so we omit the graphs for 

T=200 and T=400. Several results are evident from this figure. We see good power properties 

irrespective of the sample size, though this is a feature of the chosen value for the parameter “a” 

for DGPA3.  Over-specifying the lag order by a fixed amount does not result in a loss in power, 

while there is a loss associated with use of the AIC. 

 

The FIA-FIIA curves for strategy (M1) generated from DGPB2 (for which the null Y
)2(

→/ X is true) 

and DGPB3 (for which the null Y
2

→/ X is false in a particular way) when T=50 and T=100 are 

given in Figure 7; we again omit the curves for T=200 and T=400 as they merely illustrate the 

consistency feature of the strategy.  In this case, compared to that presented in Figure 6, the FII 

levels are lower for a given FI level, which reflects the degree to which the null hypothesis is 

false.  Nevertheless, the results suggest that the strategy does well at rejecting the false null 

hypothesis, especially when T≥100. 

 

The FIB-FIIB curves for strategy (M2) for testing H0B display qualitatively similar features to 

those just discussed for strategy (M1). To illustrate, Figure 8 provides the curves generated from 

DGPB2 and DGPB3; figures for the other cases are available on request. It is of interest to 

compare Figure 7 and Figure 8.  As expected and irrespective of sample size, there are gains in 
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power from using strategy (M2) over (M1) when Y
1

→/ X but Y
2

→ X, as the degrees of freedom 

for the former strategy are half those of the latter. 

 

Overall, we conclude that the strategies perform well at detecting a false null hypothesis, even in 

relatively small samples. Our results illustrate the potential gains in power with strategy (M2) 

over strategy (M1) when Y
1

→/ X and Y
2

→ X. In practice, this is likely useful as we anticipate that 

most researchers will first test for Y
1

→/ X, and only proceed to a second stage test for Y
2

→/ X 

when the first test is not rejected. There is some loss in power in using the AIC to select the lag 

order compared with the other approaches we examine, though a study of DGPs with longer lag 

orders may alter this outcome. Our results support the finding from other studies that lag order 

selection is important.  

 

V. EMPIRICAL EXAMPLE 

 

To illustrate the application of the testing strategies on the outcome of GNC tests in trivariate 

systems, we have re-examined the data set used by Hoffman and Rasche (1996), which enables us 

to consider the well-studied issue of the causal relationships between money and income. We 

downloaded the quarterly, seasonally adjusted US time series data from the Journal of Applied 

Econometrics Data Archive; the data are originally obtained from Citibase.  Let X be real money 

balances, which is calculated by deflating the nominal series by the GDP deflator; let Y be real 

income, represented by real GDP; and let Z be nominal interest rates, the auxiliary variable, 

which is represented by the Treasury bill rate.  Both real balances and real GDP are expressed in 

natural logarithms. Allowing for lagging, we use observations from 1950:3 to 1995:2 (164 

observations).  Our Monte Carlo study ignored the realistic possibility that there may be 

deterministic trends, which we incorporate here by extending model (1) as: 
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 (yt-µ-δt) = ∑
=

Π
p

1i
i (yt-i-µ-δ(t-i)) + ε t    (4) 

where µ and δ are vectors of unknown coefficients.  We can write (4) equivalently as 

 yt = µ* + δ*t + ∑
=

Π
p

1i
i yt-i + ε t     (5) 

where µ* = (-Πµ+Π*δ), δ* = -Πδ, Π* = ∑ Π
=

p

1i
ii , and Π = - 










Π− ∑

=

p

1i
i3I .  The matrix Π is the usual 

potentially reduced rank matrix that indicates the number of cointegrating relationships.  Often 

applied researchers impose δ=0 a priori, which implies that µ* is forced to zero when there is no 

cointegration; this seems a limiting restriction, so we use (5) as stated.   

 

We assume that each of our time series is integrated of order one, as does also Hoffman and 

Rasche (1996); this implies that we augment our model with one extra lag of y. We use the AIC 

to choose the lag order p allowing for up to ten possible lags; the results support six lags. Table 2 

reports asymptotic P values for examining for the six possible 1-step GNC relationships.  Using a 

(nominal) 10% significance level the outcomes imply that the 1-step GC map is 

 

XZ

Y

from which it is clear that there is support for the common finding that real 

money balances Granger causes real income without feedback. However, the map illustrates the 

potential for 2-step GC from real income to real money balances to arise indirectly via the interest 

rate variable.  To explore this possibility we apply our testing strategies (M1) and (M2); the 

asymptotic P values are reported in Table 2.  Both strategies support 2-step Granger causality 

from real income to real money balances via the interest rate variable.  The example serves to 

illustrate the changes in causality conclusions that may occur once an allowance is made for 

indirect causality via an auxiliary variable.  
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V. CONCLUDING REMARKS 

 

This paper has provided two testing strategies for examining for 2-step Granger noncausality in a 

trivariate VAR system that may arise via the auxiliary variable that is included for explanatory 

power, but is not directly involved in the noncausality test under examination.  The testing 

strategy (M1) can be applied without a prior test for the traditional 1-step noncausality as it tests 

for noncausality up to horizon two; however, this strategy does not provide information on 

whether detected causality arises directly one-step ahead or indirectly two-steps ahead.  The 

strategy (M2) provides information on the latter, and is perhaps the more practically useful of the 

two procedures that we propose. 

 
We investigated the finite sample properties of our sequential strategies through Monte Carlo 

simulations.  Though the data generating processes that we employed were relatively simple and 

should be expanded on in a more elaborative study, our findings may be summarised as follows: 

(i) The testing procedures perform reasonably well, irrespective of sample size and lag 

selection method. 

(ii) The form of the underlying DGP can impact substantially on the probability of the Type I 

error associated with that DGP. The actual level is closer to a notion of an assigned level 

when the auxiliary variable is sufficiently causal with one of the variables under test. 

That is, when testing for Y
2

→/ X via Z there are two causal relationships of interest: 

Y
1

→/ Z and Z
1

→/ X.  If only one of these is true, so that either Y
1

→ Z or Z
1

→ Y, then our 

results suggest that we can have some confidence about the probability of the Type I that 

we are likely to observe.  However, when both are true so that Z is not sufficiently 
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involved with X or Y, then the probability of the Type I error can be small and quite 

different from any nominal notion of a level that we may have. 

(iii)  The testing strategies do well at detecting when Y
2

→/ X is false irrespective of the form of 

the DGP.  Our results suggest that a sample size of at least 100 is preferable, though this 

depends, naturally, on the degree to which the null is false. 

(iv) The choice of the lag length in the performance of the test is important.  This issue 

requires further attention with DGPs of higher lag order. 

 

An obvious extension of this work is to the development of tests that examine for multi-step 

noncausality in higher dimensional systems.  This will typically involve testing for zero 

restrictions on multilinear functions of the VAR coefficients, which may result in Jacobian 

matrices of the restrictions having less that full rank under the null hypothesis and so lead to 

nonstandard asymptotic null distributions.   
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TABLE 1 DGP Descriptions 

 DGPA1 DGPA2 DGPA3 DGPB1 DGPB2 DGPB3 

X y1 y3 y1 y2 y2 y1 

Y y3 y1 y3 y1 y1 y2 

Z y2 y2 y2 y3 y3 y3 

H01: PXY=0 True True True True True True 

H02: PXY=0&PZY=0 True False True True True False 

H03: PXY=0&PXZ=0 True False True False False False 

H04: PZY=0|PXY=0 True False True True True False 

H05: PXZ=0|PXY=0 True False True False False False 

Y
1

→/ X Yes Yes Yes Yes Yes Yes 

Y
2

→/ X Yes No Yes Yes Yes No 

1-step GC map 

YZ

X

 

YZ

X

 

YZ

X

 

YZ

X

 

YZ

X

 

YZ

X
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TABLE 2 Money-Income Example P Values 

NULL HYPOTHESIS P VALUE 

Y
1

→/ X 0.170 

Z
1

→/ X <0.001 

X
1

→/ Y 0.001 

Z
1

→/ Y <0.001 

X
1

→/ Z 0.090 

Y
1

→/ Z 0.086 

Strategy (M1)  

H02 0.070 

H03 <0.001 

Strategy (M2)  

H04 <0.001 

H05 0.095 
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Figure 1. P value plots for strategy (M1), FIA, DGPA1

45 Deg Line True Over AIC SC
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Figure 2. P value plots for strategy (M1), FIA, DGPB1
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Figure 3. P value plots for strategy (M2), FI1, DGPA3

45 Deg Line True Over AIC SC
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Figure 4. P value plots for strategy (M2), FIB, DGPA1

45 Deg Line True Over AIC SC
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Figure 5. P value plots for strategy (M2), FIB, DGPB1

45 Deg Line True Over AIC SC
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Figure 6. FIA-FIIA plots for strategy (M1), DGPA1 & DGPA2

45 Deg Line True Over AIC SC
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Figure 7. FIA-FIIA plots for strategy (M1), DGPB2 & DGPB3
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Figure 8. FIB-FIIB plots for strategy (M2), DGPB2 & DGPB3

45 Deg Line True Over AIC SC
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