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ABSTRACT

Logidtic regressons are commonly used to assess for far lending across groups of loan
goplicants.  This paper consders esimation of the disparate trestment parameter when the
sample is dratified jointly by loan outcome and race covariate. We use Monte Carlo analysis to
invedtigete the finite-sample properties of two edtimators of the disparate treatment parameter
under gx draified sampling desgns and three daa generating processes, one edimator is
conggent irrespective of sample design while the other is not. Unfortunately the inconsstent
edtimator is employed inadvertently in far lending dudies. We demondrate the gains in usng
the consgtent estimator as well as providing recommendations on sample design. We dso sudy
the effect of sample design on the empiricad power of a test for datidicd sSgnificance of the
disparate treatment parameter. We recommend adopting a sample design that approximately
balances by outcome and racid group, when using the estimator that adjudts for the dratification
scheme.  However, if the standard logit estimator is employed, then our results suggest a sample
desgn that badances by outcome and dlocates across racid groups proportiondly to the
population. Though our sudy is framed in terms of far lending applications, our results apply
generdly to the edimation of logistic regressons that use drdified or choice-based sample
designs.
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1. Introduction

U.S. far lending laws prohibit discrimination aganst loan gpplicants on prohibited bases
induding race, nationd origin, maitd daus, gender, and reigion.  Vaious government
regulatory agencies monitor compliance with the datutes, incduding the Office of the
Comptroller of the Currency (OCC), the Federd Reserve Board (FRB), Housing and Urban
Devdopment (HUD) and the Office of Thrift Supervison (OTS). Banking inditutions covered
by the Home Mortgage Disclosure Act (HMDA) are required to collect and disclose data on
HMDA-reportable lending decisons that can then be used to asss regulators and the public in
identifying discriminating practices, and to ensure enforcement of fair lending laws.

The Home Mortgage Disclosure Act (HMDA) mandates the collection and disclosure of data
on home mortgages including: loan amount, census tract of property, purpose of the loan, loan
type, application and action dates, race and gender of gpplicant, income relied on for loan, as
well as loan dispogtion. Ingtitutions are asked, but not dl are required, to report the reasons why
individud applications were denied. It is the only type of lending behavior for which race daa
may be collected legaly.

Far lending compliance regulation includes a review of a lender’s loan policies and
procedures to ascertain that these are not overtly discriminating against any one type of loan
gpplicant, and to ascertain whether such policies and procedures are applied consastently across
loan gpplicants.  While enforcement varies by regulatory agency, a description of procedures can
be found in the Federd Financid Inditutions Regulatory Council (FFIEC) Inter-Agency Fair
Lending Procedures issued in 1999 (http://www ffiec.gov/farlend.pdf).  These procedures
include dealled quditative assessments and quantitative datidica andyses, the latter may
include matched pair andyss and logistic regressons.  Our focus is on the use of binary logit

models to examine for disparate treatment, as discussed in and applied by, for example, Munndll



et a. (1992, 1996), Car and Megbolugbe (1993), Glennon and Stengel (1994), Horne (1994,
1997), Stengd and Glennon (1999), Harrison (1998), Day and Liebowitz (1998), Courchane,
Nebhut and Nickerson (2000) and others. These logistic regressons are estimated with a binary
outcome variable of whether a loan is approved or denied for an gpplicant as a function of
covaristes such as loanto-vaue, debt-to-income ratio, income, one or more credit score
variables, and various dummy variables to capture effects such as bad credit, insufficient funds to
close, and race (eg., white, black, Higpanic). The am is to approximate the bank’s complex
underwriting criteriawith the logit specification.

Idedly, the logidic regresson is edimaed usng the population of loans, but this data,
though collected, is not typicdly available in dectronic form. Population data on the outcome
vaiable (loan approved/denied) and some covaiates (including race) is usudly known.
Accordingly, the logidtic regressons are estimated from a sample taken from the population,
which the government agencies collect, tabulate, clean and prepare for the datigticd andyss
The approach is to examine for digparate treatment as a test of Satistica sgnificance for the race
dummy varigble after controlling for other effects.

In the far lending dudies indeed of sampling individuds unconditiondly, or
conditiondlly on a covarigte vector x, and obsarving the outcome varidble Y, choice-based or
case-control dretified sampling is undertaken, for which a predetermined number of denied and
approved loan applications are obtained and x is then recorded. In some cases, a further leve of
dratification is undertaken with the sampling dratified dso by race that is the subjects for
collection of additiond data are drdified jointly by outcome (loan agpproved/denied) and
covariae (race). Such a sampling procedure is sometimes caled two-phase dratified sampling,
dratified case-control sampling or dratified choice-based sampling, and it is very common in

many fidds induding epidemiology and accountancy. By sdecting a sample of a suitable sze



from each dratum it is possble to produce parameter edtimates that are considerably more
precise than that given by a dmple random sample from the populaion. The gans from
dratification will be larger the more marked the differences between the drata, and the more
homogeneous the chaacteridics are within drata. Stratified random sampling will  dways
increase precison over smple random sampling.  How much we gain depends upon how wdll
we carry out the dratification process.

In this paper we use Morte Carlo experiments to study the gains and losses in employing
gx dratified sampling dedgns, when estimating a racid group dummy variable paameter. We
condder two edimators of this parameter: the standard logit estimator, which implicitly assumes
gmple random sampling, and an edtimator that adjusts for the differences between drata
dlocations in the populaion and the sample. The former etimator is regularly used in far
lending dudies, it is inconggent. The latter esdimator is congdent; a fact recognized in other
fidds

Our smulation experiments show the reductions in bias and mean squared error that can
be achieved by usng the corrected estimator. We aso show the impact of sample design on the
finite-sample properties of both egtimators, and on the sampling digtribution of the tdaigtic used
to examine for datidica inggnificance of the disparate trestment parameter.  When using the
inconsgent edtimator, this datigic is not an asymptotic standard norma variate under the zero-
vaue null hypothesis, and so we find that incorrect discrimination conclusions often arise.

Overdl, our results suggest dratification that gpproximately baances by outcome and by
racid group is favored when usng the condgent edimator of the parameter of interest.
However, if edimation uses the inconsstent standard logit edtimator, then we recommend a
sample desgn that agpproximately balances by outcome and dlocates across racid groups to

reflect population proportions.



The layout of our paper follows. In section 2 we discuss the estimation of logigtic
regressons with dratified samples.  Section 3 provides brief descriptions of some fair lending
dudies that employ binary logit models to examine for disgparate trestment. Our Monte Carlo
desgn is explained in section 4, which aso outlines our sx sampling designs. Section 5 presents
the smulation results. In the light of these results, in section 6 we illudtrate the potentid impacts

on discrimination conclusions with three data sets from the OCC. Section 7 concludes.

2. Estimation of logistic regressionswith stratified samples

We condder esimation of a logigic regresson model for a binary categoricd variadle Y
asociated with a K-dimensonad vector of covariates, denoted x, with parameter vector b. We
assume that Y{=0 when the t'th gpplicant’'s loan is denied while Y=1 when the t'th gpplicant’s
loan is approved. We suppose that the logit modd is linear in b and that b includes a parameter
for a minority datus dummy varigble, denoted DM, where DM=1 for a nonminority gpplicant.
For amplicity, we express DM as our race covariate and we assume only two race categories,
our andyss is eadly extended to more than two Strata.  We suppose a finite population of N
goplicants with dl subjects classfied according to the binary outcome varigble Y such that there
are N1 gpplicants whose loans have been gpproved, and No agpplicants whose loans have been
denied; No+N31=N. We suppose tha the population of N individuds is, or is regarded as, a
random sample from the underlying joint data didribution. All subjects are dso dlassfied by the
dratum covariate race; we assume Ny nonminority gpplicants and Ny minority applicants with
Nn+Nm=N. We denote by Ny; the number of nonminority applicants with Y= (j=0,1). We
likewise define Nyj. The outcome varigble and the race covariate now dratify the gpplicant

population.



Given this breskdown, we suppose that a dratified sample of Sze n is taken in which nyp,
N1, Mvo, and nyi subjects are randomly sdected from the Nyo, Nni, Nwo, and Nyi avalable
aoplicants in each of the defined srata and vaues xjx of a K-dimensona covariate vector are
measured (k=1,...,nj; i=N,M; j=0,1); n=nyo+nni+mvot+nvi. The dratified sample is teken to
improve information content by teking account of data characterigtics We assume that the
logigtic regresson modd describes the association between outcome and covariates in the source
population:

exp(jx'b) |

Pr(Y=j|X=x) =
(Y=iIX=x) Trep(xh)

@

where x incorporates an intercept with coefficient bo, and the coefficient for the variable of
interest (here DM) is denoted b,. There are two gods. Fird, for a given n, we desre efficient
edimation of the regresson coefficients by agppropriately choosng nno, Nni, Mo, and nyi. We
define efficiency in terms of mean squared error relaive to the b, vaue tha would have been
obtained by fitting a logigtic regresson model with the same covariates to everyone. Secondly, in
line with the practice of examining for disparate treatment as a test of datitica sgnificance, we
wish to choose the sample Strata Sizes, given n, SO as to approximate as accurately as possible the
decison that would have been obtained for this hypothess test from the population logit
andysis.  In our case the null hypothess of interest is Hy: b,=0 againg the dternative hypothesis
Ha: b>0; the one-sded dternative reflects the bdief tha we are tesing for discrimination

towards the minority group®.

! We are aware that care needs to be taken in binary response models when testing composite hypotheses, as
classical (consistent) tests may have power that goesto zero in finite samples; Savin and Wirtz (1999). Itisour
belief that thisis not the case for the particular hypothesis we are examining, though this problem may occur with
other coefficientsin fair lending binary response models. Of particular interest, the power function goesto zero
when testing the null hypothesis of a zero slope coefficient when the corresponding regressor has matching signs
with the values of one of the other regressors; one such case is when the regressor is positive and thereis an
intercept in the model.



An attractive feature of usng the logistic modd under dretified sampling or choice-based
sampling is that the sampling scheme can be ignored and (1) estimaied using a standard logit
program as if the data were collected usng smple random sampling. That is, when the modd
contains a congant (intercept) term for each category, these intercept terms are the only
coefficients affected by dreified sampling. The usud program output gives edimates of the
non-intercept coefficients that are maximum likeihood; i.e, the edimators, under the appropriate
regularity conditions, are consstent and asymptoticaly normd. Further, the standard approach
consgently etimates the dandard erors, which implies that the usud daidic for testing
daidicd sgnificance is an asymptotic sandard normd variate when the null hypothesis is vdid.
See Anderson (1972), Prentice and Pyke (1979), Cosdlett (1981a,b).

However, the usud egtimators of the intercept terms (which include stratum congants), as
wel as ther corresponding eements in the variance-covariance matrix, are not congstent:
Prentice and Pyke (1979), Scott and Wild (1986, 1991, 1997). That is, standard logit packages
will not consgently etimae b, as the incluson of DM as a covariae, given our use of data
dratified by race, alows for a separate intercept term for each race draum; i.e, (1) is
equivaently:

expl j(bo +ib, +xJb,)] |
1+ exp(b, +ib, +x1by)

Pr(Y=j|X=x, DM=i) = 1j=0,1 )

where xs is a (K-2)-dimensond covariate vector condsting of the columns in x excluding the
two columns associated with the intercept parameter bo and the race dummy parameter by, and bs
is a correspondingly defined parameter vector. The logigtic regresson (2) implies an intercept
for nonminority applicants bn=(bot+b,) and an intercept for minority gpplicants of by=bo. The
gandard logit estimators of by and by can be corrected for their asymptotic bias if the population

proportions are known, asit oftenisin fair lending studies.



Specificaly, let y and by be, respectively, the usua logit estimators of by and by, with
corresponding  appropriate  asymptotic variance estimators, V(by) and V(b, ). Consistent

esimatorsof by and by, which we denote as BN and BM are (e.g., Scott and Wild, 1991, p501):

by, = bn — IN[(Mv1/Na) (Mvo/Nio)]

b,, = bu — IN[(M12/Nm1)/ (Mvio/Nwmo)] -
Then, we can consstently estimate b, by

b, = br = In[(Mva/Nn1)/ (no/No)] + In[(va/Nm1) (vo/Nwio)] ©)
where by is the standard logit estimator of b,. Further, let V(b,) be the usua estimator of the
asymptotic variance associated with by. Now

V(BN): \A/(bN) - n;\lll(l_ anlNNl)_ n;\l]b(l- nNO/NNO)

V(o) =V (By) - Mg (L= My / Nyy) = Mgo(L- My / Nygo)
ae, respectively, consstent edtimators of the asymptotic variance of Jn (BN - by)and
«/F(BM -by ), from which we can corstruct a consistent estimator, denoted as \7(6r), of the
asymptotic variance of «/F(B, - b,). These results imply that, with dratified sampling by race
covariate, the t-ratio datidic to test the sgnificance of the disparate trestment dummy variable

codfficient should be formed as t=b. /,/V(b,)not as t=b/+V(b,); the later is not an

asymptotic sandard norma variate under the null hypothesis of interest.
The inconsstency of by appears to have been missed by far lending researchers.  For
ingtance, Harrison (1998, p34) conjectures, “The sample of blacks and Hispanics in the database

is sdected in a nonrandom and exhaustive manner..Although this causes no bias in the



esimation procedure...” Munndl et a. (1996, p32) erroneoudy state “The logit mode produces
conggtent estimates of the standard errors and efficient estimates of the coefficients..” It is clear
that conggency is not assured, and efficiency depends on the form of the dratified sample
Severd authors recognize that dratifying will affect esimation of the congtant term, but then fal
to redize that the induson of a racid group dummy varidble results in separae Stratum
condants. In particular, reference is made to the discussons in Maddala (1983, pp90-91) and
Maddaa (1991, pp792-793), which relate to dratifying by outcome only; we need to extend the

results when we dso dratify by adummy variable covariate.

3. Useof logistic regressionsin fair lending analysis

If minority gpplicants with the same credit profile as non-minority applicants face a
higher probability of denid, or, dternativedy, a more dringent underwriting standard, then
disparate treatment and discrimination exis. Previous research testing for evidence of
discrimination in lending includes Munndl e d. (1992, 1996), Cdem and Stutzer (1995),
Stengd and Glennon (1999), Courchane, Golan and Nickerson (2000), Longhofer and Peters
(1999) and others. Much of the debate in the discrimination literature concentrates on the issue
of whether discrimination exigds due to profit-motivated dSatigtica discrimination or due to a
Beckerian taste for discrimination (see Becker, 1993). Evidence for possble datidica
discrimination in mortgage lending is presented in Munnel et d. (1996), known as the “Boston
Fed” sudy. Even though this paper is frequently cited, there is ongoing debate whether these
results are datidicdly meaningful as the race effects are highly sengtive to modd and varigble
specification (e.g., Horne, 1997; Harrison, 1998; Stengel and Glennon, 1999). Ladd (1998, p59)
cdams “..While it is not cear whether the discrimination that emerges from the Boston Fed
dudy is atributable to a taste for discrimination or to profit-motivated Satistical discrimination,
my guess is that a substantid part of it is datistica discrimination driven by the drive for profits.

If so, market forces are not likely to diminate it”. Recently, Heckman (1998) contributed to the
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debate by pointing out the didinction between the macro-levd and the micro-leve
discrimination. Mogt of the previous research in lending discrimination  concentrates on
datistica, micro-leve discriminetion.

There remain unresolved modding issues in the discrimination literature (eg., Yinger,
1998; Ross and Yinger, 1999; Longhofer and Peters, 1998; Heckman, 1998; Ladd, 1998; and
Courchane, Golan and Nickerson, 2000). The issue reflects the decision that must be made as to
how best to represent the gpprova decision process at the bank level, and which econometric or
datisticadl modeling approach is best able to capture differences in treatment. These choices may
vary from bank to bank and are closely related to the availability of data.

The most widdy employed datisticd procedure used to modd the bank’s lending
decison is an unordered discrete choice (logistic) modeling approach. The decison to gpprove
or deny a loan from an gpplicant is based, primarily, on the individud’s credit but may dso
include demographic, economic, and property-specific atributes. It is generdly argued in the
literature that the decison modd should reflect the probability that an applicant will default — a
conceptud  framework that underlies the design of most mortgage credit scoring models.
However, in most cases, the gpprovad process involves judgmental decisons made by
underwriters  udng edablished policy guiddines tha ae quditalivdy rdaed, but not
quantitetively linked, to the likdlihood of default. For example, it is generdly accepted that the
higher the debt-to-income ratio, the greater the likeihood of default (a quditaive reationship).
However, few banks know what impact an increase in the total debt-to-income ratio from 32% to
36% (or 48%) has on the likelihood of default (a quantitative reationship). Under this type of
underwriting process, it is possble that the underwriting (judgmental) guidelines may introduce
differences in tretment of the different gpplicants. This may lead to a violaion of the far
lending laws. For that reason, the purpose of the statisticdl modd is not to determine the optima
weights an underwriter should use to assess the creditworthiness of the gpplicant, but rather, to
determine if the (pre-determined) underwriting guidelines are being farly gpplied. These modes
tes the hypothesis that minority gpplicants with profiles (eg., credit, employment, wedth, etc.)
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gmilar to nonminority applicants face the same likedihood of approvd. The datisticad modes, in
this case, should be designed to assess the rdative importance (beyond that associated with
random chance) of any observed difference in the likelihood of gpprova for these different racid
(minority) groups. We contribute to this god by providing informaion on sample design and
edimator choice to assg in determining this difference as accuraidy as possble within the

commonly used logigtic framework.

4. Monte Carlo design

One way to arive a mode (1) is to define an underlying (continuous) response variable

Y= x/b +& €)
where {e] is iid. logisicaly distributed with E(e)=0 and Var(e;)=p%3. The binary random

variable is then defined as Y;=1if Y, 30, and Y;=0 otherwise. In this formulation x/b is termed

the index function and Y, the latent or hidden varigble. The assumption of zero for the threshold

is innocuous when the model contains a congtant term.

Our Monte Carlo desgn uses the latent variable index function representation (3) to generate
the data We consider three population data generating processes (DGPs) to illugtrate the impact
of desgn matrix choice on the results, we denote these as DGP1, DGP2 and DGP3. For each
DGP we smulate an underlying population of 10,000 gpplicants and then sample n=400, 1200
and 2400 according to one of ether sx dratified sampling designs we denote the sample
designs as S1 to S6. We repeat his for 2000 replications. The exception is for DGP2 for which
we condder only n=400 due to the very smdl number of nonminority denied loans for this
population. In each case we invedigae a dStuation of no discrimination (NDIS), which

corresponds to b,=0, and of discrimination (DIS) towards minority gpplicants, which occurs



when b,>0. We report results when b, is estimated using the inconsstent estimator b and the
consgent estimator Br . S0, the design of our experiment involves one hundred and sixty-eight
basic situations.

Denote k(n, Sg, DGH, G) as the usud, inconsstent, estimator of b, for sample sze n, sample
design &g (g=1....,6), DGP (I1=1,2,3), disparate treatment outcome G=NDIS or DIS, and denote
Br (n, Sg, DGH, G) conformably. We use our amulation sudy to estimate the bias, variance
and mean squared error (MSE) of by(n, Sg, DGH, G) and Br(n, Sg, DGH, G) rdative to the
vdue for b, that would have been obtaned by fitting the logidic regresson modd to the
population of 10,000 applicants. We ds0 test the null hypothess Ho: b,=0 agangt the
dternative hypothess Ha: b>0 for each scheme to enable us to estimate the rgection frequencies
(esociated with a 5% ggnificance level) as the proportion of trids for which the observed tratio
associated with k(n, Sg, DGH, G), and b . (n, Sy, DGH, G) , is greater than the standard normal
citicd vdue of 1.645. The dmulaion sampling eror for these rgection frequencies can be

determined by noting the binomia naure of the empiricd rgections So, for example, the

Standard error asocialed  with a  rgection proportion  of 0023 is

,/0.023* (1- 0.023)/2000 » 0.003.

We now detail the three DGPs followed by the sx sampling designs.

4.1. DGP descriptions
The key differences between the three DGPs are the form of the desgn matrix and the

correlation between DM and the other variables in the covariate matrix.
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4.1.1. DGP1
We generated data for the latent varigble as

Y =bo+ Xy +Xo+ Xs+ X4+ Xs+b,DM +e (3)
with X1 ~ N(0,1); % ~ U[0,2]; X ~ N(0,2); X ~ U[0,4]; X ~ N(0,3) and N and U denote
norma and uniform random variates respectively. The X’s are drawvn independently from each
other and from e, and the race dummy variable is randomly assgned with DM=1 if a uniform
random variate on the zero-one scde is greater than 0.7. Windmejer (1995) adso uses this DGP
in his sudy of goodness-of-fit measures in binary logit modds, asde from the inclusion of DM.
The design matrix for DGP1 bears no resemblance to any used (to our knowledge) by regulatory
agencies in checking for fair lending, though it is ussful for two ressons. Fird, it provides
information on the impact of dratified sampling design on an arbitrary design matrix as opposed
to one used in a fair lending case.  Secondly, the race dummy variable is orthogond to the other
covariates, this is not the case for DGP2 and DGP3 and so we can use DGP1 to assess the
qualitative impact of correlation between the race dummy variable and the other covariates.

We set b,=0 for our ‘no disparate treatment’ event and we st its vaue to two for the
discrimination Stuation.  The vaue of by is then used to control the proportion of approved and
denied loans in the population; we sat the population denid rate at 0.30, resulting in bp=-1.97505
for nondiscrimination and bo=-3.297 for the discrimination case. Tables 1 and 2 provide the
population vaues for Nno, Nn1, Nwo, and Nyi as wel as the population denia ratios across the
two race categories.

4.1.2. DGP2

We generated data for this DGP to gpproximate that used by the OCC in their fair lending

examinations of nationd banks. Each bank condders a wide-range of decison variables in

deciding on corventiona mortgage loan gpplications, some of which are common across banks
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for conformance to the secondary market, but many are bank-specific. As it is not feasble to
include them al, we limited our atention to one bank, which we denote as Bank A, and three
continuous vaued variables income (INC), debt-to-income ratio (DTI), loanto-vdue rdio
(LTV) dong with two dummy varigbles D1 and DM. The binay variable D1 is included to
represent various bad credit variables.

Our examination of Bank A’'s data, collected by the OCC, indicated that the distribution
of vaues for INC, DTl and LTV differs consderably across race stratum. For our study we
joined Blacks and Hispanics to form the minority group, though we recognize the associated
limitations.  Accordingly, we generated separate race data for these three variables, so DM is
corrdlated with INC, DTl and LTV, which differs from DGP1. For minority applicants we
assumed INC ~ lognormal(3.15, 0.52), LTV ~ U[85,100] and DTI ~ U[30,60], while we
generated INC ~ lognormal(3.94, 0.36), LTV ~ U[8595] and DTI ~ U[20,55] for the
nonminority cases. Table 3 presents the sample corrdation coefficients for the raw Bank A data
and those we generated;, these datidtic values suggest we are reasonably capturing the
characteristics of the red data, though we recognize the smplicity of this measure. One feature
we are ignoring is the corrdation pattern between the covariates; the impact of this on our results
remains for future work.

We set Ny=2500 and Nn=7500, and we randomly selected twenty percent of minorities
and nonminorities to each satisfy D1=1, our proxy bad credit varidble. Findly, we specified the
latent variable DGP as

Y" =bg + 0.2INC -0.03LTV -0.12DTI -0.5D1 + b,DM + e 4
with bo=4.65, b,=0 for the nondiscrimination scenario, and bo=4.05, b,=0.8 for the discrimination
case. These choices resulted in a population denid ratio of 0.10, smilar to that for Bank A. The

resulting values for Nno, Nni1, Nmo, and Nyi and corresponding denia ratios for the race stratum



ae gven in Tables 1 and 22 As the vaue of Nyp is smdl we could not undertake our
experiments for saverd of the sampling designs for n>400. Hence, we generated results only for
n=400 for DGP2.
4.1.3. DGP3

Our third DGP, DGP3, is a modified verson of DGP2 to enable each of our sampling
designs to be feasble for n=1200 and n=2400. Specificdly, to give enough nonminority denias
we changed the didributional assumptions for nonminorities to: INC ~ lognorma(3.55, 0.45),
LTV ~ U[8595] and DTI ~ U[25,55]. We dso modified b and b, asfollows. by=4.60 and b,=0
for nondiscrimination, and bo=4.45 and b,=0.9 for discrimination. A rise in the population denid

ratios resulted, except for minorities, which we detail in Tables 1 and 2.

4.2. Stratified Sampling Designs

Stratification jointly by outcome and covariate enhances efficiency compared with
dratification based on outcome or covariate adone. Choosing sampling proportions that differ
from the population may further improve precison, but may lead to edimaion bias. We
illugrate the potentia trade-offs involved by studying sx sampling designs, denoted as S1 to S5;
they differ by balance and sample bias.

We define a sampling design to be balanced by outcome when ny=ny; i.e.,, there are equa
numbers of approved and denied loan gpplicants in the sample. We say the design is balanced by
covariate when y=ny. Further, we denote a sample design Sg (g=1....,6) as an unbiased sample
when its sample denid oddsratios are equal to the population denid odds-ratios, i.e, di=D;,
where Di=Njo/N; and di=no/n, i=N,M.

Severd dudies suggest tha efficency gans may be obtaned by usng a baanced

sampling design, while adopting an unbiased sampling design typicaly reduces estimation bias.
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Anderson (1972, p34) suggests that baancing (by outcome) is a reasonable choice for logistic
regressons. He writes “It is conjectured that for a given tota sample Sze n, samples with
balance give better estimates, on average, than those with unbaance’.

Kao and McCabe (1991) determine optima sample dlocations based on minimizing the
asymptotic expected error regret when sampling by outcome variable only. Expected error regret
is the difference between the expected misclassification probability usng a specified eimation
procedure and the misclassfication probability that would be obtained if dl parameters were
known. They show that baanced sampling minimizes the asymptotic expected error regret for
logidic regressons when the population is aso badanced, but that margindly unbaanced
samples are preferable otherwise, with the optima dlocation depending on the number of
covariates in the logit modd. Their results provide guidance on specifying i and n, but not on
gratification dlocations across race for a given i and n. It would be interesting to extend their
andytica andyds to dratification by outcome and covariate, though this is beyond the scope of
this paper.

Bredow and Chatterjee (1999) advocate choosing sampling fractions that approximately
result in equa numbers per dratum, in their work on the benefits of nonparametric maximum-
likeihood edimation of the logidic regresson. They illudrate the efficiency gains usng data
from the U.S. Nationa Wilms Tumor Study.

The study by Scheuren and Sangha (1998) closdy digns with our research. They present
results on two different sampling desgns from a smulation study designed to represent the
generd atributes of a typicd mortgage portfolio. They find that it is preferable to baance by
loan decison and racid group such that there is an equa number of gpproved and denied loan
files across racid groups. However, their data generating process is misspecified, and so caution

is needed when interpreting ther results, we discuss the specification error in ther DGP in



17

Appendix 1. Further, Scheuren and Sangha do not adjust their estimate of b, for dratification to
ensure consstent estimation. We present corrected and uncorrected results.
The description of our Sx sampling designsfallows:

1. Sl is badanced across outcome and race, and is a biased sample desgn. This is the desgn
advocated by Scheuren and Sangha (1998), with dy=dw and nj=n/4; i=N,M, j=0,1.

2. R is an unbiased sample desgn with the sample denid odds-ratios equd to the population
denia odds-ratios. For DGP1, Sl is baanced across race but unbaanced across loan
decison, while for DGP2 and DGP3, this sample design is unbaanced across outcome and
race covariate.

3. S3isunbaanced across outcome, balanced across race and is a biased sample design. This is
the other sampling design studied by Scheuren and Sangha (1998). Here there are 50% more
minority denias than approvas and an equa number of nonminority gpprovals and denids.

4, & 5. 4 and S5 are biased sample designs, both are based on the results from Kao and
McCabe (1991) to determine i and n. We use their Table 1 (p435) to set the sample ratio
(m/n) for a given population proportion of (N1/N) and number of covariates K. Kao ad
McCabe suggest (ni/n) be set at 0.528 for DGP1, 0.585 for DGP2, and 0.575 for DGP3.
Their andyds, however, offers no assdance in determining optima dlocations between
racid groups. We mantan the population alocations between nonminorities and minorities,
given n (i=N.M) for sampling design $4, while we st ip=n for sampling design S5. Hence,
sample desgn $4 is unbaanced by race and loan outcome, while S5 is baanced by race
stratum but unbaanced across loan decision.

6. The optimd ratios reported by Kao and McCabe are close to 0.5, which suggests that this may

be a reasonable practical approximation. Accordingly in S6 we set n=m, but choose the race
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dlocations to reflect those in the population; S6 is then unbalanced with respect to recid

group, balanced with respect to the outcome variable and is a biased sample design.

5. Simulation results

5.1 Bias
Bias reaults from the edimated sampling didributions are shown in the third columns of

Tables4 to 15. By comparing these biases, we draw the following conclusons.

) The bias for &2, the unbiased sample design, is subgtantidly smdler in magnitude than
that for the biased sample designs, in particular for S1, S3 and S5, when using the
incondgtent estimator by. The desgn matrix affects the magnitude of the bias, compare
DGP1 and DGP2 for indance. These features are quditativdly similar for cases of
discrimination and nondiscrimination. It is clear that it is preferable to use the unbiased
sample desgn 2 when the usud incondgtent estimator of b, is used. In terms of the
biased sample desgns our results do not support, when atempting to minimize
edimation bias with b;, use of badancing by covariate (S1, S3 and Sb); it is better to
mantan the population covariae ratios in the sample (82, 4 and $6). While the
edimation bias with $4 and S6 are generdly similar, the former isto be dightly favored.

(i)  Correcting for asymptotic bias subgtantially reduces the edtimation bias for the biased
sample desgns. We observe that the unbiased sample design &2 ill has the amdlest
edimetion bias when there is discrimination, but when there is no discrimination, other
sample designs are sometimes preferable; in the latter case the bias results can be quite
sengtive to the form of the design matrix. Generdly, there is less edimation bias for
S5 among the biased sample designs that balance by race (S1, S3, S5), and 4 results in

sndler esimation bias when comparing 4 and S5, the two biased sample designs with
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sample race dlocations that mirror those in the population. Sample designs $4 and S5
typicdly exhibit dmilar estimation biases, when usng Br, though the latter is to be
margindly preferred.

Variance

Estimated variances are shown in the fourth columns of Tables 4 to 15. We observe that:
Thereislittle difference between the estimated variances for Br and by for our scenarios.
Choosing sample designs that baance by race (S1, S3, S5) results in ggnificant gans in
edimaion precison. The variances for these sample designs is often hdf that obtained
with those sample designs (S2, 4, S6) that have sample race alocations proportiona to
that in the population. Bdancing by outcome, even goproximatdy, is hdpful in obtaning
more precise estimates of b, (e.g., often 4 and S6 are preferred to S2), but it is balancing
by race that produces the large gains in precison (eg., Sb dways outperforms $4). At
leest within sampling variation, typicdly the variance assocdiated with S2 is highest
among the sampling designs we examined.

Not surprisngly, the precison gains are reaively greater for DGP2 and DGP3 than for
DGP1, because the characteristics of the strata for the former DGPs were congtructed to
differ across race while those for DGP1 were generated orthogonal to race.

Thereislittle to choose between S1, S3 and S5 in terms of estimation variance.

M SE

When usng by, the incondgtent estimator of by, the bias digtortions noted in section 5.1
typicaly dominate any potentid variance gains discussed in section 5.2, Regardless of
the form of DGP, the sample sze or the populaion vaue of b,, MSE is smales for the
sampling desgns that mirror population covariate racid fractions in the sample (S2, $4,

$6). However, an exception aises with DGPL with nondiscrimination.  Then, there is



(iii)

20

little difference between the MSEs for S1, 2, $4, S5 and S6, though use of sample
design S3 is never favored. For the other cases, the choice between S2, 4 and S6 is
sengtive to the form of the DGP, the sample Sze and the vaue of by, though at least
within sampling variation $4 dominates S6. Sample design S2 dominates 4 for DGPL,
for DGP2 with nondiscrimination and for DGP3 with discriminetion. However, $4
dominates S2 for DGP2 with discrimination, for DGP3 with nondiscrimination when
n=400, and the two desgns produce smilar MSEs for DGP3 with nondiscrimination
when n=1200 or n=2400.

(i) Correcting for asymptotic bias generdly results in smaler MSEs for sample designs S1,
S3 and S5, which balance across race. Regardless of the form of DGP, S5 is preferred to
both S1 and S3, at least within sampling variation. An exception is that sample design S3
dominates S1 and S5 with DGP2 and nondiscrimination.  However, it is clear that our
gmulaions would not support adopting S1, the design advocated for by Scheuren and
Sangha (1998). Generdly, sample designs 4 and S6 produce smaler MSE than sample
desgn 2, though exceptions include DGP1, and DGP3 with discrimination. Sample
desgn A is typicdly favored to S6. It is clear that bdancing, or near bdancing, by
outcome is useful, but not as crucid as approximately balancing by race.

The magnitudes of the MSE differences between the sampling designs are greater for
DGP2 and DGP3 (and especidly for DGP2) than for DGP1. These results accord with
our prior expectation as the gains (and losses) from particular dréification patterns will
be larger the more marked the differences between the strata.
Our results suggest the following practical prescriptions.  First, when using the estimator by,
the choice of sample design should reflect the race dlocation in the population; baancing by

covariate race is not recommended because of the estimation biases that can arise under this
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sampling drategy. Of the three sampling designs we invedtigate that satisfy this requirement, our
recommendation is to use sample desgn $4, as there is little loss in MSE in usng 4 when &2 is
preferred, but there can be dgnificant gans in MSE when $4 is favored. At lees within

sampling variation, sample design $4 dways dominates sample desgn 6.

A

Second, if the corrected estimator b, is adopted, then our results suggest a clear

preference for sample designs S1, S3 and S5; that is, those sample designs that balance by race.
Correcting for asymptotic edimation bias ggnificantly reduces the finite-sample biases and
dlows the variance gains in these dratified sample designs to dominate. Of these three sample
designs, our recommendation is to use sample design Sb.
54  t-ratios

The tables report two summary datigics for the sampling distribution of t-ratios for testing

Ho: by=0 versus H: b,>0. For each of our scenarios we examine: (i) the mean t, of the 2,000

trid vaues of t, and (ii) the rgection frequencies associated with a nomind one-sded 5%
dggnificance test with the (asymptotic) criticd vaue obtaned from a dsandad normd
digribution. The firs messure, t,, provides an indication of centrd tendency of the sampling
digributions, we would like this value to be near to the tratio obtained from fitting a logit mode
to the loan applicant population. The rgection frequencies are empirical “pseudo powers’, as
they are not 9ze-adjusted. That is, while these frequencies represent the actud ability of the tedt,
asociated with a particular sample design and edtimator, to rgect a fase null hypothess, we
cannot drictly dtate that any one method has greater (true) power than any other procedure
because the two approaches do not have equd finite-sample Sze or an gppropriate ranking of
gze has not been possble  Further, we need to be mindful when interpreting the
nondiscrimination rgection frequencies, they ae not empirical Szes because the population

vadue of b, is not identicaly zero. Idedly, assuming that the “power” shapes are orthodox, we



expect the nondiscrimination frequencies to be cose to 0.05 dlowing for finitesample
gpproximations and Monte Carlo sampling errors, while the discriminaion rgection probabilities
should be near as possible to one.

We remind the reader that the tratios formed usng the uncorrected estimator of by, ky, are
not didributed as asymptotic standard norma variates under the null hypothess because of the
incondgtency of by. This explans some of the observed features, with other characteristics being
due to the approximation error in usng the dandard normd critical vaue, differences arisng
from the draified sampling desgns, edimation biases, and sampling erors aisng from the
Monte Carlo andysis.

The following genera results are gpparent from the observed sampling digtributions of the t-
raios. Fird, there is a tendency for “under-sizing”; i.e, we are not rgecting a true null as often
as dedred with the chosen dgnificance leved of 5%. This implies, in terms of the digparate
trestment question, that we will conclude nondiscrimination in some cases that should be
rgected. The criticd vaue needs to be smdler than that associated with a standard normd
digribution. We can conclude this feature from our results by noting that we present cases
whose b, vaue is margindly gregter than zero. So, given the form of our dternative hypothesis
and our decison rule, if our procedures had “trug’ Sze gpproximately equa to nomind dze, we
expect powers marginaly greater than 0.05, assuming orthodox “power” shapes. However, we
observe many pseudo powers well below 0.05, which suggests under-szing. An exception is for
sample design S3 with DGP1 for which there appears to be an over-rgection problem arisng
from pogitive bias in estimation; we conclude discrimingtion far often than desired.

Second, when uding the incondgtent edtimator by, the sample designs that badance by

covariate (S1, S3 and SH) will often not detect discrimination when it is present (eg., Tables 9
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and 13). It is clear, when usng by, that sample designs 2, 4 and S6 have greater ability to

regect afase null, with our results suggesting adight preference for S4 and S6.

Third, when usng the condstent estimator Br, sample designs S1, S3 and S5 dominate
those that do not balance by covariate (S2, $4 and S6). As our powers are not size-adjusted, we
are not able to recommend one strategy over another, and our results do not suggest a clear

winner in terms of 9ze-uncorrected power.

6. Someillugtrations

In this section we andyze some data for disparate trestment using the consstent estimator of
b, as well as the usua logit estimator . It would be interesting to examine the impact of sample
design, but this is infeesble given the available sample data We show that there can be changes
in the discrimination outcome once we correct the logit estimator for the dratified sample design.

We examine sample data supplied by the OCC for three banks, which we denote as Bank A,
Bank B and Bank C; note that the data for Bank A is not that used in designing DGP2 as outlined
in section 4.1.2. The OCC adopted dratified sample designs when collecting the data that were
unbaanced across outcome and across racid groups, and they oversampled the denids in all
groups. Bank A and Bank B each have two minority groups, we denote them as MA and MB
respectivdly. Bank C has only one minority group, which we denote by M. Let b, be the
parameter for the minority dummy varidble for Bank A and Bank B there ae two such
parameters; i=M, MA or MB.

Our interest is in examining the vadidity of the null hypothess Hy: bi=0 versus the one-sided
dternative hypothess Ha: b>0. We edtimated bank-specific logisic regressons for the three
banks using the inconsgtent and consstent estimators of b, and obtained asymptotic Rvaues for

the usud t-ratio of Hp, assuming a limiting sandard normd null didribution. For confidentidity
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reasons we are unable to report details of the specific regressions, and we have dso dtered the
OCC logit modd specifications. That is, our regressons deliberately do not replicate actud
regressons undertaken by the OCC.  Consequently, any findings of disparate trestment should
not be interpreted as evidence to suggest that these particular banks are discriminaing agangt
any racid group.

We provide the P-vdues in Table 16 for examining Ho agangt Ha using the incongstent
edimaior and that modified for the dratified sampling desgn. The reaults, though limited,
indicate the impact of accounting for the sample desgn. Assuming a classcd 5% dgnificance
leve, there is no datisticd support for disparate treatment by the banks when we use the
dandard, inconsgtent, logit estimator, except for Bank B’s minority group B. However, when
usng Br, this outcome changes for minority group B for Bank A, and for Bank C. The
examples highlight the fact that established results based on the assumption of smple random

sampling need to be reconsgdered when the sample is dratified by outcome and covariate in the

manner we have been investigating.

7. Concluding remarks

The results we present have some important implications for the use of logigic regressons in
far lending dudies that examine for discrimingtion as a tet of dgnificance of a racid group
dummy variable, when the sample data are obtained from samples of population data that has
been dratified by loan outcome and racid group. Our results show the importance of usng a
consgent estimator of the disparate treatment parameter and the impact of the form of the
draified sample desgn on the finitesample sampling digributions of two estimators of the

parameter and the t-ratio for datistical sgnificance.



25

We can make severa practica recommendations from our results.  Fird, if a sandard logit
package is used to edtimate the disparate treatment binary variable parameter without correcting
for asymptotic bias, then it is cear tha sample desgns tha mantan the racid population
dlocations dominate those desgns that baance sample racid numbers. Proportiond recid
dlocations sampling schemes do not suffer as extreme estimation bias, and even though there is
a loss in precison in usng these sampling designs, there is dill a gain in mean squared error.
Further, we observed tha the test of dgnificance for these sample designs is more likdy to
reflect the outcomes we dedire, though there is evidence to suggest under-szing for dl of the
sample desgns we investigated. Overdl, our experiments suggest that sample desgn 4 is a
good choice when using the usud incongstent estimator.

Second, if we correct the edtimator for asymptotic bias, then our recommendations change,
and those sample designs that balance by covariate are preferred. Correcting for asymptotic bias
ggnificantly reduces the finitesample edimation biases and we can benefit from the gans in
precison that are possble when balancing by covarigtee Mean squared errors subgtantialy
reduce, as expected, when we use a consstent estimator of a parameter. In addition, we obtain
sampling digributions for the test of sgnificance datidic that do not reflect bias distortions, and
S0 lead to desired disparate treatment decisons. Of the three sample designs we investigate that
balance by race, we recommend sample desgn S5, when using the condgtent estimator of the
disparate treatment parameter.

There are severd extensons to our study worthy of further research. Irrespective of the
edimator we condder, it is clear tha there are gains in usng the optima sample outcome
alocations proposed by Kao and McCabe (1991). We would anticipate that a smilar
approximate balance by covariate would be preferable to the drict baancing by race that we

have investigated. Some further work in this direction would be interesting.
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It would aso be interesting to condder methods of determining an optima sample size (n),
according to some chosen criterion.  Some gpproaches to sample Size suggestions explicitly for
logigtic regresson coefficients are Whittemore (1981), Sdf and Mauritsen (1988) and Bull
(1993). Another potentia direction for further research is on aterndive edimation principles.
We focused on parametric maximum likelihood estimators of the disparate trestment parameter,
and there may be benefits in exploring nonparametric methods. Bredow and Chatterjee (1999),
for ingance, find nonparametric meximum likdihood resulted in effidency gains for logidic
regresson coefficientsin their andyss of datafrom the U.S. Nationd Wilms Tumor Study.

The use of bootdrgp or Monte Carlo testing may be fruitful as such techniques may asss in
dimingting or, a lesst, minimizing the Sze-distortions that seemed to be a feature of our study.
Findly, we have limited our atention to the coefficient on the race binary vaiadle, which in
redity may or may not result in race dgnificantly affecting the probability of mortgage approvd,
as the logidic parametric specification is not additive in the variables The margind effect of
race depends on al parameters in the modd and the specific values assumed for the covariate
vector, and will therefore be affected by the choice of sample design and the estimator we use for

the stratum congtants. It remains for future research to investigate these impacts.
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Appendix 1.

We show that the DGP used in the smulation study by Scheuren and Sangha (1998) is
misspecified; we heregfter refer to the authors as SS.  SS use a proxy variable ‘score’ to represent
the underwriting criteria applied by a bank in deciding on loan applications. The generating
process for score is as follows. for approved loans (Y=1), score = min(800U[0,1]
+400U[0,1],800) with additional random variation to force score T [200,800], while for denied
loans (Y=0), score = max(800U[0,1]-400U[0,1],0) with additiond random variation to force
scorel [0,600]. Note that the variable score is overlapping for denied and approved loans.

The smulated loan applications are assgned the race covariate DM in a random manner for

the no discrimination case, and, given the variables score and DM, SS edimate the logigtic

regresson
Pr(Y=j| DM=i) = 2P0 +ib, +b.score)] ij=0,1 (A.D)
1+exp(b, +ib, + b.score)
which implies an underlying latent variable or index function modd
Y  =bo +bgcore+e (A.2)

when b,=0. The latent variable is such that Y 30 for Y=1, and Y <0 for Y=0, so that score
cannot be overlapping for the error term to have a standard logidtic digtribution with zero mean
and the parameter vaues to be fixed congants. That is, for score to have overlapping vaues for
denied and approved loans, DGP (A.2) must be misspecified, either from omitted variables or
from functiond form erors  The gpecification eror results in inconsstent estimation of dl

parameters.
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Table 1: Population characterigtics by outcome and race with no discrimination

(NNJ‘ & NMJ', j:0,1)
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DGP Race Loan Outcome Denid Retios
Category Approved (j=1) Denied (j=0) D
DGP1 Nonminority 4900 2075 0.30
Minority 2100 925 0.30
Totd 7000 3000 0.30
DGP2 Nonminority 7340 160 0.02
Minority 1785 715 0.29
Totd 9003 997 0.10
DGP3 Nonminority 6498 1002 0.13
Minority 1771 729 0.29
Totd 8269 1731 0.17




Table 2: Population characteristics by outcome and race with discrimination (Nnj & Nwj, j=0,1)

DGP Race Loan Outcome Denid Retios
Category Approved (j=1) Denied (j=0)
DGP1 Nonminority 5392 1583 0.23
Minority 1608 1417 0.47
Totd 7000 3000 0.30
DGP2 Nonminority 7374 126 0.02
Minority 1628 872 0.35
Totd 9002 998 0.10
DGP3 Nonminority 6869 631 0.08
Minority 1731 769 0.31
Totd 8600 1400 0.14




Table 3: Sample smple correlation coefficients between Bank A and generated data for DGP2

Minorities Nonminorities
INC 0.997 0.982
LTV 0.764 0.804
DTI 0.919 0.857




Table 4. Summary gatistics for estimated sampling digtributions of by (n, Sg, DGP1, NDIS),
0=1...6, n=400,1200,2400. Population coefficient value is 0.100 with at-ratio of 1.249.

Sampling n Bias Var MSE t, Rejection
Design Frequency
S1 400 -0.089 0.106 0.114 0.030 0.027
1200 | -0.086 0.030 0.037 0.064 0.026
2400 -0.081 0.016 0.023 0.127 0.037
S2 400 -0.028 0.113 0.114 0.183 0.034
1200 | -0.036 0.034 0.035 0.291 0.053
2400 -0.030 0.016 0.017 0.453 0.071
S3 400 0.318 0.107 0.208 1.089 0.259
1200 0.309 0.032 0.127 1.907 0.636
2400 0.312 0.016 0.113 2.730 0.900
A 400 -0.041 0.118 0.120 0.143 0.033
1200 | -0.043 0.035 0.037 0.250 0.045
2400 -0.039 0.017 0.019 0.386 0.055
S5 400 -0.058 0.106 0.109 0.111 0.034
1200 | -0.074 0.031 0.036 0.121 0.030
2400 | -0.073 0.016 0.021 0.180 0.041
S6 400 -0.038 0.116 0.117 0.151 0.034
1200 | -0.044 0.034 0.036 0.249 0.046
2400 -0.038 0.017 0.018 0.390 0.062




Table 5. Summary datidtics for estimated sampling distributions of by (n, Sg, DGPL, DIS),
0=1...6, n=400,1200,2400. Population coefficient valueis 3.020 with at-ratio of 31.176.

Sampling n Bias Var MSE t, Rejection
Design Frequency
S1 400 -0.884 0.164 0.945 4.806 1.000
1200 -0.956 0.048 0.962 8.353 1.000
2400 | -0.965 0.024 0.955 11.857 1.000
S2 400 0.161 0.235 0.261 6.150 1.000
1200 0.047 0.068 0.070 10.758 1.000
2400 0.025 0.030 0.031 15.255 1.000
S3 400 -0.406 0.190 0.355 5.609 1.000
1200 -0.489 0.054 0.293 9.775 1.000
2400 | -0.503 0.026 0.279 13.871 1.000
7} 400 0.350 0.241 0.364 6.533 1.000
1200 0.240 0.069 0.127 11.412 1.000
2400 0.215 0.034 0.080 16.180 1.000
S5 400 -0.891 0.162 0.956 4.815 1.000
1200 | -0.976 0.047 1.000 8.320 1.000
2400 -0.992 0.025 1.009 11.771 1.000
S6 400 0.358 0.247 0.375 6.515 1.000
1200 0.250 0.073 0.136 11.388 1.000
2400 0.227 0.033 0.085 16.145 1.000




Table 6. Summary statistics for estimated sampling distributions of b, (n, Sg, DGP1, NDIS),
g=1...6, n=400,1200,2400. Population coefficient vaueis 0.100 with at-ratio of 1.249.

Sampling n Bias Var MSE t, Rejection
Design Frequency
S1 400 -0.049 0.106 0.108 0.135 0.036
1200 | -0.047 0.030 0.032 0.253 0.048
2400 -0.042 0.016 0.018 0.400 0.075
S2 400 0.011 0.113 0.113 0.285 0.047
1200 0.003 0.034 0.034 0.475 0.088
2400 0.009 0.016 0.016 0.723 0.133
S3 400 -0.048 0.107 0.109 0.128 0.033
1200 -0.057 0.032 0.035 0.199 0.038
2400 | -0.055 0.016 0.019 0.304 0.059
4 400 -0.041 0.118 0.120 0.136 0.026
1200 -0.043 0.035 0.037 0.238 0.033
2400 | -0.039 0.017 0.019 0.370 0.050
S5 400 -0.038 0.106 0.107 0.163 0.038
1200 | -0.042 0.031 0.033 0.280 0.048
2400 -0.034 0.016 0.017 0.455 0.090
S6 400 -0.046 0.116 0.118 0.125 0.024
1200 -0.051 0.034 0.037 0.204 0.032
2400 | -0.046 0.017 0.019 0.327 0.046




Table 7. Summary statistics for estimated sampling distributionsof b, (n, Sg, DGPL, DIS),
g=1...6, n=400,1200,2400. Population coefficient value is 3.020 with at-ratio of 31.176.

Sampling n Bias Var MSE t, Rejection
Design Frequency
S1 400 0.215 0.164 0.210 8.070 1.000
1200 0.143 0.048 0.068 14.059 1.000
2400 0.134 0.024 0.042 19.581 1.000
S2 400 0.164 0.235 0.262 6.795 1.000
1200 0.050 0.068 0.071 11.852 1.000
2400 0.028 0.030 0.031 16.587 1.000
S3 400 0.288 0.190 0.272 1.777 1.000
1200 0.205 0.054 0.096 13.551 1.000
2400 0.191 0.026 0.062 18.916 1.000
4 400 0.343 0.241 0.359 7.119 1.000
1200 0.233 0.069 0.123 12.396 1.000
2400 0.208 0.034 0.077 17.347 1.000
S5 400 0.188 0.162 0.197 8.057 1.000
1200 0.116 0.047 0.060 14.032 1.000
2400 0.107 0.025 0.036 19.543 1.000
S6 400 0.369 0.247 0.383 7.142 1.000
1200 0.261 0.073 0.141 12.432 1.000
2400 0.238 0.033 0.090 17.399 1.000
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Table 8. Summary datidtics for estimated sampling distributions of by (400, Sg, DGP2, NDIS),
0=1...6. Population coefficient vaue is—0.189 with at-ratio of -1.212.

Sampling n Bias Var MSE t, Rejection
Desgn Frequency
S1 400 -2.865 0.312 8.520 -4.984 0.000
S2 400 -0.029 0.632 0.633 -0.198 0.011
S3 400 -2.480 0.306 6.456 -4.336 0.000
HA 400 -0.690 0.324 0.800 -1.360 0.001
S5 400 -2.881 0.318 8.618 -5.064 0.000
S6 400 -0.935 0.331 1.205 -1.771 0.001

Table 9. Summary saigtics for estimated sampling distributions of by (400, Sg, DGP2, DIS),
g=1...6. Population coefficient vaue is 1.224 with at-ratio of 7.758.

Sampling n Bias Var MSE t, Reection
Desgn Frequency
S1 400 -3.069 0.227 9.646 -3.283 0.000
S2 400 0.151 0.965 0.988 1.514 0.468
S3 400 -2.642 0.227 7.207 -2.492 0.000
A 400 0.337 0.337 0.487 2.309 0.798
S5 400 -3.136 0.237 10.071 -3.429 0.000
S6 400 0.386 0.390 0.539 2.333 0.808




Table 10. Summary datistics for estimated sampling distributions of Br (400, Sg, DGP2, NDIS),

g=1...6. Population coefficient vdue is—0.189 with at-ratio of -1.212.

Sampling n Bias Var MSE t, Rejection
Desgn Frequency
S1 400 0.046 0.312 0.314 -0.135 0.031
S2 400 -0.115 0.632 0.645 -0.333 0.016
S3 400 0.025 0.306 0.307 -0.177 0.024
HA 400 -0.053 0.366 0.369 -0.364 0.017
S5 400 0.030 0.318 0.319 -0.163 0.027
S6 400 -0.067 0.390 0.39%4 -0.378 0.019

Table 11. Summary statistics for estimated sampling distributions of b, (400, Sy, DGF2, DIS),

0=1...6. Population coefficient vaue is 1.224 with at-ratio of 7.758.

Sampling n Bias Var MSE t, Rejection
Desgn Frequency
S1 400 0.376 0.227 0.368 3.128 0.903
S2 400 0.138 0.965 0.984 1.826 0.603
S3 400 0.398 0.227 0.385 3.129 0.905
A 400 0.330 0.373 0.482 2.526 0.835
S5 400 0.309 0.237 0.332 3.042 0.884
S6 400 0.368 0.390 0.525 2.513 0.846

39



Table 12. Summary gatigtics for estimated sampling digtributions of b (n, Sg, DGP3, NDIS),
0=1...6, Nn=400,1200,2400. Population coefficient value is 0.084 with at-ratio of 0.872.

Sampling n Bias Var MSE t, Rejection
Design Frequency
S1 400 -1.051 0.136 1.241 -2.270 0.001
1200 -1.028 0.041 1.098 -3.964 0.000
2400 -1.028 0.021 1.078 -5.646 0.000
S2 400 -0.127 0.214 0.230 -0.060 0.018
1200 | -0.127 0.063 0.065 -0.137 0.018
2400 -0.123 0.029 0.044 -0.183 0.011
S3 400 -0.621 0.124 0.510 -1.268 0.000
1200 -0.606 0.040 0.407 -2.208 0.000
2400 | -0.604 0.019 0.384 -3.137 0.000
7} 400 -0.135 0.173 0.191 -0.109 0.020
1200 -0.135 0.052 0.070 -0.193 0.017
2400 | -0.138 0.026 0.045 -0.294 0.018
S5 400 -1.052 0.133 1.240 -2.293 0.000
1200 -1.037 0.040 1.115 -4.029 0.000
2400 -1.036 0.020 1.093 -5.731 0.000
S6 400 -0.110 0.179 0.191 -0.059 0.023
1200 | -0.118 0.052 0.065 -0.130 0.018
2400 -0.125 0.027 0.043 -0.219 0.018




Table 13. Summary datigtics for estimated sampling digtributions of by (n, Sg, DGP3, DIS),
0=1...6, n=400,1200,2400. Population coefficient vaue is 1.440 with at-ratio of 13.691.

Sampling n Bias Var MSE t, Rejection
Design Frequency
S1 400 -1.366 0.146 2.012 0.160 0.050
1200 -1.383 0.045 1.958 0.230 0.057
2400 | -1.385 0.021 1.939 0.324 0.066
S2 400 0.108 0.273 0.285 2.716 0.913
1200 0.046 0.071 0.073 4.774 1.000
2400 0.041 0.035 0.037 6.815 1.000
S3 400 -0.925 0.161 1.017 1.159 0.288
1200 -0.947 0.048 0.945 2.007 0.662
2400 | -0.949 0.023 0.924 2.850 0.913
7} 400 0.310 0.216 0.312 3477 0.993
1200 0.233 0.068 0.122 6.037 1.000
2400 0.212 0.031 0.076 8.538 1.000
S5 400 -1.416 0.143 2.148 0.045 0.037
1200 -1.427 0.044 2.080 0.051 0.034
2400 -1.432 0.021 2.072 0.044 0.036
S6 400 0.355 0.239 0.365 3.499 0.993
1200 0.287 0.069 0.151 6.106 1.000
2400 0.273 0.033 0.108 8.663 1.000
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Table 14. Summary statistics for estimated sampling distributions of b, (n, Sg, DGP3, NDIS),

g=1...6, n=400,1200,2400. Population coefficient vaueis 0.084 with at-ratio of 0.872.

Sampling n Bias Var MSE t, Rejection
Design Frequency
S1 400 -0.147 0.136 0.158 -0.123 0.029
1200 -0.124 0.041 0.056 -0.165 0.027
2400 -0.123 0.021 0.036 -0.249 0.023
S2 400 -0.159 0.214 0.239 -0.135 0.034
1200 | -0.141 0.063 0.083 -0.218 0.035
2400 -0.140 0.029 0.049 -0.319 0.019
S3 400 -0.137 0.137 0.156 -0.113 0.030
1200 -0.133 0.043 0.061 -0.184 0.026
2400 | -0.130 0.020 0.037 -0.281 0.019
A 400 -0.114 0.173 0.186 -0.112 0.035
1200 -0.130 0.052 0.069 -0.197 0.033
2400 | -0.120 0.026 0.040 -0.293 0.023
S5 400 -0.148 0.133 0.154 -0.127 0.036
1200 | -0.133 0.040 0.058 -0.207 0.023
2400 -0.132 0.020 0.037 -0.296 0.020
S6 400 -0.126 0.179 0.195 -0.082 0.035
1200 -0.124 0.052 0.067 -0.171 0.027
2400 -0.121 0.027 0.042 -0.273 0.023
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Table 15. Summary datidtics for estimated sampling digtributions of Br (n, Sg, DGP3, DIS),
g=1...6, n=400,1200,2400. Population coefficient value is 1.440 with at-ratio of 13.691.

Sampling n Bias Var MSE t, Rejection
Design Frequency
S1 400 0.211 0.146 0.191 4.385 0.995
1200 0.193 0.045 0.082 7.555 1.000
2400 0.191 0.021 0.057 10.352 1.000
S2 400 0.086 0.273 0.280 3.156 0.940
1200 0.024 0.071 0.072 5.533 1.000
2400 0.019 0.035 0.035 1.722 1.000
S3 400 0.245 0.161 0.221 4.322 0.995
1200 0.224 0.048 0.098 7.467 1.000
2400 0.221 0.023 0.072 10.251 1.000
4 400 0.311 0.216 0.313 3.879 0.997
1200 0.234 0.068 0.123 6.656 1.000
2400 0.213 0.031 0.076 9.165 1.000
S5 400 0.160 0.143 0.169 4.330 0.994
1200 0.150 0.044 0.067 7.475 1.000
2400 0.144 0.021 0.042 10.217 1.000
S6 400 0.344 0.239 0.357 3.866 0.994
1200 0.276 0.069 0.145 6.666 1.000
2400 0.262 0.033 0.102 9.217 1.000




Table 16. Asymptotic P-vaues for the OCC Banks A, B and C.

Bank and Minority Group Usngb Using b
Bank A MA 0.102 0.125
MB 0.165 0.025
Bark B MA 0.203 0.512
MB 0.002 <0.001
Bank C M 0.257 0.009




