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1. Introduction

In statistics and econometrics, the expression “preliminary-test estimation”, refers to a situation where the

choice of estimator for some  parameter (vector) is essentially randomized through the prior application of

an hypothesis test. The test need not relate to the parameters of interest - for example, it could relate to a set

of nuisance parameters. Neither is it necessary that the same set of data be used for the prior test as for the

primary estimation problem. This randomization of the choice of estimator complicates its sampling

properties significantly, as was first recognized by Bancroft (1944). Extensive surveys of the subsequent

literature on preliminary-test estimation are given by  Bancroft and Han (1977) and Giles and Giles (1993).

Preliminary-test estimators generally have quite adequate (if not optimal) large-sample properties. For

example, if the “component” estimators (between which a choice is made), and the prior test, are each

consistent, then the pre-test estimator will also be consistent. On the other hand, as pre-test estimators are

discontinuous functions of the data, it is well known (e.g., Cohen (1965)) that they are inadmissible under

conventional loss functions. This is because they are discontinuous functions of the data. Despite their

inadmissibility, and the fact that generally they are not mini-max either,  pre-test estimators are of

considerable practical interest for at least two reasons. First, they represent estimation strategies of precisely

the type that are frequently encountered in practice. Typically, in many areas of applied statistics, a model

will be estimated and then the model will be subjected to various specification tests. Subsequently, the model

in question may be simplified (or otherwise amended) and then re-estimated. Second, in all of the pre-test

problems that have been considered in the literature, pre-test estimators dominate each of their “component

estimators” over different parts of the parameter space, in terms of risk. Indeed, in some cases (e.g., Giles,

1991) they may even dominate their components simultaneously over the same part of the parameter space.

Although the sampling properties of various preliminary-test estimators have been studied by a range of

authors, little is known about their complete sampling distributions. The only exceptions appear to be the

results of Giles (1992), Giles and Srivastava (1993), Ohtani and Giles (1996b), and Wan (1997).  Generally

the finite-sample properties of pre-test estimators have been evaluated in terms of risk, and usually the latter

have been based on the assumption that the loss function is quadratic. Some exceptions (using absolute-error

loss, the asymmetric “LINEX” loss function, or “balanced” loss) include the contributions of Ohtani et al.

(1997), Giles et al. (1996), Ohtani and Giles (1996), Giles and Giles (1996), and Geng and Wan (2000),

among others. 
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Despite its tractability and historical interest, two obvious practical shortcomings of the quadratic loss

function are its unboundedness and its symmetry. Recently, Spiring (1993) has addressed the first of these

weaknesses (and to a lesser degree the second), by analyzing the “reflected Normal” loss function. He

motivates this loss with reference to problems in quality assurance (e.g., Taguchi 1986). The reflected

Normal loss function has the particular merit that it is bounded. It can readily be made asymmetric if this is

desired for practical reasons. An alternative loss structure is the “bounded LINEX” (or “BLINEX”) loss

discussed by Levy and Wen (1997a,b) and Wen and Levy (1999a,b). The BLINEX loss is both bounded and

asymmetric.

In this paper, we consider a simple preliminary-test estimation problem where the analyst’s loss structure is

“reflected Normal”. Specifically, we consider the estimation of the location parameter in a Normal sampling

problem, where a preliminary test is conducted for the validity of a simple restriction on this parameter. The

exact finite-sample risk of this pre-test estimator is derived under reflected Normal loss, and this risk is

compared with those of both the unrestricted, and restricted, Maximum Likelihood estimators. This appears

to be the first study of a pre-test estimator when the loss structure is bounded, and comparisons are drawn

between these results and those obtained under conventional (unbounded) quadratic loss. Our results extend

naturally to the case of estimating the coefficients in a Normal linear multiple regression model. Although

we consider only a symmetric loss function in this paper, the extension to the asymmetric case is also

straightforward.

In the next section we formulate the problem and the notation. Exact expressions for the risk functions are

derived  in section 3, and these are evaluated, illustrated and discussed in section 4. Some related Bayesian

analysis is provided in section 5; and section 6 offers some concluding remarks, and suggests some directions

for further research.

2. Formulation of the Problem

The problem that we consider here is cast in simple terms to facilitate the exposition. However, the reader

will recognize that it generalizes trivially to more interesting situations, such as the estimation of the

coefficient vector in a standard linear multiple regression model when potentially there are exact linear

restrictions on the coefficients. In that sense, our analysis here extends that of Judge and Bock (1978), and

others1, through the consideration of a different loss structure. We will be concerned with the estimation of
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the location parameter, µ, in a Normal population with unknown scale parameter. We have a simple random

sample of values:

xi ~  i.i.d.  N [ µ , )2 ]   ;     i = 1, 2, 3, ..........., n

and we will be concerned with a prior “t-test” of 

H0 : µ = µ0       vs.   HA :  µ g µ0 .

The choice of estimator for µ will depend on the outcome of this preliminary test. If H0 were false we would

use the unrestricted maximum likelihood estimator (UMLE),  µ1  =   . On the other hand,( / )x n xi
i

n

=
=
∑

1

if H0 were true we would  use the restricted maximum likelihood estimator (RMLE), which here is just µ0

itself. So, the preliminary-test estimator (PTE) of  µ in this situation is

 µp = [IR ( t ) × µ1 ] + [IA ( t ) × µ0],

where “t” is the usual t-statistic for testing H0, defined as

t = [ µ1  - µ0 ] / [ s
2 / n ]½

and

 .s x x ni
i

n
2

1

2 1= − −
=

∑[ ( ) ] / ( )

It will be more convenient to use F = t2 as the test statistic, recalling that F ~ F(1, n-1; �) where the non-

centrality parameter is � = n
2 /( 2)2 ), and  
 = ( µ - µ0 ). So, the PTE of µ may be written as

µp = [IR ( F ) × µ1 ] + [IA ( F ) × µ0] , (1)

where I6(.) is an indicator function taking the value unity if its argument is in the subscripted interval, and

zero otherwise. In our case, the rejection region is the set of values R = { F : F > c� } and the “acceptance
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(non-rejection) region for the “t-test” is A = { F : F � c� }, where c� is critical value for a chosen significance

level, �. It should be noted that 

IR ( F ) = [ 1 - IA ( F ) ] , (2)

[IR ( F ) × IA ( F )] = 0 , (3)

and

[I6 ( F )]p = I6 ( F ) ; 6 = {A, R};  p � 1. (4)

If we let � be a scalar parameter to be estimated, and let - be a statistic used as an estimator of �, then the

“reflected Normal” loss function is defined in the following way:

m( -, � ) = K {1 - exp [ - ( - - � )2  / (2�2)]} ,   (5)

where K is the  maximum loss; and  � is a pre-assigned shape parameter that controls the rate at which the

loss approaches its upper bound. For example, if we set � = (�/4), for some �, then m � (0.9997K) for all

values -  >  � ± �. The “reflected Normal” loss structure arise in the context of “M-estimation” (e.g., Huber,

1977), and in the context of robust estimation its influence function is known to have rather good properties.

Figure 1 compares the “reflected Normal” and conventional quadratic loss functions.

3. Derivation of the Risk Functions

The risk function of - as an estimator of  � is 8( - ) = E [ m( -, � ) ], where expectation is taken over the

sample space. Let us consider the risks of the RMLE, UMLE and PTE estimators of µ in turn. 

RMLE:

In our case the risk of the RMLE  is trivial, as µ0 is a constant, and is simply

 8( µ0 ) = K {1 - exp [ - 
 2  / ( 2�2 )]}. (6)
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UMLE:

 8( µ1 ) = K {1 - exp [ - ( µ - µ1) 
2  / ( 2�2 )]}p( µ1 ) dµ1 , (7)

−∞

∞

∫

where

p( µ1 ) = ( n / 2%)2  )½ exp [ - ( µ1  - µ ) 2  / ( 2)2 / n )]. (8)

Substituting (8) in (7), completing the square, and using the result that a Normal density integrates to unity,

we obtain:

8( µ1 ) = K {1 -   � / [()2 / n) +  �2 ]}. (9)

Before proceeding to the derivation of the risk function for the PTE of µ, some comments on the risks of

these “component estimators” are in order. First, as is the case with a quadratic loss function, 8( µ1 ) does

not depend on the (squared) “estimation error”, 
2, and hence is also constant with respect to �. Second, as

is also the case with a quadratic loss function for this problem,8( µ0 ) is an increasing function of 
2 (or �).

Under quadratic loss this risk increases linearly with  �, and so it is unbounded. Here, however, it increases

from zero at a decreasing rate, and limit [8( µ0 )] = K when 
2 � �. That is, the risk of the RMLE is

bounded. Finally,  equating 8( µ0 ) and 8( µ1 ), we see that the risk functions intersect at 


2  = -2 �2 ln { � / [()2  / n) +  �2 ]}.

These results are reflected in the figures in the next section.

PTE:

The derivation of the risk of the preliminary-test estimator of µ is somewhat more complex, and we will use

the following result from Clarke (1986, Appendix 1):

Lemma

Let w be a non-central chi-square variate with g degrees of freedom and non-centrality parameter �, let 1(·)

be any real-valued function, and let n be any real value such that n > ( - g/2 ). Then:
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E [w n 1(w) ] = 2 n ( e - � � m / m!) [ 
( ½ ( g + 2n + 2m )) / 
( ½ ( g +2m )) ] E[ 1(32 (g + 1 + 2m))].
m=

∞

∑
0

s

Now, to evaluate 8( µp ), we note that is can be written as

8( µp ) = K {1 - E(exp [ - ( µ - µp) 
2  / ( 2�2 )])}

= K {[E ( µp - µ)2r ] / [(-1) r (2 �2 ) r (r!)]}.
r =

∞

∑
1

From (1), we have: 

( µp - µ) = [IR ( F ) × µ1 ] + [IA ( F ) × µ0] - µ 

= IR ( F ) ( µ1 - µ) + 
 IA ( F ) ,

and so, using (2) to (4):

( µp - µ)2r = ( µ1 - µ)2r + [ 
2r - ( µ1 - µ)2r] IA ( F ) ;      r = 1, 2, 3, ......

Then,

8( µp ) = K {[E ( µ1 - µ)2r + E{ IA ( F ) [
2r - ( µ1 - µ)2r]}] / [(-1) r (2 �2 ) r (r!)]}. (10)
r =

∞

∑
1

Now, from the moments of the Normal distribution (e.g., Zellner, 1971, pp. 364-365),

E ( µ1 - µ)2r = [2r ()2 / n) r /(2%)] 
( r + ½ ) ;     r = 1, 2, 3, ....... (11)

Also,

E{ IA ( F ) [
2r - ( µ1 - µ)2r ]} = E{ I A ( F ) [
2r - 
j (µ1 - µ0 )
2r - j ( 2rCj )]}

j

r

=
∑

0

2
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=  E{ IA ( F ) [
2r - 
j ( n32 
(1; �) / )

2 ) r - j / 2 ( 2rCj )]}, (12)
j

r

=
∑

0

2

where 32 
(q; �) denotes a non-central chi-square variate with “q” degrees of freedom, and non-centrality

parameter, � (  = n
2 /( 2)2 )).

Recalling that F = [(n - 1)( 32 
(1; �)  / 3

2 
(n -1; 0) )], where the two chi-square variates are independent, we can re-

express (12) as:

E{ IA ( F ) [
2r - ( µ1 - µ)2r ]} = 
2r Pr.[ ( 32 
(1; �)  / 3

2 
(n -1; 0) ) < c*� ]

 - {  
j ( 2rCj )( n / )
2 ) r - j / 2 E [IA ( ( n - 1 )32 

(1; �)  / 3
2 

(n -1; 0) ) ( 3
2 

(1; �) 
 ) r - j / 2 ]} , (13)

j

r

=
∑

0

2

where c*� = [c� / ( n - 1 )]. 

The expectation in (13) can be evaluated by repeatedly using the result of Clarke (1986), stated in the above

Lemma, and the independence of the associated chi-square variates2:

E [IA ( ( n - 1 )32 
(1; �)  / 3

2 
(n -1; 0) ) ( 3

2 
(1; �) 

 ) r - j / 2 ]

 = 2 r - j / 2 ( e -��i / i!) [ 
( ½ ( 1 + 2r - j + 2i )) / 
( ½ ( 1 +2i )) ] 
i =

∞

∑
0

× Pr.[ (32 
(1+ 2r - j + 2i ; �) / 3

2 
(n - 1) ) < c*�]. (14)

Finally, using the results in (11) - (14) we can write the risk of the pre-test estimator, (10), as:
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8( µp ) = K [1 / {(-1) r (2 �2 ) r (r!)}] { [2r ()2 / n) r /(2%)] 
( r + ½ ) 
r =

∞

∑
1

+ 
2r Pr.[ ( 32 
(1; �)  / 3

2 
(n -1; 0) ) < c*� ] - { 
j ( 2rCj )( n / )

2 ) r - j / 2 2 r - j / 2

j

r

=
∑

0

2

           × ( e -��i / i!) [ 
( ½ ( 1 + 2r - j + 2i )) / 
( ½ ( 1 +2i )) ] Pr.[ (32 
(1+ 2r - j + 2i ; �) / 3

2 
(n - 1) ) < c*�]} }

i =

∞

∑
0

(15)

4. Some Illustrative Evaluations

The risk functions for our various estimators under a conventional quadratic loss function are well known3,

and for the comparative purposes they are illustrated in Figure 2. The risk functions for the restricted and

unrestricted maximum likelihood estimators under “reflected Normal” loss, as in (6) and (9), are easily

evaluated for particular choices of the parameters and sample size, and these are illustrated in Figure 3. In

particular, we see there that 8( µ0 ) is bounded above by K.  The evaluation of the risk of the preliminary-test

estimator is rather more tedious, but it can readily be verified by simulation. Some examples of this appear

in Figures 4 to 6. There, the range of values for 
2 is such that the boundedness of 8( µ0 ) is not visually

apparent.

In particular, Figure 4 compares  8( µp ) with 8( µ0 ) and 8( µ1 ) for a small sample size (n = 10), and

illustrative parameter values. The general similarity between these results, and their counterparts under

quadratic loss (as in Figure 2), is striking. In particular, there is a region of the parameter space where µp is

least preferred among the three estimators under consideration. Similarly, there are regions where each of

µ0 and µ1 are least preferred. There are regions where either µ0 or µ1 are most preferred among the three

estimators, but there is no region of the parameter space where the pre-test estimator is preferred over both

µ0 and µ1 simultaneously. The effect of increasing the sample size from n = 10 to n = 100 can be seen by

comparing Figures 4 and 5. In each of these figures the convergence of 8( µp ) to 8( µ0 ), as 
2 � �, is as

expected. The preliminary test has a power function that approaches unity in this case, so in the limit the PTE

and the UMLE of  µ coincide.
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Figure 6 depicts the effects of increasing the significance level for the preliminary test from 5% to 10%. A

larger significance level implies that greater weight is given to the UMLE when 
2 (when H0 is true). An

increase in the size of the test also increases the power, so µp also gives greater weight to µ1 when  
2 >0. It

is clear that in principle it should be possible bound the region in which 8( µp ) and 8( µ0 ) intersect, as is

done in the quadratic loss case by Judge and Bock (1978, p.73). However, the extremely complex nature of

the expression for the former risk function (in (15)) makes this rather impractical from an analytical

standpoint.

5. Bayesian Estimation

In this section we briefly consider the Bayes estimator of µ under reflected normal loss, as this estimator has

the desirable attribute of being admissible, if the prior p.d.f. is “proper”. We will take the Bayes estimator,

-B, of a parameter � to be the “minimum (posterior) expected loss” (MELO) estimator. That is, -B minimizes

EL = m( -B, � ) p( � | x ) d� , (16)
−∞

∞

∫

where p( � | x ) is the posterior p.d.f. for �, given x = (x1, ........, xn). If p( � ) is the prior p.d.f. for  �, it is well

known4 that the -B that minimizes (15) will also minimize the Bayes risk,

Er ( � ) =   p( � ) m( -B, � ) p( x | � ) dx d� , (17)
−∞

∞

∫
−∞

∞

∫

as long as the Bayes risk is finite. As is also well known, if m( -B, � ) is quadratic, then -B is the mean of 

p( � | x ).

However, when m( -, � ) is reflected normal, there is no simple closed-form expression for the -B that

minimizes (15), for an arbitrary posterior p.d.f.. Of course, more progress can be made for specific posterior

cases. Let us consider some particular choices of prior (and hence posterior) p.d.f. for µ in our problem.,

assuming that )2 is known. The case of unknown )2 does not lend itself to a simple analysis, and is not

considered further below.
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Case (i): Known Variance, Conjugate Prior

Recalling the normality of our data, the natural-conjugate prior for µ is N[ , ] and the posterior for µ′µ ′σ

is N[ , ]. It is well known5 that ′′µ ′′σ

= (18)′′µ [ ( / )] / [ ( / )]µ σ µ σ σ σ1
2 2 2 2′ + ′ ′ +n n

and 

. (19)′′ = ′ ′ +σ σ σ σ σ2 2 2 2 2[ / ] / [ ( / )]n n

So, under quadratic loss, the Bayes estimator of µ is µB = . The Bayes estimator under the reflected′′µ

normal loss is the µB that minimizes

EL = m(µB, µ ) p( µ | x ) dµ , (20)
−∞

∞

∫

where

m( µB, µ ) = K {1 - exp [ - ( µB - µ )2  / (2�2)]} , (21)

and

p( µ | x ) = ;          - � < µ < � (22)( )′′ − − ′′ ′′
−

σ π µ µ σ2 2
1 2 2exp[ ( ) / ( )]

Substituting (21) and (22) in (20); setting the derivative of EL with respect to µB equal to zero;  completing

the square on µ; and solving for µB, it emerges after a little manipulation that µB = . So, for this case the′′µ

Bayes estimator of µ is the same under either quadratic or reflected normal loss functions.
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Case (ii): Known Variance, Diffuse Prior

In this case the (improper) prior p.d.f. for µ is

 p( µ ) � constant ;         - � < µ < �

and the corresponding posterior p.d.f. is well known6 to be 

p( µ | x ) = . (23)( )n nσ π µ µ σ2 2
1

1
2 2−

− −exp [ ( ) / ( ) ]

That is, the posterior is N[µ1 , )
2 / n ], and so the Bayes estimator of  µ under quadratic loss is µB = µ1. The

corresponding estimator under reflected normal loss is obtained by substituting (23) and (22) in (20); setting

the derivative of EL with respect to µB equal to zero;  completing the square on µ; and solving for µB. It

transpires after some manipulation that µB = µ1, so for this case as well the Bayes estimator of µ is the same

under either quadratic or reflected normal loss functions.

6. Concluding Remarks

Preliminary-test estimation is commonplace, but often little attention is paid to the implications that such

prior testing has for the sampling properties of estimators. When these implications have been studied,

generally the analysis has been in terms of the risk function of the pre-test estimator and its “component”

estimators. The majority of this risk analysis has been based on very restrictive loss functions, such as

quadratic loss. One aspect of such loss structures is that they are symmetric with respect to the “direction”

of the estimation error, and this may be unrealistic in practice. This condition has been relaxed by several

authors, as is discussed in Section 1. Another feature of conventional loss functions (and the asymmetric ones

that have been considered in a pre-test context) is that they are unbounded as the estimation error grows. This

may also be unrealistic in practice. The (bounded)  “reflected normal” loss function is considered in this

paper, in the context of estimating a Normal mean after a pre-test of a simple restriction. With this loss

structure the risk of the restricted maximum likelihood “estimator” is also bounded, in contrast to the

situation under quadratic loss. In other respects, however, the qualitative risk properties of the pre-test

estimator under reflected normal loss are the same as under quadratic loss. Interestingly, the Bayes estimator

of the mean is the same under both loss structures, with either a conjugate or diffuse prior, at least in the case

where the precision of the process is known.



13

Figure 1: Reflected Normal & Quadratic Loss Functions
(n = 10; sigma = 1; K = 5; gamma = 1)
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Figure 2: Risks Under Quadratic Loss
(n=10; sigma = 1; K = 1; gamma = 1) 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Delta-squared

R
is

k

UMLE

RMLE

PTE (5%)

 



14

Figure 3: Risk Under Reflected Normal Loss
(n = 10; sigma = 1; K = 1; gamma = 1)
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Figure 4: Risks Under Reflected Normal Loss
(n = 10; sigma = 1; K = 1; gamma = 1)
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Figure 5: Risks Under Reflected Normal Loss
(n = 100; sigma = 1; K = 1; gamma = 1)
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Figure 6: Risks Under Reflected Normal Loss
(n = 10; sigma = 1; K = 1; gamma = 1)
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Footnotes

* An earlier version of this paper was presented at the University of Victoria Econometrics Colloquium,

and benefitted accordingly. I am especially grateful to Judith Giles for sharing her wealth of knowledge

regarding the properties of preliminary-test strategies.

1. See Giles and Giles (1993) for detailed references.

2. Further details of the proof of this result are available from the author on request.

3. For example, see Chapter 3 of Judge and Bock (1978), and Giles and Giles (1993).

4. For instance, see Zellner (1971, pp. 24-26).

5. See Raiffa and Schlaifer (1961, p. 55) and Zellner (1971, pp. 14-15).

6. For example, see Zellner (1971, p. 20).


