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ABSTRACT 

 
Logistic regressions are commonly used to assess for fair lending across groups of loan 
applicants.  This paper considers estimation of the disparate treatment parameter when the 
sample is stratified jointly by loan outcome and race covariate.  We use Monte Carlo analysis to 
investigate the finite-sample properties of two estimators of the disparate treatment parameter 
under six stratified sampling designs and three data generating processes; one estimator is 
consistent irrespective of sample design while the other is not.  Unfortunately the inconsistent 
estimator is employed inadvertently in fair lending studies.  We demonstrate the gains in using 
the consistent estimator as well as providing recommendations on sample design.  We also study 
the effect of sample design on the empirical power of a test for statistical significance of the 
disparate treatment parameter.  We recommend adopting a sample design that approximately 
balances by outcome and racial group, when using the estimator that adjusts for the stratification 
scheme.  However, if the standard logit estimator is employed, then our results suggest a sample 
design that balances by outcome and allocates across racial groups proportionally to the 
population.  Though our study is framed in terms of fair lending applications, our results apply 
generally to the estimation of logistic regressions that use stratified or choice-based sample 
designs. 
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1. Introduction 

U.S. fair lending laws prohibit discrimination against loan applicants on prohibited bases 

including race, national origin, marital status, gender, and religion.  Various government 

regulatory agencies monitor compliance with the statutes, including the Office of the 

Comptroller of the Currency (OCC), the Federal Reserve Board (FRB), Housing and Urban 

Development (HUD) and the Office of Thrift Supervision (OTS).  Banking institutions covered 

by the Home Mortgage Disclosure Act (HMDA) are required to collect and disclose data on 

HMDA-reportable lending decisions that can then be used to assist regulators and the public in 

identifying discriminating practices, and to ensure enforcement of fair lending laws. 

The Home Mortgage Disclosure Act (HMDA) mandates the collection and disclosure of data 

on home mortgages including: loan amount, census tract of property, purpose of the loan, loan 

type, application and action dates, race and gender of applicant, income relied on for loan, as 

well as loan disposition.  Institutions are asked, but not all are required, to report the reasons why 

individual applications were denied.  It is the only type of lending behavior for which race data 

may be collected legally. 

 Fair lending compliance regulation includes a review of a lender’s loan policies and 

procedures to ascertain that these are not overtly discriminating against any one type of loan 

applicant, and to ascertain whether such policies and procedures are applied consistently across 

loan applicants.  While enforcement varies by regulatory agency, a description of procedures can 

be found in the Federal Financial Institutions Regulatory Council (FFIEC) Inter-Agency Fair 

Lending Procedures issued in 1999 (http://www.ffiec.gov/fairlend.pdf).  These procedures 

include detailed qualitative assessments and quantitative statistical analyses; the latter may 

include matched pair analysis and logistic regressions.  Our focus is on the use of binary logit 

models to examine for disparate treatment, as discussed in and applied by, for example, Munnell 
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et al. (1992, 1996), Carr and Megbolugbe (1993), Glennon and Stengel (1994), Horne (1994, 

1997), Stengel and Glennon (1999), Harrison (1998), Day and Liebowitz (1998), Courchane, 

Nebhut and Nickerson (2000) and others. These logistic regressions are estimated with a binary 

outcome variable of whether a loan is approved or denied for an applicant as a function of 

covariates such as loan-to-value, debt-to-income ratio, income, one or more credit score 

variables, and various dummy variables to capture effects such as bad credit, insufficient funds to 

close, and race (e.g., white, black, Hispanic).  The aim is to approximate the bank’s complex 

underwriting criteria with the logit specification.   

Ideally, the logistic regression is estimated using the population of loans, but this data, 

though collected, is not typically available in electronic form.  Population data on the outcome 

variable (loan approved/denied) and some covariates (including race) is usually known.  

Accordingly, the logistic regressions are estimated from a sample taken from the population, 

which the government agencies collect, tabulate, clean and prepare for the statistical analysis.  

The approach is to examine for disparate treatment as a test of statistical significance for the race 

dummy variable after controlling for other effects. 

 In the fair lending studies, instead of sampling individuals unconditionally, or 

conditionally on a covariate vector x, and observing the outcome variable Y, choice-based or 

case-control stratified sampling is undertaken, for which a predetermined number of denied and 

approved loan applications are obtained and x is then recorded. In some cases, a further level of 

stratification is undertaken with the sampling stratified also by race; that is, the subjects for 

collection of additional data are stratified jointly by outcome (loan approved/denied) and 

covariate (race).  Such a sampling procedure is sometimes called two-phase stratified sampling, 

stratified case-control sampling or stratified choice-based sampling, and it is very common in 

many fields including epidemiology and accountancy. By selecting a sample of a suitable size 
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from each stratum it is possible to produce parameter estimates that are considerably more 

precise than that given by a simple random sample from the population.  The gains from 

stratification will be larger the more marked the differences between the strata, and the more 

homogeneous the characteristics are within strata.  Stratified random sampling will always 

increase precision over simple random sampling.  How much we gain depends upon how well 

we carry out the stratification process. 

 In this paper we use Monte Carlo experiments to study the gains and losses in employing 

six stratified sampling designs, when estimating a racial group dummy variable parameter.  We 

consider two estimators of this parameter: the standard logit estimator, which implicitly assumes 

simple random sampling, and an estimator that adjusts for the differences between strata 

allocations in the population and the sample.  The former estimator is regularly used in fair 

lending studies; it is inconsistent.  The latter estimator is consistent; a fact recognized in other 

fields. 

 Our simulation experiments show the reductions in bias and mean squared error that can 

be achieved by using the corrected estimator.  We also show the impact of sample design on the 

finite-sample properties of both estimators, and on the sampling distribution of the t-statistic used 

to examine for statistical insignificance of the disparate treatment parameter.  When using the 

inconsistent estimator, this statistic is not an asymptotic standard normal variate under the zero-

value null hypothesis, and so we find that incorrect discrimination conclusions often arise. 

 Overall, our results suggest stratification that approximately balances by outcome and by 

racial group is favored when using the consistent estimator of the parameter of interest.  

However, if estimation uses the inconsistent standard logit estimator, then we recommend a 

sample design that approximately balances by outcome and allocates across racial groups to 

reflect population proportions. 
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 The layout of our paper follows.  In section 2 we discuss the estimation of logistic 

regressions with stratified samples.  Section 3 provides brief descriptions of some fair lending 

studies that employ binary logit models to examine for disparate treatment.  Our Monte Carlo 

design is explained in section 4, which also outlines our six sampling designs.  Section 5 presents 

the simulation results.  In the light of these results, in section 6 we illustrate the potential impacts 

on discrimination conclusions with three data sets from the OCC.  Section 7 concludes. 

 

2. Estimation of logistic regressions with stratified samples 

We consider estimation of a logistic regression model for a binary categorical variable Y 

associated with a K-dimensional vector of covariates, denoted x, with parameter vector β .  We 

assume that Yt=0 when the t’th applicant’s loan is denied while Yt=1 when the t’th applicant’s 

loan is approved.  We suppose that the logit model is linear in β  and that β  includes a parameter 

for a minority status dummy variable, denoted DM, where DMt=1 for a nonminority applicant.  

For simplicity, we express DM as our race covariate and we assume only two race categories; 

our analysis is easily extended to more than two strata.  We suppose a finite population of N 

applicants with all subjects classified according to the binary outcome variable Y such that there 

are N1 applicants whose loans have been approved, and N0 applicants whose loans have been 

denied; N0+N1=N.  We suppose that the population of N individuals is, or is regarded as, a 

random sample from the underlying joint data distribution.  All subjects are also classified by the 

stratum covariate race; we assume NN nonminority applicants and NM minority applicants with 

NN+NM=N.  We denote by NNj the number of nonminority applicants with Y=j (j=0,1).  We 

likewise define NMj.  The outcome variable and the race covariate now stratify the applicant 

population.  
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Given this breakdown, we suppose that a stratified sample of size n is taken in which nN0, 

nN1,  nM0, and nM1 subjects are randomly selected from the NN0, NN1,  NM0, and NM1 available 

applicants in each of the defined strata and values xijk of a K-dimensional covariate vector are 

measured (k=1,...,nij; i=N,M; j=0,1); n=nN0+nN1+nM0+nM1. The stratified sample is taken to 

improve information content by taking account of data characteristics.  We assume that the 

logistic regression model describes the association between outcome and covariates in the source 

population: 

 Pr(Y=j|X=x) = 
)xexp(1

)jxexp(
T

T

β+
β

’       (1) 

where x incorporates an intercept with coefficient β0, and the coefficient for the variable of 

interest (here DM) is denoted β r.  There are two goals. First, for a given n, we desire efficient 

estimation of the regression coefficients by appropriately choosing nN0, nN1,  nM0, and nM1. We 

define efficiency in terms of mean squared error relative to the β r value that would have been 

obtained by fitting a logistic regression model with the same covariates to everyone. Secondly, in 

line with the practice of examining for disparate treatment as a test of statistical significance, we 

wish to choose the sample strata sizes, given n, so as to approximate as accurately as possible the 

decision that would have been obtained for this hypothesis test from the population logit 

analysis.  In our case the null hypothesis of interest is H0: β r=0 against the alternative hypothesis 

HA: β r>0; the one-sided alternative reflects the belief that we are testing for discrimination 

towards the minority group1. 

                                                                 
1 We are aware that care needs to be taken in binary response models when testing composite hypotheses, as 
classical (consistent) tests may have power that goes to zero in finite samples; Savin and Würtz (1999).  It is our 
belief that this is not the case for the particular hypothesis we are examining, though this problem may occur with 
other coefficients in fair lending binary response models.  Of particular interest, the power function goes to zero 
when testing the null hypothesis of a zero slope coefficient when the corresponding regressor has matching signs 
with the values of one of the other regressors; one such case is when the regressor is positive and there is an 
intercept in the model. 
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 An attractive feature of using the logistic model under stratified sampling or choice-based 

sampling is that the sampling scheme can be ignored and (1) estimated using a standard logit 

program as if the data were collected using simple random sampling.  That is, when the model 

contains a constant (intercept) term for each category, these intercept terms are the only 

coefficients affected by stratified sampling.  The usual program output gives estimates of the 

non-intercept coefficients that are maximum likelihood; i.e., the estimators, under the appropriate 

regularity conditions, are consistent and asymptotically normal. Further, the standard approach 

consistently estimates the standard errors, which implies that the usual statistic for testing 

statistical significance is an asymptotic standard normal variate when the null hypothesis is valid.  

See Anderson (1972), Prentice and Pyke (1979), Cosslett (1981a,b). 

However, the usual estimators of the intercept terms (which include stratum constants), as 

well as their corresponding elements in the variance-covariance matrix, are not consistent: 

Prentice and Pyke (1979), Scott and Wild (1986, 1991, 1997).  That is, standard logit packages 

will not consistently estimate β r as the inclusion of DM as a covariate, given our use of data 

stratified by race, allows for a separate intercept term for each race stratum; i.e., (1) is 

equivalently: 

 Pr(Y=j|X=x, DM=i) = 
)xiexp(1

)]xi(jexp[

s
T
sr0

s
T
sr0

β+β+β+

β+β+β
’  i,j=0,1   (2) 

where xs is a (K-2)-dimensional covariate vector consisting of the columns in x excluding the 

two columns associated with the intercept parameter β0 and the race dummy parameter β r, and βs 

is a correspondingly defined parameter vector.  The logistic regression (2) implies an intercept 

for nonminority applicants βN=(β0+β r) and an intercept for minority applicants of βM=β0.  The 

standard logit estimators of βN and βM can be corrected for their asymptotic bias if the population 

proportions are known, as it often is in fair lending studies.   
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Specifically, let bN and bM be, respectively, the usual logit estimators of βN and βM, with 

corresponding appropriate asymptotic variance estimators, )b(V̂ N  and )b(V̂ M . Consistent 

estimators of βN and βM, which we denote as Nβ̂ and Mβ̂  are (e.g., Scott and Wild, 1991, p501): 

Nβ̂ = bN – ln[(nN1/NN1)/ (nN0/NN0)] 

Mβ̂ = bM – ln[(nM1/NM1)/ (nM0/NM0)] . 

Then, we can consistently estimate β r
 by 

rβ̂ = br – ln[(nN1/NN1)/ (nN0/NN0)] + ln[(nM1/NM1)/ (nM0/NM0)]  (3) 

where br is the standard logit estimator of β r.  Further, let )ˆ(V̂ rβ be the usual estimator of the 

asymptotic variance associated with br.  Now  

 )ˆ(V̂ Nβ = )b(V̂ N - )N/n1(n 1N1N
1
1N −− - )N/n1(n 0N0N

1
0N −−  

and 

)ˆ(V̂ Mβ = )b(V̂ M - )N/n1(n 1M1M
1
1M −− - )N/n1(n 0M0M

1
0M −−     

are, respectively, consistent estimators of the asymptotic variance of )ˆ(n NN β−β and 

)ˆ(n MM β−β , from which we can construct a consistent estimator, denoted as )ˆ(V̂ rβ , of the 

asymptotic variance of )ˆ(n rr β−β .  These results imply that, with stratified sampling by race 

covariate, the t-ratio statistic to test the significance of the disparate treatment dummy variable 

coefficient should be formed as tr= rβ̂ / )ˆ(V̂ rβ not as tr=br/ )b(V̂ r ; the latter is not an 

asymptotic standard normal variate under the null hypothesis of interest. 

 The inconsistency of br appears to have been missed by fair lending researchers.  For 

instance, Harrison (1998, p34) conjectures, “The sample of blacks and Hispanics in the database 

is selected in a non-random and exhaustive manner...Although this causes no bias in the 
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estimation procedure...” Munnell et al. (1996, p32) erroneously state “The logit model produces 

consistent estimates of the standard errors and efficient estimates of the coefficients...” It is clear 

that consistency is not assured, and efficiency depends on the form of the stratified sample.  

Several authors recognize that stratifying will affect estimation of the constant term, but then fail 

to realize that the inclusion of a racial group dummy variable results in separate stratum 

constants.  In particular, reference is made to the discussions in Maddala (1983, pp90-91) and 

Maddala (1991, pp792-793), which relate to stratifying by outcome only; we need to extend the 

results when we also stratify by a dummy variable covariate. 

 

3. Use of logistic regressions in fair lending analysis 

 If minority applicants with the same credit profile as non-minority applicants face a 

higher probability of denial, or, alternatively, a more stringent underwriting standard, then 

disparate treatment and discrimination exist. Previous research testing for evidence of 

discrimination in lending includes Munnell et al. (1992, 1996), Calem and Stutzer (1995), 

Stengel and Glennon (1999), Courchane, Golan and Nickerson (2000), Longhofer and Peters 

(1999) and others.   Much of the debate in the discrimination literature concentrates on the issue 

of whether discrimination exists due to profit-motivated statistical discrimination or due to a 

Beckerian taste for discrimination (see Becker, 1993).  Evidence for possible statistical 

discrimination in mortgage lending is presented in Munnell et al. (1996), known as the “Boston 

Fed” study.   Even though this paper is frequently cited, there is ongoing debate whether these 

results are statistically meaningful as the race effects are highly sensitive to model and variable 

specification (e.g., Horne, 1997; Harrison, 1998; Stengel and Glennon, 1999). Ladd (1998, p59) 

claims “...While it is not clear whether the discrimination that emerges from the Boston Fed 

study is attributable to a taste for discrimination or to profit-motivated statistical discrimination, 

my guess is that a substantial part of it is statistical discrimination driven by the drive for profits. 

If so, market forces are not likely to eliminate it”.  Recently, Heckman (1998) contributed to the 
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debate by pointing out the distinction between the macro-level and the micro-level 

discrimination. Most of the previous research in lending discrimination concentrates on 

statistical, micro-level discrimination. 

 There remain unresolved modeling issues in the discrimination literature (e.g., Yinger, 

1998; Ross and Yinger, 1999; Longhofer and Peters, 1998; Heckman, 1998; Ladd, 1998; and 

Courchane, Golan and Nickerson, 2000).  The issue reflects the decision that must be made as to 

how best to represent the approval decision process at the bank level, and which econometric or 

statistical modeling approach is best able to capture differences in treatment.  These choices may 

vary from bank to bank and are closely related to the availability of data. 

 The most widely employed statistical procedure used to model the bank’s lending 

decision is an unordered discrete choice (logistic) modeling approach.  The decision to approve 

or deny a loan from an applicant is based, primarily, on the individual’s credit but may also 

include demographic, economic, and property-specific attributes.  It is generally argued in the 

literature that the decision model should reflect the probability that an applicant will default – a 

conceptual framework that underlies the design of most mortgage credit scoring models.  

However, in most cases, the approval process involves judgmental decisions made by 

underwriters using established policy guidelines that are qualitatively related, but not 

quantitatively linked, to the likelihood of default.  For example, it is generally accepted that the 

higher the debt-to-income ratio, the greater the likelihood of default (a qualitative relationship).  

However, few banks know what impact an increase in the total debt-to-income ratio from 32% to 

36% (or 48%) has on the likelihood of default (a quantitative relationship).  Under this type of 

underwriting process, it is possible that the underwriting (judgmental) guidelines may introduce 

differences in treatment of the different applicants.  This may lead to a violation of the fair 

lending laws.  For that reason, the purpose of the statistical model is not to determine the optimal 

weights an underwriter should use to assess the creditworthiness of the applicant, but rather, to 

determine if the (pre-determined) underwriting guidelines are being fairly applied.  These models 

test the hypothesis that minority applicants with profiles (e.g., credit, employment, wealth, etc.) 
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similar to nonminority applicants face the same likelihood of approval.  The statistical models, in 

this case, should be designed to assess the relative importance (beyond that associated with 

random chance) of any observed difference in the likelihood of approval for these different racial 

(minority) groups.  We contribute to this goal by providing information on sample design and 

estimator choice to assist in determining this difference as accurately as possible within the 

commonly used logistic framework.   
 

4. Monte Carlo design 

 One way to arrive at model (1) is to define an underlying (continuous) response variable 

*
tY  

  *
tY = βT

tx  + ε t       (3) 

where {ε t} is i.i.d. logistically distributed with E(ε t)=0 and Var(ε t)=π2/3.  The binary random 

variable is then defined as Yt=1 if *
tY ≥0, and Yt=0 otherwise.  In this formulation βT

tx  is termed 

the index function and *
tY the latent or hidden variable.  The assumption of zero for the threshold 

is innocuous when the model contains a constant term.  

Our Monte Carlo design uses the latent variable index function representation (3) to generate 

the data.  We consider three population data generating processes (DGPs) to illustrate the impact 

of design matrix choice on the results; we denote these as DGP1, DGP2 and DGP3.  For each 

DGP we simulate an underlying population of 10,000 applicants and then sample n=400, 1200 

and 2400 according to one of either six stratified sampling designs; we denote the sample 

designs as S1 to S6. We repeat this for 2000 replications. The exception is for DGP2 for which 

we consider only n=400 due to the very small number of nonminority denied loans for this 

population.  In each case we investigate a situation of no discrimination (NDIS), which 

corresponds to β r=0, and of discrimination (DIS) towards minority applicants, which occurs 
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when β r>0.  We report results when β r is estimated using the inconsistent estimator br and the 

consistent estimator rβ̂ . So, the design of our experiment involves one hundred and sixty-eight 

basic situations.  

Denote br(n, Sg, DGPl, G) as the usual, inconsistent, estimator of β r for sample size n, sample 

design Sg (g=1,...,6), DGPl (l=1,2,3), disparate treatment outcome G=NDIS or DIS, and denote 

rβ̂ (n, Sg, DGPl, G) conformably.  We use our simulation study to estimate the bias, variance 

and mean squared error (MSE) of br(n, Sg, DGPl, G) and rβ̂ (n, Sg, DGPl, G) relative to the 

value for β r that would have been obtained by fitting the logistic regression model to the 

population of 10,000 applicants.   We also test the null hypothesis H0: β r=0 against the 

alternative hypothesis Ha: β r>0 for each scheme to enable us to estimate the rejection frequencies 

(associated with a 5% significance level) as the proportion of trials for which the observed t-ratio 

associated with br(n, Sg, DGPl, G), and rβ̂ (n, Sg, DGPl, G) , is greater than the standard normal 

critical value of 1.645.  The simulation sampling error for these rejection frequencies can be 

determined by noting the binomial nature of the empirical rejections.  So, for example, the 

standard error associated with a rejection proportion of 0.023 is 

003.02000/)023.01(*023.0 ≈− . 

We now detail the three DGPs followed by the six sampling designs. 

 

4.1. DGP descriptions  

The key differences between the three DGPs are the form of the design matrix and the 

correlation between DM and the other variables in the covariate matrix. 
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4.1.1. DGP1 

 We generated data for the latent variable as 

  Y* = β0 + X1 + X2 + X3 + X4 + X5 + β rDM + ε   (3) 

with X1 ~ N(0,1); X2 ~ U[0,2]; X3 ~ N(0,2); X4 ~ U[0,4]; X5 ~ N(0,3) and N and U denote 

normal and uniform random variates respectively. The X’s are drawn independently from each 

other and from ε, and the race dummy variable is randomly assigned with DM=1 if a uniform 

random variate on the zero-one scale is greater than 0.7.  Windmeijer (1995) also uses this DGP 

in his study of goodness-of-fit measures in binary logit models, aside from the inclusion of DM. 

The design matrix for DGP1 bears no resemblance to any used (to our knowledge) by regulatory 

agencies in checking for fair lending, though it is useful for two reasons.  First, it provides 

information on the impact of stratified sampling design on an arbitrary design matrix as opposed 

to one used in a fair lending case.  Secondly, the race dummy variable is orthogonal to the other 

covariates; this is not the case for DGP2 and DGP3 and so we can use DGP1 to assess the 

qualitative impact of correlation between the race dummy variable and the other covariates. 

 We set β r=0 for our ‘no disparate treatment’ event and we set its value to two for the 

discrimination situation.  The value of β0 is then used to control the proportion of approved and 

denied loans in the population; we set the population denial rate at 0.30, resulting in β0=-1.97505 

for nondiscrimination and β0=-3.297 for the discrimination case.  Tables 1 and 2 provide the 

population values for NN0, NN1,  NM0, and NM1 as well as the population denial ratios across the 

two race categories.  

4.1.2. DGP2 

 We generated data for this DGP to approximate that used by the OCC in their fair lending 

examinations of national banks.  Each bank considers a wide-range of decision variables in 

deciding on conventional mortgage loan applications, some of which are common across banks 
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for conformance to the secondary market, but many are bank-specific. As it is not feasible to 

include them all, we limited our attention to one bank, which we denote as Bank A, and three 

continuous valued variables income (INC), debt-to-income ratio (DTI), loan-to-value ratio 

(LTV) along with two dummy variables D1 and DM.  The binary variable D1 is included to 

represent various bad credit variables.   

Our examination of Bank A’s data, collected by the OCC, indicated that the distribution 

of values for INC, DTI and LTV differs considerably across race stratum.  For our study we 

joined Blacks and Hispanics to form the minority group, though we recognize the associated 

limitations.  Accordingly, we generated separate race data for these three variables; so DM is 

correlated with INC, DTI and LTV, which differs from DGP1.  For minority applicants we 

assumed INC ~ lognormal(3.15, 0.52), LTV ~ U[85,100] and  DTI ~ U[30,60], while we 

generated INC ~ lognormal(3.94, 0.36), LTV ~ U[85,95] and  DTI ~ U[20,55] for the 

nonminority cases.  Table 3 presents the sample correlation coefficients for the raw Bank A data 

and those we generated; these statistic values suggest we are reasonably capturing the 

characteristics of the real data, though we recognize the simplicity of this measure.  One feature 

we are ignoring is the correlation pattern between the covariates; the impact of this on our results 

remains for future work. 

We set NM=2500 and NN=7500, and we randomly selected twenty percent of minorities 

and nonminorities to each satisfy D1=1, our proxy bad credit variable.  Finally, we specified the 

latent variable DGP as 

  Y* = β0 + 0.2INC –0.03LTV –0.12DTI –0.5D1 + β rDM + ε  (4) 

with β0=4.65, β r=0 for the nondiscrimination scenario, and β0=4.05, β r=0.8 for the discrimination 

case.  These choices resulted in a population denial ratio of 0.10, similar to that for Bank A. The 

resulting values for NN0, NN1,  NM0, and NM1 and corresponding denial ratios for the race stratum 
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are given in Tables 1 and 2.  As the value of NN0 is small we could not undertake our 

experiments for several of the sampling designs for n>400.  Hence, we generated results only for 

n=400 for DGP2. 

4.1.3. DGP3 

 Our third DGP, DGP3, is a modified version of DGP2 to enable each of our sampling 

designs to be feasible for n=1200 and n=2400.  Specifically, to give enough nonminority denials 

we changed the distributional assumptions for nonminorities to: INC ~ lognormal(3.55, 0.45), 

LTV ~ U[85,95] and  DTI ~ U[25,55].  We also modified β0 and β r as follows: β0=4.60 and β r=0 

for nondiscrimination, and β0=4.45 and β r=0.9 for discrimination. A rise in the population denial 

ratios resulted, except for minorities, which we detail in Tables 1 and 2. 

 

4.2. Stratified Sampling Designs  

 Stratification jointly by outcome and covariate enhances efficiency compared with 

stratification based on outcome or covariate alone.  Choosing sampling proportions that differ 

from the population may further improve precision, but may lead to estimation bias.  We 

illustrate the potential trade-offs involved by studying six sampling designs, denoted as S1 to S6; 

they differ by balance and sample bias. 

 We define a sampling design to be balanced by outcome when n0=n1; i.e., there are equal 

numbers of approved and denied loan applicants in the sample.  We say the design is balanced by 

covariate when nN=nM. Further, we denote a sample design Sg (g=1,...,6) as an unbiased sample 

when its sample denial odds-ratios are equal to the population denial odds-ratios; i.e., di=Di, 

where Di=Ni0/Ni and di=ni0/ni, i=N,M. 

 Several studies suggest that efficiency gains may be obtained by using a balanced 

sampling design, while adopting an unbiased sampling design typically reduces estimation bias.  
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Anderson (1972, p34) suggests that balancing (by outcome) is a reasonable choice for logistic 

regressions.  He writes “It is conjectured that for a given total sample size n, samples with 

balance give better estimates, on average, than those with unbalance”. 

 Kao and McCabe (1991) determine optimal sample allocations based on minimizing the 

asymptotic expected error regret when sampling by outcome variable only.  Expected error regret 

is the difference between the expected misclassification probability using a specified estimation 

procedure and the misclassification probability that would be obtained if all parameters were 

known.  They show that balanced sampling minimizes the asymptotic expected error regret for 

logistic regressions when the population is also balanced, but that marginally unbalanced 

samples are preferable otherwise, with the optimal allocation depending on the number of 

covariates in the logit model.  Their results provide guidance on specifying n0 and n1, but not on 

stratification allocations across race for a given n0 and n1.  It would be interesting to extend their 

analytical analysis to stratification by outcome and covariate, though this is beyond the scope of 

this paper. 

 Breslow and Chatterjee (1999) advocate choosing sampling fractions that approximately 

result in equal numbers per stratum, in their work on the benefits of nonparametric maximum-

likelihood estimation of the logistic regression.  They illustrate the efficiency gains using data 

from the U.S. National Wilms Tumor Study. 

 The study by Scheuren and Sangha (1998) closely aligns with our research.  They present 

results on two different sampling designs from a simulation study designed to represent the 

general attributes of a typical mortgage portfolio.  They find that it is preferable to balance by 

loan decision and racial group such that there is an equal number of approved and denied loan 

files across racial groups.  However, their data generating process is misspecified, and so caution 

is needed when interpreting their results; we discuss the specification error in their DGP in 
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Appendix 1.  Further, Scheuren and Sangha do not adjust their estimate of β r for stratification to 

ensure consistent estimation.  We present corrected and uncorrected results. 

 The description of our six sampling designs follows: 

1.  S1 is balanced across outcome and race, and is a biased sample design.  This is the design 

advocated by Scheuren and Sangha (1998), with dN=dM and nij=n/4; i=N,M, j=0,1. 

2. S2 is an unbiased sample design with the sample denial odds-ratios equal to the population 

denial odds-ratios. For DGP1, S1 is balanced across race but unbalanced across loan 

decision, while for DGP2 and DGP3, this sample design is unbalanced across outcome and 

race covariate. 

3. S3 is unbalanced across outcome, balanced across race and is a biased sample design.  This is 

the other sampling design studied by Scheuren and Sangha (1998).  Here there are 50% more 

minority denials than approvals and an equal number of nonminority approvals and denials. 

4. & 5. S4 and S5 are biased sample designs; both are based on the results from Kao and 

McCabe (1991) to determine n0 and n1.  We use their Table 1 (p435) to set the sample ratio 

(n1/n) for a given population proportion of (N1/N) and number of covariates K.  Kao and 

McCabe suggest (n1/n) be set at 0.528 for DGP1, 0.585 for DGP2, and 0.575 for DGP3.  

Their analysis, however, offers no assistance in determining optimal allocations between 

racial groups.  We maintain the population allocations between nonminorities and minorities, 

given ni (i=N.M) for sampling design S4, while we set ni0=ni1 for sampling design S5. Hence, 

sample design S4 is unbalanced by race and loan outcome, while S5 is balanced by race 

stratum but unbalanced across loan decision. 

6.  The optimal ratios reported by Kao and McCabe are close to 0.5, which suggests that this may 

be a reasonable practical approximation.  Accordingly in S6 we set n0=n1, but choose the race 
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allocations to reflect those in the population; S6 is then unbalanced with respect to racial 

group, balanced with respect to the outcome variable and is a biased sample design. 

 

5. Simulation results 

5.1 Bias 

Bias results from the estimated sampling distributions are shown in the third columns of 

Tables 4 to 15.  By comparing these biases, we draw the following conclusions: 

(i) The bias for S2, the unbiased sample design, is substantially smaller in magnitude than 

that for the biased sample designs, in particular for S1, S3 and S5, when using the 

inconsistent estimator br.  The design matrix affects the magnitude of the bias; compare 

DGP1 and DGP2 for instance.  These features are qualitatively similar for cases of 

discrimination and nondiscrimination.  It is clear that it is preferable to use the unbiased 

sample design S2 when the usual inconsistent estimator of β r is used. In terms of the 

biased sample designs our results do not support, when attempting to minimize 

estimation bias with br, use of balancing by covariate (S1, S3 and S5); it is better to 

maintain the population covariate ratios in the sample (S2, S4 and S6). While the 

estimation bias with S4 and S6 are generally similar, the former is to be slightly favored. 

(ii) Correcting for asymptotic bias substantially reduces the estimation bias for the biased 

sample designs.  We observe that the unbiased sample design S2 still has the smallest 

estimation bias when there is discrimination, but when there is no discrimination, other 

sample designs are sometimes preferable; in the latter case the bias results can be quite 

sensitive to the form of the design matrix.  Generally, there is less estimation bias for    

S5 among the biased sample designs that balance by race (S1, S3, S5), and S4 results in 

smaller estimation bias when comparing S4 and S6, the two biased sample designs with 
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sample race allocations that mirror those in the population.  Sample designs S4 and S5 

typically exhibit similar estimation biases, when using rβ̂ , though the latter is to be 

marginally preferred. 

5.2 Variance 

Estimated variances are shown in the fourth columns of Tables 4 to 15.  We observe that: 

(i) There is little difference between the estimated variances for rβ̂ and br for our scenarios. 

(ii) Choosing sample designs that balance by race (S1, S3, S5) results in significant gains in 

estimation precision.  The variances for these sample designs is often half that obtained 

with those sample designs (S2, S4, S6) that have sample race allocations proportional to 

that in the population.  Balancing by outcome, even approximately, is helpful in obtaining 

more precise estimates of β r (e.g., often S4 and S6 are preferred to S2), but it is balancing 

by race that produces the large gains in precision (e.g., S5 always outperforms S4).  At 

least within sampling variation, typically the variance associated with S2 is highest 

among the sampling designs we examined. 

(iii) Not surprisingly, the precision gains are relatively greater for DGP2 and DGP3 than for 

DGP1, because the characteristics of the strata for the former DGPs were constructed to 

differ across race while those for DGP1 were generated orthogonal to race. 

(iv) There is little to choose between S1, S3 and S5 in terms of estimation variance. 

5.3 MSE 

(i) When using br, the inconsistent estimator of β r, the bias distortions noted in section 5.1 

typically dominate any potential variance gains discussed in section 5.2.  Regardless of 

the form of DGP, the sample size or the population value of β r, MSE is smallest for the 

sampling designs that mirror population covariate racial fractions in the sample (S2, S4, 

S6).  However, an exception arises with DGP1 with nondiscrimination.  Then, there is 
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little difference between the MSEs for S1, S2, S4, S5 and S6, though use of sample 

design S3 is never favored.  For the other cases, the choice between S2, S4 and S6 is 

sensitive to the form of the DGP, the sample size and the value of β r, though at least 

within sampling variation S4 dominates S6.  Sample design S2 dominates S4 for DGP1, 

for DGP2 with nondiscrimination and for DGP3 with discrimination.  However, S4 

dominates S2 for DGP2 with discrimination, for DGP3 with nondiscrimination when 

n=400, and the two designs produce similar MSEs for DGP3 with nondiscrimination 

when n=1200 or n=2400. 

(ii) Correcting for asymptotic bias generally results in smaller MSEs for sample designs S1, 

S3 and S5, which balance across race.  Regardless of the form of DGP, S5 is preferred to 

both S1 and S3, at least within sampling variation.  An exception is that sample design S3 

dominates S1 and S5 with DGP2 and nondiscrimination.  However, it is clear that our 

simulations would not support adopting S1, the design advocated for by Scheuren and 

Sangha (1998).  Generally, sample designs S4 and S6 produce smaller MSE than sample 

design S2, though exceptions include DGP1, and DGP3 with discrimination.  Sample 

design S4 is typically favored to S6.  It is clear that balancing, or near balancing, by 

outcome is useful, but not as crucial as approximately balancing by race. 

(iii) The magnitudes of the MSE differences between the sampling designs are greater for 

DGP2 and DGP3 (and especially for DGP2) than for DGP1.  These results accord with 

our prior expectation as the gains (and losses) from particular stratification patterns will 

be larger the more marked the differences between the strata.  

Our results suggest the following practical prescriptions.  First, when using the estimator br, 

the choice of sample design should reflect the race allocation in the population; balancing by 

covariate race is not recommended because of the estimation biases that can arise under this 
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sampling strategy.  Of the three sampling designs we investigate that satisfy this requirement, our 

recommendation is to use sample design S4, as there is little loss in MSE in using S4 when S2 is 

preferred, but there can be significant gains in MSE when S4 is favored.  At least within 

sampling variation, sample design S4 always dominates sample design S6.  

 Second, if the corrected estimator rβ̂ is adopted, then our results suggest a clear 

preference for sample designs S1, S3 and S5; that is, those sample designs that balance by race.  

Correcting for asymptotic estimation bias significantly reduces the finite-sample biases and 

allows the variance gains in these stratified sample designs to dominate.  Of these three sample 

designs, our recommendation is to use sample design S5. 

5.4 t-ratios 

The tables report two summary statistics for the sampling distribution of t-ratios for testing 

H0: β r=0 versus HA: β r>0.  For each of our scenarios we examine: (i) the mean rt of the 2,000 

trial values of tr, and (ii) the rejection frequencies associated with a nominal one-sided 5% 

significance test with the (asymptotic) critical value obtained from a standard normal 

distribution.  The first measure, rt , provides an indication of central tendency of the sampling 

distributions; we would like this value to be near to the t-ratio obtained from fitting a logit model 

to the loan applicant population.  The rejection frequencies are empirical “pseudo powers”, as 

they are not size-adjusted.  That is, while these frequencies represent the actual ability of the test, 

associated with a particular sample design and estimator, to reject a false null hypothesis, we 

cannot strictly state that any one method has greater (true) power than any other procedure 

because the two approaches do not have equal finite-sample size or an appropriate ranking of 

size has not been possible.  Further, we need to be mindful when interpreting the 

nondiscrimination rejection frequencies; they are not empirical sizes because the population 

value of β r is not identically zero.  Ideally, assuming that the “power” shapes are orthodox, we 
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expect the nondiscrimination frequencies to be close to 0.05, allowing for finite-sample 

approximations and Monte Carlo sampling errors, while the discrimination rejection probabilities 

should be near as possible to one. 

We remind the reader that the t-ratios formed using the uncorrected estimator of β r,  br, are 

not distributed as asymptotic standard normal variates under the null hypothesis because of the 

inconsistency of br.  This explains some of the observed features, with other characteristics being 

due to the approximation error in using the standard normal critical value, differences arising 

from the stratified sampling designs, estimation biases, and sampling errors arising from the 

Monte Carlo analysis. 

The following general results are apparent from the observed sampling distributions of the t-

ratios. First, there is a tendency for “under-sizing”; i.e., we are not rejecting a true null as often 

as desired with the chosen significance level of 5%.  This implies, in terms of the disparate 

treatment question, that we will conclude nondiscrimination in some cases that should be 

rejected.  The critical value needs to be smaller than that associated with a standard normal 

distribution.  We can conclude this feature from our results by noting that we present cases 

whose β r value is marginally greater than zero.  So, given the form of our alternative hypothesis 

and our decision rule, if our procedures had “true” size approximately equal to nominal size, we 

expect powers marginally greater than 0.05, assuming orthodox “power” shapes.  However, we 

observe many pseudo powers well below 0.05, which suggests under-sizing.  An exception is for 

sample design S3 with DGP1 for which there appears to be an over-rejection problem arising 

from positive bias in estimation; we conclude discrimination far often than desired. 

Second, when using the inconsistent estimator br, the sample designs that balance by 

covariate (S1, S3 and S5) will often not detect discrimination when it is present (e.g., Tables 9 
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and 13).  It is clear, when using br, that sample designs S2, S4 and S6 have greater ability to 

reject a false null, with our results suggesting a slight preference for S4 and S6. 

Third, when using the consistent estimator rβ̂ , sample designs S1, S3 and S5 dominate 

those that do not balance by covariate (S2, S4 and S6).  As our powers are not size-adjusted, we 

are not able to recommend one strategy over another, and our results do not suggest a clear 

winner in terms of size-uncorrected power. 

 

6. Some illustrations 

In this section we analyze some data for disparate treatment using the consistent estimator of 

β r as well as the usual logit estimator br.  It would be interesting to examine the impact of sample 

design, but this is infeasible given the available sample data. We show that there can be changes 

in the discrimination outcome once we correct the logit estimator for the stratified sample design. 

We examine sample data supplied by the OCC for three banks, which we denote as Bank A, 

Bank B and Bank C; note that the data for Bank A is not that used in designing DGP2 as outlined 

in section 4.1.2.  The OCC adopted stratified sample designs when collecting the data that were 

unbalanced across outcome and across racial groups, and they oversampled the denials in all 

groups.   Bank A and Bank B each have two minority groups; we denote them as MA and MB 

respectively.  Bank C has only one minority group, which we denote by M.  Let β ri be the 

parameter for the minority dummy variable; for Bank A and Bank B there are two such 

parameters; i=M, MA or MB.  

Our interest is in examining the validity of the null hypothesis H0: β ri=0 versus the one-sided 

alternative hypothesis HA: β ri>0.  We estimated bank-specific logistic regressions for the three 

banks using the inconsistent and consistent estimators of β ri and obtained asymptotic P-values for 

the usual t-ratio of H0, assuming a limiting standard normal null distribution. For confidentiality 
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reasons we are unable to report details of the specific regressions, and we have also altered the 

OCC logit model specifications.  That is, our regressions deliberately do not replicate actual 

regressions undertaken by the OCC.   Consequently, any findings of disparate treatment should 

not be interpreted as evidence to suggest that these particular banks are discriminating against 

any racial group.  

We provide the P-values in Table 16 for examining H0 against HA using the inconsistent 

estimator and that modified for the stratified sampling design.  The results, though limited, 

indicate the impact of accounting for the sample design.  Assuming a classical 5% significance 

level, there is no statistical support for disparate treatment by the banks when we use the 

standard, inconsistent, logit estimator, except for Bank B’s minority group B.  However, when 

using rβ̂ , this outcome changes for minority group B for Bank A, and for Bank C.  The 

examples highlight the fact that established results based on the assumption of simple random 

sampling need to be reconsidered when the sample is stratified by outcome and covariate in the 

manner we have been investigating.   

 

7. Concluding remarks 

The results we present have some important implications for the use of logistic regressions in 

fair lending studies that examine for discrimination as a test of significance of a racial group 

dummy variable, when the sample data are obtained from samples of population data that has 

been stratified by loan outcome and racial group.  Our results show the importance of using a 

consistent estimator of the disparate treatment parameter and the impact of the form of the 

stratified sample design on the finite-sample sampling distributions of two estimators of the 

parameter and the t-ratio for statistical significance. 
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We can make several practical recommendations from our results.  First, if a standard logit 

package is used to estimate the disparate treatment binary variable parameter without correcting 

for asymptotic bias, then it is clear that sample designs that maintain the racial population 

allocations dominate those designs that balance sample racial numbers.   Proportional racial 

allocations sampling schemes do not suffer as extreme estimation bias, and even though there is 

a loss in precision in using these sampling designs, there is still a gain in mean squared error.  

Further, we observed that the test of significance for these sample designs is more likely to 

reflect the outcomes we desire, though there is evidence to suggest under-sizing for all of the 

sample designs we investigated.  Overall, our experiments suggest that sample design S4 is a 

good choice when using the usual inconsistent estimator. 

Second, if we correct the estimator for asymptotic bias, then our recommendations change, 

and those sample designs that balance by covariate are preferred.  Correcting for asymptotic bias 

significantly reduces the finite-sample estimation biases and we can benefit from the gains in 

precision that are possible when balancing by covariate.  Mean squared errors substantially 

reduce, as expected, when we use a consistent estimator of a parameter.  In addition, we obtain 

sampling distributions for the test of significance statistic that do not reflect bias distortions, and 

so lead to desired disparate treatment decisions.  Of the three sample designs we investigate that 

balance by race, we recommend sample design S5, when using the consistent estimator of the 

disparate treatment parameter.   

There are several extensions to our study worthy of further research.  Irrespective of the 

estimator we consider, it is clear that there are gains in using the optimal sample outcome 

allocations proposed by Kao and McCabe (1991).  We would anticipate that a similar 

approximate balance by covariate would be preferable to the strict balancing by race that we 

have investigated.  Some further work in this direction would be interesting. 
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It would also be interesting to consider methods of determining an optimal sample size (n), 

according to some chosen criterion.  Some approaches to sample size suggestions explicitly for 

logistic regression coefficients are Whittemore (1981), Self and Mauritsen (1988) and Bull 

(1993).  Another potential direction for further research is on alternative estimation principles.  

We focused on parametric maximum likelihood estimators of the disparate treatment parameter, 

and there may be benefits in exploring nonparametric methods.  Breslow and Chatterjee (1999), 

for instance, find nonparametric maximum likelihood resulted in efficiency gains for logistic 

regression coefficients in their analysis of data from the U.S. National Wilms Tumor Study.  

The use of bootstrap or Monte Carlo testing may be fruitful as such techniques may assist in 

eliminating or, at least, minimizing the size-distortions that seemed to be a feature of our study.  

Finally, we have limited our attention to the coefficient on the race binary variable, which in 

reality may or may not result in race significantly affecting the probability of mortgage approval, 

as the logistic parametric specification is not additive in the variables.  The marginal effect of 

race depends on all parameters in the model and the specific values assumed for the covariate 

vector, and will therefore be affected by the choice of sample design and the estimator we use for 

the stratum constants.  It remains for future research to investigate these impacts. 
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Appendix 1. 

We show that the DGP used in the simulation study by Scheuren and Sangha (1998) is 

misspecified; we hereafter refer to the authors as SS.  SS use a proxy variable ‘score’ to represent 

the underwriting criteria applied by a bank in deciding on loan applications.  The generating 

process for score is as follows: for approved loans (Y=1), score = min(800U[0,1] 

+400U[0,1],800) with additional random variation to force score ∈[200,800], while for denied 

loans (Y=0), score = max(800U[0,1]-400U[0,1],0) with additional random variation to force 

score ∈[0,600].  Note that the variable score is overlapping for denied and approved loans. 

The simulated loan applications are assigned the race covariate DM in a random manner for 

the no discrimination case, and, given the variables score and DM, SS estimate the logistic 

regression 

 Pr(Y=j| DM=i) = 
)scoreiexp(1

)]scorei(jexp[

sr0

sr0

β+β+β+
β+β+β

’  i,j=0,1   (A.1) 

which implies an underlying latent variable or index function model 

 Y* = β0 + βsscore + ε         (A.2) 

when β r=0.  The latent variable is such that Y* ≥0 for Y=1, and Y*<0 for Y=0, so that score 

cannot be overlapping for the error term to have a standard logistic distribution with zero mean 

and the parameter values to be fixed constants.  That is, for score to have overlapping values for 

denied and approved loans, DGP (A.2) must be misspecified, either from omitted variables or 

from functional form errors.  The specification error results in inconsistent estimation of all 

parameters.
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Table 1: Population characteristics by outcome and race with no discrimination  

(NNj & NMj, j=0,1) 

Loan Outcome DGP Race 

Category Approved (j=1) Denied (j=0) 

Denial Ratios 

D 

Nonminority 4900 2075 0.30 

Minority 2100 925 0.30 

DGP1 

Total 7000 3000 0.30 

Nonminority 7340 160 0.02 

Minority 1785 715 0.29 

DGP2 

Total 9003 997 0.10 

Nonminority 6498 1002 0.13 

Minority 1771 729 0.29 

DGP3 

Total 8269 1731 0.17 
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Table 2: Population characteristics by outcome and race with discrimination (NNj & NMj, j=0,1) 

 

Loan Outcome DGP Race 

Category Approved (j=1) Denied (j=0) 

Denial Ratios 

Nonminority 5392 1583 0.23 

Minority 1608 1417 0.47 

DGP1 

Total 7000 3000 0.30 

Nonminority 7374 126 0.02 

Minority 1628 872 0.35 

DGP2 

Total 9002 998 0.10 

Nonminority 6869 631 0.08 

Minority 1731 769 0.31 

DGP3 

Total 8600 1400 0.14 
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Table 3: Sample simple correlation coefficients between Bank A and generated data for DGP2 

 Minorities Nonminorities 

INC 0.997 0.982 

LTV 0.764 0.804 

DTI 0.919 0.857 
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Table 4. Summary statistics for estimated sampling distributions of br (n, Sg, DGP1, NDIS), 
g=1...6, n=400,1200,2400.  Population coefficient value is 0.100 with a t-ratio of 1.249.  
 

Sampling 
Design 

n sâBi  râV  EŜM  rt  Rejection 

Frequency 

S1 400 -0.089 0.106  0.114  0.030  0.027   

 1200 -0.086 0.030  0.037  0.064  0.026   

 2400 -0.081 0.016  0.023  0.127  0.037   

S2 400 -0.028 0.113  0.114  0.183  0.034   

 1200 -0.036 0.034  0.035  0.291  0.053   

 2400 -0.030  0.016  0.017  0.453  0.071   

S3 400 0.318  0.107  0.208  1.089  0.259   

 1200 0.309  0.032  0.127  1.907  0.636   

 2400 0.312  0.016  0.113  2.730  0.900   

S4 400 -0.041 0.118 0.120 0.143 0.033 

 1200 -0.043 0.035 0.037 0.250 0.045 

 2400 -0.039 0.017 0.019 0.386 0.055 

S5 400 -0.058 0.106 0.109 0.111 0.034 

 1200 -0.074 0.031 0.036 0.121 0.030 

 2400 -0.073 0.016 0.021 0.180 0.041 

S6 400 -0.038 0.116 0.117 0.151 0.034 

 1200 -0.044 0.034 0.036 0.249 0.046 

 2400 -0.038 0.017  0.018 0.390 0.062 
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Table 5. Summary statistics for estimated sampling distributions of br (n, Sg, DGP1, DIS), 
g=1...6, n=400,1200,2400.  Population coefficient value is 3.020 with a t-ratio of 31.176.  
 

Sampling 
Design 
 

n sâBi  râV  EŜM  rt  Rejection 

Frequency 

S1 400 -0.884 0.164  0.945 4.806 1.000 

 1200 -0.956 0.048  0.962 8.353  1.000 

 2400 -0.965 0.024  0.955 11.857 1.000  

S2 400 0.161 0.235  0.261 6.150 1.000    

 1200 0.047 0.068  0.070 10.758 1.000   

 2400 0.025 0.030  0.031 15.255 1.000   

S3 400 -0.406 0.190  0.355 5.609 1.000   

 1200 -0.489 0.054  0.293 9.775 1.000   

 2400 -0.503 0.026  0.279 13.871 1.000   

S4 400 0.350 0.241 0.364 6.533 1.000 

 1200 0.240 0.069 0.127 11.412 1.000 

 2400 0.215 0.034 0.080 16.180 1.000 

S5 400 -0.891 0.162 0.956 4.815 1.000 

 1200 -0.976 0.047 1.000 8.320 1.000 

 2400 -0.992 0.025 1.009 11.771 1.000 

S6 400 0.358 0.247 0.375 6.515 1.000 

 1200 0.250 0.073 0.136 11.388 1.000 

 2400 0.227 0.033  0.085 16.145 1.000 
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Table 6. Summary statistics for estimated sampling distributions of rβ̂ (n, Sg, DGP1, NDIS), 
g=1...6, n=400,1200,2400.  Population coefficient value is 0.100 with a t-ratio of 1.249. 
  

Sampling 
Design 
 

n sâBi  râV  EŜM  rt  Rejection 

Frequency 

S1 400 -0.049 0.106  0.108  0.135 0.036   

 1200 -0.047 0.030  0.032  0.253  0.048   

 2400 -0.042 0.016  0.018  0.400  0.075   

S2 400 0.011 0.113  0.113  0.285  0.047   

 1200 0.003 0.034  0.034  0.475  0.088   

 2400 0.009  0.016  0.016  0.723  0.133   

S3 400 -0.048  0.107  0.109 0.128  0.033   

 1200 -0.057  0.032  0.035  0.199  0.038   

 2400 -0.055  0.016  0.019  0.304  0.059   

S4 400 -0.041 0.118 0.120 0.136 0.026 

 1200 -0.043 0.035 0.037 0.238 0.033 

 2400 -0.039 0.017 0.019 0.370 0.050 

S5 400 -0.038 0.106 0.107 0.163 0.038 

 1200 -0.042 0.031 0.033 0.280 0.048 

 2400 -0.034 0.016 0.017 0.455 0.090 

S6 400 -0.046 0.116 0.118 0.125 0.024 

 1200 -0.051 0.034 0.037 0.204 0.032 

 2400 -0.046 0.017  0.019 0.327 0.046 
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Table 7. Summary statistics for estimated sampling distributions of rβ̂ (n, Sg, DGP1, DIS), 
g=1...6, n=400,1200,2400.  Population coefficient value is 3.020 with a t-ratio of 31.176.  
 

Sampling 
Design 
 

n sâBi  râV  EŜM  rt  Rejection 

Frequency 

S1 400 0.215 0.164  0.210 8.070 1.000 

 1200 0.143 0.048  0.068 14.059  1.000 

 2400 0.134 0.024  0.042 19.581 1.000  

S2 400 0.164 0.235  0.262 6.795 1.000    

 1200 0.050 0.068  0.071 11.852 1.000   

 2400 0.028 0.030  0.031 16.587 1.000   

S3 400 0.288 0.190  0.272  7.777 1.000   

 1200 0.205 0.054  0.096  13.551 1.000   

 2400 0.191 0.026  0.062  18.916 1.000   

S4 400 0.343 0.241 0.359 7.119 1.000 

 1200 0.233 0.069 0.123 12.396 1.000 

 2400 0.208 0.034 0.077 17.347 1.000 

S5 400 0.188 0.162 0.197 8.057 1.000 

 1200 0.116 0.047 0.060 14.032 1.000 

 2400 0.107 0.025 0.036 19.543 1.000 

S6 400 0.369 0.247 0.383 7.142 1.000 

 1200 0.261 0.073 0.141 12.432 1.000 

 2400 0.238 0.033  0.090 17.399 1.000 
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Table 8. Summary statistics for estimated sampling distributions of br (400, Sg, DGP2, NDIS), 
g=1...6.  Population coefficient value is –0.189 with a t-ratio of -1.212.  
 

Sampling 
Design 

n sâBi  râV  EŜM  rt  Rejection 

Frequency 

S1 400 -2.865 0.312  8.520  -4.984  0.000   

S2 400 -0.029 0.632  0.633  -0.198  0.011   

S3 400 -2.480 0.306  6.456 -4.336  0.000   

S4 400 -0.690 0.324 0.800 -1.360 0.001 

S5 400 -2.881 0.318 8.618 -5.064 0.000 

S6 400 -0.935 0.331 1.205 -1.771 0.001 

 
 
 

Table 9. Summary statistics for estimated sampling distributions of br (400, Sg, DGP2, DIS), 
g=1...6. Population coefficient value is 1.224 with a t-ratio of 7.758.  
 

Sampling 
Design 

n sâBi  râV  EŜM  rt  Rejection 

Frequency 

S1 400 -3.069 0.227  9.646  -3.283  0.000   

S2 400 0.151 0.965  0.988  1.514  0.468   

S3 400 -2.642 0.227  7.207 -2.492  0.000   

S4 400 0.337 0.337 0.487 2.309 0.798 

S5 400 -3.136 0.237 10.071 -3.429 0.000 

S6 400 0.386 0.390 0.539 2.333 0.808 
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Table 10. Summary statistics for estimated sampling distributions of rβ̂ (400, Sg, DGP2, NDIS), 
g=1...6.  Population coefficient value is –0.189 with a t-ratio of -1.212.  
 

Sampling 
Design 

n sâBi  râV  EŜM  rt  Rejection 

Frequency 

S1 400 0.046 0.312  0.314  -0.135  0.031 

S2 400 -0.115 0.632  0.645  -0.333  0.016   

S3 400 0.025 0.306  0.307 -0.177  0.024   

S4 400 -0.053 0.366 0.369 -0.364 0.017 

S5 400 0.030 0.318 0.319 -0.163 0.027 

S6 400 -0.067 0.390 0.394 -0.378 0.019 

 
 
 

Table 11. Summary statistics for estimated sampling distributions of rβ̂ (400, Sg, DGP2, DIS), 
g=1...6.  Population coefficient value is 1.224 with a t-ratio of 7.758.  
 

Sampling 
Design 

n sâBi  râV  EŜM  rt  Rejection 

Frequency 

S1 400 0.376 0.227  0.368  3.128  0.903   

S2 400 0.138 0.965   0.984 1.826  0.603   

S3 400 0.398 0.227  0.385 3.129  0.905   

S4 400 0.330 0.373 0.482 2.526 0.835 

S5 400 0.309 0.237 0.332 3.042 0.884 

S6 400 0.368 0.390 0.525 2.513 0.846 

 



 40 

Table 12. Summary statistics for estimated sampling distributions of br (n, Sg, DGP3, NDIS), 
g=1...6, n=400,1200,2400.  Population coefficient value is 0.084 with a t-ratio of 0.872.  
 

Sampling 
Design 
 

n sâBi  râV  EŜM  rt  Rejection 

Frequency 

S1 400 -1.051 0.136  1.241  -2.270 0.001   

 1200 -1.028 0.041  1.098  -3.964 0.000   

 2400 -1.028 0.021  1.078  -5.646 0.000   

S2 400 -0.127 0.214  0.230  -0.060 0.018   

 1200 -0.127 0.063  0.065  -0.137 0.018   

 2400 -0.123 0.029  0.044  -0.183 0.011   

S3 400 -0.621 0.124  0.510  -1.268 0.000   

 1200 -0.606 0.040  0.407  -2.208 0.000   

 2400 -0.604 0.019  0.384  -3.137 0.000   

S4 400 -0.135 0.173 0.191 -0.109 0.020 

 1200 -0.135 0.052 0.070 -0.193 0.017 

 2400 -0.138 0.026 0.045 -0.294 0.018 

S5 400 -1.052 0.133 1.240 -2.293 0.000 

 1200 -1.037 0.040 1.115 -4.029 0.000 

 2400 -1.036 0.020 1.093 -5.731 0.000 

S6 400 -0.110 0.179 0.191 -0.059 0.023 

 1200 -0.118 0.052 0.065 -0.130 0.018 

 2400 -0.125 0.027 0.043 -0.219 0.018 
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Table 13. Summary statistics for estimated sampling distributions of br (n, Sg, DGP3, DIS), 
g=1...6, n=400,1200,2400.  Population coefficient value is 1.440 with a t-ratio of 13.691.  
 

Sampling 
Design 
 

n sâBi  râV  EŜM  rt  Rejection 

Frequency 

S1 400 -1.366 0.146  2.012 0.160 0.050   

 1200 -1.383 0.045  1.958 0.230 0.057   

 2400 -1.385 0.021  1.939 0.324 0.066   

S2 400 0.108 0.273  0.285 2.716 0.913   

 1200 0.046 0.071  0.073 4.774 1.000   

 2400 0.041 0.035  0.037 6.815 1.000   

S3 400 -0.925 0.161  1.017 1.159 0.288   

 1200 -0.947 0.048  0.945 2.007 0.662   

 2400 -0.949 0.023  0.924 2.850 0.913   

S4 400 0.310 0.216 0.312 3.477 0.993 

 1200 0.233 0.068 0.122 6.037 1.000 

 2400 0.212 0.031 0.076 8.538 1.000 

S5 400 -1.416 0.143 2.148 0.045 0.037 

 1200 -1.427 0.044 2.080 0.051 0.034 

 2400 -1.432 0.021 2.072 0.044 0.036 

S6 400 0.355 0.239 0.365 3.499 0.993 

 1200 0.287 0.069 0.151 6.106 1.000 

 2400 0.273 0.033 0.108 8.663 1.000 
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Table 14. Summary statistics for estimated sampling distributions of rβ̂ (n, Sg, DGP3, NDIS), 
g=1...6, n=400,1200,2400.  Population coefficient value is 0.084 with a t-ratio of 0.872. 
 

Sampling 
Design 
 

n sâBi  râV  EŜM  rt  Rejection 

Frequency 

S1 400 -0.147 0.136  0.158  -0.123 0.029   

 1200 -0.124 0.041  0.056  -0.165 0.027   

 2400 -0.123 0.021  0.036  -0.249 0.023   

S2 400 -0.159 0.214  0.239  -0.135 0.034   

 1200 -0.141 0.063  0.083  -0.218 0.035   

 2400 -0.140 0.029  0.049  -0.319 0.019   

S3 400 -0.137 0.137  0.156  -0.113 0.030   

 1200 -0.133 0.043  0.061  -0.184 0.026   

 2400 -0.130 0.020  0.037  -0.281 0.019   

S4 400 -0.114 0.173 0.186 -0.112 0.035 

 1200 -0.130 0.052 0.069 -0.197 0.033 

 2400 -0.120 0.026 0.040 -0.293 0.023 

S5 400 –0.148 0.133 0.154 -0.127 0.036 

 1200 -0.133 0.040 0.058 -0.207 0.023 

 2400 -0.132 0.020 0.037 -0.296 0.020 

S6 400 -0.126 0.179 0.195 -0.082 0.035 

 1200 -0.124 0.052 0.067 -0.171 0.027 

 2400 -0.121 0.027 0.042 -0.273 0.023 

 
 
 
 
 
 
 
 
 
 
 
 
 



 43 

Table 15. Summary statistics for estimated sampling distributions of rβ̂ (n, Sg, DGP3, DIS), 
g=1...6, n=400,1200,2400.  Population coefficient value is 1.440 with a t-ratio of 13.691. 
  

Sampling 
Design 
 

n sâBi  râV  EŜM  rt  Rejection 

Frequency 

S1 400 0.211 0.146  0.191 4.385 0.995   

 1200 0.193 0.045  0.082 7.555 1.000   

 2400 0.191 0.021  0.057 10.352 1.000   

S2 400 0.086 0.273  0.280 3.156 0.940   

 1200 0.024 0.071  0.072 5.533 1.000   

 2400 0.019 0.035  0.035 7.722 1.000   

S3 400 0.245 0.161  0.221 4.322 0.995   

 1200 0.224 0.048  0.098 7.467 1.000   

 2400 0.221 0.023  0.072 10.251 1.000   

S4 400 0.311 0.216 0.313 3.879 0.997 

 1200 0.234 0.068 0.123 6.656 1.000 

 2400 0.213 0.031 0.076 9.165 1.000 

S5 400 0.160 0.143 0.169 4.330 0.994 

 1200 0.150 0.044 0.067 7.475 1.000 

 2400 0.144 0.021 0.042 10.217 1.000 

S6 400 0.344 0.239 0.357 3.866 0.994 

 1200 0.276 0.069 0.145 6.666 1.000 

 2400 0.262 0.033 0.102 9.217 1.000 
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Table 16. Asymptotic P-values for the OCC Banks A, B and C. 

Bank and Minority Group Using b Using β̂  

MA 0.102 0.125 Bank A 

MB 0.165 0.025 

MA 0.203 0.512 Bank B 

MB 0.002 <0.001 

Bank C M 0.257 0.009 

 


