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Abstract 
 
 

 This paper continues the investigation of Giles and Williams (2000) on export-led growth 
(ELG).  In the first part, we surveyed the empirical export-led growth literature; it was evident that 
Granger noncausality tests are commonly applied as a test for ELG. In this paper, we explore the 
sensitivity of the test for exclusions restrictions often used as the Granger noncauality test for ELG by 
reconsidering two applications: Oxley’s (1993) study for Portugal and Henriques and Sadorsky’s 
(1996) analysis for Canada.  We focus on robustness to the method adopted to deal with 
nonstationarity, including the choice of deterministic trend degree. We show that different 
noncausality outcomes are easy to obtain, and consequently we recommend that readers interpret the 
empirical ELG literature with care.  Our analysis also highlights the importance of examining the 
robustness of Granger noncauality test results to avoid spurious outcomes in applications. 
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1. Introduction 
 

Since 1985 (Gupta, 1985; Jung and Marshall, 1985) there has been considerable interest in 

testing for export-led growth (ELG) using the notion of Granger causality.  The survey we provide in 

Giles and Williams (2000), hereafter denoted as GW, details over seventy such time series studies. 

While the usefulness of this concept to test the ELG hypothesis has been questioned, and the 

sensitivity of the causal outcome to certain characteristics of the modelling exercise (e.g., lag order, 

estimation period, information set) has been considered, there does not appear to have been an 

explicit examination of the sensitivity of the ELG causal outcome to the method adopted to deal with 

nonstationarity issues, including the choice of the deterministic trend degree. This is our aim. 

There are various methods of examining for ELG using the Granger noncausality (GNC) 

concept; we detail several of these in GW.  In this paper we limit attention to the common approach 

of formulating the GNC null hypothesis as a test of exact linear restrictions on the coefficients of a 

finite-order dynamic model, which may be a vector autoregressive (VAR) model in the levels data 

(hereafter denoted by VARL), a VAR model in the first-differenced data (hereafter denoted by 

VARD), or a vector error correction model (hereafter denoted by VECM).  Other methods of 

detecting ELG include innovation accounting (e.g., forecast error variance decompositions and 

impulse response functions), Sims (1972, 1980) noncausality test, and an approach suggested by 

Geweke (1984).  A consideration of these other techniques is beyond the scope of this paper, though 

our expectation is that they too would be similarly nonrobust.  Our choice is based on the fact that 

over eight-five percent of the GNC export-led growth studies surveyed by GW use the hypothesis test 

we examine. 

We examine robustness of GNC test outcomes to changes in the deterministic trend degree in 

the models and to the method used to handle nonstationarity concerns by reconsidering the data used 

by two export-led growth applications:  Oxley’s (1993) Portugal study and Henriques and Sadorsky’s 

(1996) application for Canada.  That we draw upon these should not be interpreted to imply our 

criticism of this work; on the contrary, both studies were quite rigorous in their investigations.  They 

were chosen merely because the authors obligingly provided us with their data.  It is our belief that 

the features we observe would result with any of the data sets in the literature.   We carry out our 

analysis using two data sets so that we can assess whether the results are unduly sensitive to our 
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choices.  We consider Wald and likelihood ratio (LR) test statistics, as well as the F-variant of the 

Wald statistic adjusted for finite sample degrees of freedom; none of the studies in GW use a 

Lagrange Multiplier test statistic and as our aim is to replicate applied practice, we do not undertake 

testing with this statistic.  We show that the GNC outcomes are sensitive to variations in the 

deterministic trend degree and to the nonstationarity method adopted. 

The plan of this paper is as follows.  In section 2 we provide the setup and information on 

testing for GNC.  We also detail some potential concerns in section 2.  Section 3 provides brief details 

about prior ELG studies for Canada and Portugal.  This section also outlines the scope of our 

sensitivity study for these two countries and presents the results of our analysis.  Section 4 concludes. 

 

2. Testing for GNC 

 

2.1. Background 

The ELG causality studies base their notion of causality on that proposed by Granger (1963, 

1969), which builds on earlier research by Weiner (1956).  The premise is that causality is 

synonymous with predictability.    The approach is atheoretical in the sense that no attempt is made to 

incorporate economic theory to impose any a priori restrictions upon the relationships between the 

variables of interest to the researcher.  We say that y Granger-causes  x if relevant past information 

allows us to predict x better than when past information except y is used.  

More formally, let Ωt be the information set containing relevant information available up to 

and including the time period t; let xt(1|Ωt) be the optimal (minimum mean squared error (MSE)) 1-

step predictor of xt at time t, based on the information in Ωt; let Mx(1|Ωt) denote the resulting 1-step 

forecast MSE. Then, yt is said to Granger-cause xt one-period ahead if, in the matrix sense, Mx(1|Ωt) < 

Mx(1|Ωt excluding{yt|s≤t}), where Ωt excluding {yt|s≤t} is the set containing the relevant information 

except that pertaining to the past and present of yt. We denote GNC from yt to xt as yt→/  xt.   

Given our task at hand, we limit attention to testing for GNC within a finite-order vector 

autoregressive model of order p in the levels of the variables, denoted as a VARL(p) model: 

   

  Zt = it

p

1i
i Z −

=
∑Π + ut      (1) 
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for a K×1 time series Zt {Zt: t=1,2,…,T} containing z1,t through zK,t, where ut is a (K×1) vector white 

noise series and Πi are K×K parameter matrices.  The system (1) is initialized at t=-p+1, …, 0 and the 

initial values can be any random vectors including constants.  As our study will involve cointegration 

analysis, we write (1) as a vector error correction model of order (p-1); we denote this representation 

as a VECM(p-1): 

 

  ∆Zt = ΠZt-1 + it

1p

1i
i Z −

−

=

∆Γ∑ + ut     (2) 

 

where ∆ is the first-difference operator (∆Zt=Zt-Zt-1), Π = - 







Π− ∑

=

p

1i
iKI  and 








Π−=Γ ∑

+=

p

1ij
ji for 

i=1,2,…,p-1. We assume that all the roots of 0wI
p

1i

i
iK =Π− ∑

=

 lie outside the complex unit circle 

except for possibly some unit roots.  The matrix Π contains information on cointegrating relations 

between the K elements of Zt. When 0<r<K, there are r stationary relationships between the K 

variables; see Engle and Granger (1987) and Johansen (1995).  Then, Π can be decomposed as 

Π=αβT, where α and β are K×r matrices of rank r, with the matrix β giving the r linear combinations 

βTZt that are stationary, and the matrix α contains the error correction or adjustment vectors that 

measure the response of the process Zt to the disequilibirum error. When r=0 we have Π=0, there is 

noncointegration and (2) collapses to a VAR in first-differences, denoted by VARD(p-1).  Finally, 

when r=K, the variables in Zt are stationary.  Given the nature of the data involved in our study, our 

focus is on 0≤r<K.   

 The statistic we use to test for GNC depends on the value of r, and is obtained from one of 

four models: a VARL, an augmented VARL model, a VECM, or a VARD model; the augmented 

VARL is considered below.  In each of these models, we need to specify the lag length p prior to 

calculating the GNC statistic; the selection of p is considered in sub-section 2.2.  Irrespective of the 

model adopted, the GNC hypothesis can be written as follows.  Let θ be an m×1 vector of parameters 

and let R be a known nonstochastic q×m matrix with rank q.  To test H0: Rθ=0, a Wald statistic is 



 
 

5

    W=T θθθ − ˆR}R]ˆ[V̂R{Rˆ 1TTT      (3) 

where θ̂  is a consistent estimator of θ, and ]ˆ[V̂ θ is a consistent estimator of the asymptotic variance-

covariance matrix of T ( θ−θ̂ ).  We assume θ̂  is the unconstrained least squares (LS) and 

maximum likelihood estimator (MLE) of θ.  Given appropriate conditions, W is asymptotically 

distributed as a χ2(q) variate under H0.  A LR statistic to test H0 is 

 

   LR=2(l( θ̂ )-l( θ ))      (4) 

 

where l(θ) is the log-likelihood function satisfying certain regularity conditions, and θ is the 

constrained MLE of θ.   This statistic, given appropriate conditions, is also asymptotically distributed 

as a χ2(q) variate under H0.  It is well recognized that the asymptotic critical values may be inaccurate 

in finite samples, which leads some researchers to examine an F-type statistic to test H0, assuming an 

F(q, df) approximate null distribution: 

 

   F=W/q        (5) 

where df is the appropriate denominator degrees of freedom. 

Let  Zt= ( )TT
t3

T
t2

T
t1 Z,Z,Z where Zst is a Ks×1 vector for s=1,2,3 with K=∑

=

3

1s
sK .  Also, with Πi 

conformably partitioned, let Πi,13 be the K1×K3 top-right partition of Πi.  Suppose we wish to test for 

GNC from Z3t to Z1t.  Then, in the VARL(p) model, given by (1), the null hypothesis of GNC is H L
0 : 

P13=0 where P13=[Π1,13, Π2,13,..., Πp,13].  This null hypothesis can be written in the form Rθ=0, so the 

Wald statistic from (1), denoted WL, is then given by (3) where θ̂ is the estimator of θ=vec[Π1, 

Π2,...,Πp] and R is a selector matrix such that Rθ=vec[P13].  Correspondingly, we respectively denote 

the LR statistic and F statistic for examining H L
0 as LRL and FL.  The statistic WL is asymptotically 

distributed as a χ2(K1K3p) variate under H L
0 when each series is either stationary or nonstationary with 

“sufficient” cointegration concerning the variables whose causal effects are under examination: Sims 

et al. (1990) and Toda and Phillips (1993, 1994).  The condition for “sufficient” cointegration is 

difficult to test for and tends to be ignored in practical applications.  When the data are nonstationary 
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and noncointegrated, the statistic WL has a nonstandard, but free of nuisance parameters, limiting 

distribution for a non-intercept or an intercept/time trend VARL model, and a nonstandard 

asymptotic null distribution involving nuisance parameters results for an intercept/ no time trend 

model.  The statistic WL has a nonstandard limiting distribution that may depend on nuisance 

parameters when the relevant nonstationary series are “insufficiently” cointegrated. 

Within the framework of the error correction model (2), with Γj conformably partitioned with 

∆Zt, let Γj,13 be the K1×K3 top-right partition of Γj, j=1,..p-1.  Then, the null hypothesis of GNC 

(between Z3t and Z1t) is H EC
0 : G13=0 and α1β T

3 =0 where G13=[Γ1,13, Γ2,13,..., Γp-1,13], α1 contains the 

first K1 rows of α, and β T
3  contains the last K3 columns of βT.  We estimate system (2) by maximum 

likelihood as outlined in Johansen (1988) using the normalization suggested by Johansen (1988: 235). 

The Wald statistic from (2) with Π=αβT, denoted WEC, is then given by (3) where θ̂ is the 

unconstrained estimator of θ=vec[Γ1, Γ2, ...,Γp-1, αβT] and R is a selector matrix such that 

Rθ=vec[G13, α1β T
3 ].  The sample value can be obtained using the transformations given in (for 

instance) Lhtkepohl (1993).  We likewise denote the LR statistic and F statistic of H EC
0 from (2) as 

LREC and FEC.  

The statistic WEC is an asymptotic χ2(K1K3p) variate under H EC
0 when rank(α1)=K1 or 

rank(β3)=K3, with this null limiting distribution being maintained, provided that the definitions of the 

statistics are altered appropriately, whether or not the model has a constant term, or Zt has a 

deterministic trend, and whether we take account of this when estimating the model.  Nuisance 

parameters and nonstandard distributions result for the asymptotic null distribution when the rank 

conditions fail.  Applied researchers rarely examine for the validity of these rank conditions, which 

implies that the GNC hypothesis may be examined using incorrect asymptotic distributions; Toda and 

Phillips (1994) provide some test suggestions. 

When the variables in Zt are integrated series of order one, but not cointegrated, we can 

examine the GNC hypothesis (between Z3t and Z1t) using the VARD(p-1) model, given by 

∆Zt = it

1p

1i
i Z −

−

=

∆Γ∑ + ut      (6) 

In this first-differences model, the GNC null hypothesis is H D
0 : G13=0 where G13 is as above so the 
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Wald statistic from (6), denoted WD, is then given by (3) where θ̂ is the unconstrained estimator of 

θ=vec[Γ1, Γ2, ...,Γp-1] and R is a selector matrix such that Rθ=vec[G13].  Corresponding LR and F 

statistics can also be obtained, denoted as LRD and FD respectively. The results of Toda and Phillips 

(1994, Proposition 1) ensure that WD is asymptotically distributed as a χ2(K1K2(p-1)) variate under 

H D
0 .  The reader should note that as the degrees of freedom of this test is different from that of the 

previous GNC tests we need to take care when interpreting the results. 

 The use of the VARL, VECM, or VARD models to test for GNC presupposes knowledge of 

the nonstationarity characteristics of the data.  Toda and Yamamoto (1995) and Dolado and 

Lhtkepohl (1996) (hereafter denoted as TYDL) propose one method that does not require such 

information; we call this the augmented lags approach.  Consider the augmented VARL model 

 

Zt = it

p

1i
i Z −

=
∑Π + ipt

d

1i
ip Z −−

=
+∑Π + ut     (7) 

 

where d is the highest order of integration for any element of Zt and note that the elements of 

Πp+1,...,Πp+d are zero under our assumptions.  In this augmented levels model, the null hypothesis of 

GNC (between Z3t and Z1t) is H AL
0 : P13=0 where P13 is as above so that H L

0 and H AL
0 test the same set 

of restrictions in the VARL and augmented VARL models, respectively.  The Wald statistic from (7), 

denoted WAL, is then given by (3) where θ̂ is the unconstrained estimator of θ=vec[Π1, Π2,...,Πp+d] 

and R is a selector matrix such that Rθ=vec[P13].  Correspondingly, we respectively denote the LR 

statistic and F statistic for examining H AL
0  as LRAL and FAL.  The statistic WAL is shown by TYDL to 

be asymptotically distributed as a χ2(K1K3p) variate under H AL
0 , irrespective of the integration or 

cointegration properties of Zt; the inclusion of the augmentation terms removes the covariance matrix 

singularity problem that can arise with nonstationarity.  This approach is practically appealing, though 

not costless, as there are power and efficiency losses arising from the inclusion of redundant 

regressors in the model. 

 There are other methods available within the VAR framework to examine for GNC allowing 

for nonstationarity; e.g., the fully modified VAR (FM-VAR) procedures (e.g., Phillips, 1995 and 
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Quintos, 1998).  We do not examine these other approaches here, as they were not used by the 

applied ELG studies outlined in GW.  Further, note that the model in (1) or (2) assumes that the K 

time series do not have deterministic trends, and that the cointegrating relations βTZt have zero 

equilibrium values. This may not be realistic with economic data; we return to this issue in the next 

sub-section. 

 

2.2 Potential issues when testing for GNC  

 

Even within the relatively straightforward framework we examine, there are several sources of 

difficulties that may lead to nonrobustness of the GNC outcome.  We briefly outline four issues 

below.   

 

Definition of the information set:  The definition of relevant information is problematic. This relates to 

both the issue of which variables to include, the level of temporal aggregation of the data, and 

estimation time period.  The finding of GNC in an annual system need not imply GNC with higher 

frequency data.  Likewise, employing seasonally adjusted variables may not produce the same causal 

outcome as using seasonally unadjusted variables.   

 

Lag-order selection: Typically, the VAR lag order is unknown; researchers usually either arbitrarily 

assign a lag-order or they employ a databased method to estimate p.  The choice of the lag length is 

important to avoid spurious causality (or spurious absence of causality).  GW’s survey suggests that 

common approaches include presetting the lag order and choosing p using a model selection criterion. 

 The impact of always under-specifying or over-specifying the lag order on the size and power of the 

Wald statistic for GNC is evaluated with Monte Carlo experiments by Toda and Phillips (1994), 

Dolado and Lütkepohl (1996), and Zapata and Rambaldi (1997), while Giles and Mirza (1999) allow 

for the lag order to be selected by sequential testing methods and two information criterion: 

Schwarz’s (1978) criterion (SC) and Akaike’s (1969) Final Prediction Error (FPE) criterion.  The 

findings of Giles and Mirza indicate some preference for the SC in lower dimensional systems, and the 

FPE in larger systems.  Typically, the size distortions for the GNC Wald statistics when using 

databased lag order selection methods are not as serious as those found when p is always under- or 
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over- specified, and over-specifying seems preferable to under-specifying.  

 

Non-stationarity:  We outlined in sub-section 2.1 the models and test statistics researchers commonly 

use to examine for GNC when there are nonstationarity concerns.  When the data are stationary it is 

preferable to test H L
0 from the VARL(p) model (1) using WL, LRL or FL.  This approach is also 

applicable when Zt is integrated (we assume at most I(1) data) and there is “sufficient” cointegration, 

though in this latter case, assuming knowledge of r, we could alternatively test H EC
0  from the 

VECM(p-1) using WEC, LREC or FEC.  When Zt is nonstationary and noncointegrated, one approach is 

to examine for GNC via the VARD(p-1) model, testing H D
0 using WD, LRD or FD.  Alternatively, we 

could ignore the cointegration issue, assume a value for the integration order of Z, and undertake the 

GNC test via H AL
0  using WAL, LRAL or FAL. 

A key ingredient to several of these approaches is knowledge of the cointegrating rank, r.  

This is rarely known a priori, which has led to a common practice of using prior cointegration tests to 

estimate r, so that (hopefully) appropriate conditions are met for valid χ2 GNC inference, at least 

asymptotically. The particular pretest (PT) strategy differs with the choice of cointegration test; we 

schematically outline three such PT strategies in Figure 1.  We consider the Engle-Granger 

Augmented Dickey-Fuller (EG-ADF) noncointegration test (Engle and Granger, 1987); the 

commonly called Johansen maximum likelihood test for the cointegrating rank, r, denoted by JJ 

(Johansen, 1988 and Ahn and Reinsel, 1990); and the McCabe et al. (1997) test for cointegration, 

denoted as MLS.  The EG-ADF and JJ tests dominate applied practice, but given classical 

significance levels, we only reject in favour of cointegration for extreme samples.  As our primary 

interest is usually with cointegration, rather than noncointegration, it may be preferable to have this 

outcome as the null hypothesis as is the case with the MLS test.  Given space constraints, we do not 

outline the cointegration tests here; Giles and Mirza (1999) provide details for instance. 

The first step of the sequential JJ PT procedure, based on the JJ cointegrating rank test, is to 

estimate the lag order from the VARL model, denoted p̂ .  The cointegrating rank is then estimated, 

denoted as r̂ , within the K-dimensional VARL( p̂ ) model.  There are two common statistics for 

testing for the value of r: the maximal eigenvalue statistic, denoted λmax, and the trace statistic.   

Although the limiting null distributions of the test statistics do not depend on the lag length, the 
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choice of p may result in the use of a misspecified model, and so the value used for p will affect finite 

sample inference on r.  The final step in the JJ PT strategy, having determined p̂ and r̂ , is to test for 

GNC using one of WD, LRD or FD when r̂ =0, or to use WEC , LREC or FEC when 0< r̂ <K, or, when 

r̂ =K, to examine for GNC using WL, LRL or FL.  

The EG-ADF PT procedure, assuming Zt~I(1), begins with determination of the augmentation 

parameter, denoted v, which is needed to undertake the ADF test on the cointegrating regression 

residuals.  There are many suggestions for assigning a value to v:  Hall (1994) and Ng and Perron 

(1995), among others.  The null hypothesis of noncointegration is then tested, from which we use 

either a VARD model when the outcome is noncointegration, or a VECM when cointegration is 

supported, with the residuals from the cointegrating regression forming the error correction term.  

The lag order is then estimated, denoted p~ , with the final task being to test for GNC, either using 

WD, LRD or FD when the model is a VARD( p~ -1), or using WEC, LREC or FEC for the VECM( p~ -1). 

The MLS PT strategy is identical to that just outlined for the EG-ADF PT method, except for 

the first stage, which involves estimating an appropriately specified autoregressive integrated moving 

average model to account for correlation patterns; specific details can be found in Giles and Mirza 

(1999).  The estimator ŝ  is the autoregressive order for this auxiliary regression.  The MLS statistic is 

then used to test for cointegration, from which we model the nonstationary data as either a VARD or 

a VECM, and proceed as for the EG-ADF PT approach. 

The PT approach of testing for GNC dominates the applied ELG literature examined by GW; 

of the seventy four studies that employ some form of VAR model to explore for GNC between 

exports and economic growth, 10% adopt a VARL model; 30% use a VARD model without pretests 

for unit roots; 3% (two studies) apply some other filter to transform the data to stationarity; 54% use 

the PT approach (though no study examines for “sufficient” cointegration); while only four studies 

apply the TYDL augmented lags method.  Those analyses that employ VARL models in the raw data 

may well suffer from spurious regression problems, as the series under study are typically believed to 

be nonstationary, which may result in invalid GNC testing.  In a similar way, the VARD models are 

misspecified when there is indeed cointegration, as this model then omits the error correction term(s).  

These preliminary test methods can also suffer problems; in particular, the method depends 

crucially on the ability of the prior tests to accurately determine the cointegrating rank.  However, it is 
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well known that typically applied nonstationarity tests suffer from size distortion and often have low 

power, which suggests that an appropriate model may often not be used for the GNC test.  Giles and 

Mirza’s (1999) Monte Carlo study, on the properties of GNC procedures, indicates that this 

pretesting route is often unsatisfactory.  In many common types of situations the PT strategy leads to 

severe over-rejection of a noncausal null; i.e., pretesting for nonstationarity before the GNC test can 

often lead to wrong conclusions of causality.  Their results also demonstrate that the method used to 

pretest for nonstationarity is crucial.  In contrast, the simulations undertaken by Giles and Mirza 

(1999) suggest that the augmented lags approach of TYDL performs well across a wide range of data 

generating processes, including those that are mixed stationary-integrated or near-integrated systems. 

  

Deterministic trends: This is an important question that is ignored by virtually all of the studies 

examined by GW2.  What deterministic trends should be included? How should they be included? 

Does it matter in terms of GNC conclusions?  Limiting our attention to at most linear deterministic 

components, there are several possible extensions to (1) and (2): e.g., Johansen (1995), Franses 

(1999) and Pesaran et al. (2000).  A natural extension of the VARL(p) model (1) is: 

 

 (Zt-µ-δt) = ))it(Z( it

p

1i
i −δ−µ−Π −

=
∑ + ut    (8) 

where µ and δ are K-vectors of unknown coefficients.  We can write (8) equivalently as 

  

  Zt = µ* + δ*t + it

p

1i
i Z −

=
∑Π + ut      (9) 

where µ*=(-Πµ+Π*δ), δ*=-Πδ, Π*=∑
=

Π
p

1j
jj , and Π is as defined previously; i.e., Π=- 








Π−∑

=

p

1i
iKI .  

We can also write (8) (and (9)) as a VECM(p-1) 

                                                
2
 The exception is Marin (1992: 685) who tries four different specifications for each country - with and without an 

error correction (EC) term and, with and without a linear trend term.  He concludes “...the specification matters for the causality test 
results.  The inclusion of the error-correction terms and/or the time trend have changed the p-values and the F-statistics considerably in 
most cases, although the basic results do not depend on the specification.” 
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  ∆Zt = Π*δ + Π(Zt-1-µ-δt) + it

1p

1i
i Z −

−

=

∆Γ∑  + ut    (10) 

which, when rank(Π)=r so that Π=αββT, can be written as 

 

  ∆Zt = Π*δ + α(βTZt-1-µ0-δ0t) + it

1p

1i
i Z −

−

=

∆Γ∑  + ut   (11) 

where µ0 = βTµ and δ0 = βTδ.  The vector (µ0+δ0t) can be regarded as the attractor for the stationary 

relationships βTZt-1. 

 These models suggest that there are three practical cases to examine in practice.  The first 

case, denoted as Case I, results when µ=δ=0, so that we consider models (1) and (2), which contain 

no deterministic components.  This case corresponds to Case 0 in Osterwald-Lenum (1992), model 

H2(r) in Johansen (1995), and Case I in Pesaran et al. (2000) and MacKinnon et al. (1999).  The 

second case of interest, denoted as Case II, results when δ=0, which gives 

 

  Zt = -Πµ + it

p

1i
i Z −

=
∑Π + ut      (12) 

and 

  ∆Zt = Π(Zt-1-µ) + it

1p

1i
i Z −

−

=

∆Γ∑  + ut     (13) 

so that the intercept term is restricted.  Specifically, when there are r cointegrating relationships, out 

of the K intercept terms in (12), r of the terms are unrestricted while the remaining (K-r) terms must 

satisfy prior restrictions.  Moreover, the r cointegrating relationships have a nonzero attractor given 

by µ0 = βTµ. This Case II is denoted as Case 1* in Osterwald-Lenum (1992), Model H )r(*
1  in 

Johansen (1995), and Case II in Pesaran et al. (2000) and MacKinnon et al. (1999). 

 The final case, denoted by Case III, is as given in (9) and (10), and it is called Case 2* in 

Osterwald-Lenum (1992), Model H*(r) in Johansen (1995), Model (13) in Franses (1999), and Case 

IV in Pesaran et al. (2000) and MacKinnon et al. (2000).  Note that the linear trend coefficient in (9) 

is restricted as it depends on Π; e.g., it is zero when there is noncointegration.  Other ways of 

incorporating deterministic trends are sometimes examined (e.g., Osterwald-Lenum, 1992; Johansen, 

1995; Pesaran et al., 2000; MacKinnon et al., 1999), but they are not necessarily compatible with the 
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underlying VARL model (8), and so perhaps implausible.  It is feasible to extend (1) to allow for 

quadratic trends; we leave this for future research as our aim of illustrating the nonrobustness of GNC 

outcomes to the specification of deterministic trends can be achieved by examining Cases I, II and III. 

 

 

3. Sensitivity analysis for Canada and Portugal 

 

 Our discussion in the previous section, and that associated with some empirical research in 

GW, suggests that the GNC test results are sensitive to the estimation period, the adopted lag 

selection method, the economic growth and export growth definitions used, the choice of auxiliary 

variables in the VAR analysis, the method used to deal with issues arising from potential 

nonstationarity, including whether any allowance is made for deterministic trends.  Our aim in this 

section is to undertake a small sensitivity study of the GNC test outcomes in the ELG case.  We limit 

our attention to examining the impact on the GNC result of the method used to account for 

nonstationarity issues, including the choice of deterministic trends.  Others have illustrated that 

noncausality test results are sensitive to the functional form structure of the estimating equations, the 

specified lag structure, the approach used to obtain white-noise errors, and to variable 

misspecification: e.g., Feige and Pearce (1979), Jacob et al. (1979), Roberts and Nord (1985), 

Sephton (1989).  Accordingly, we limit our attention to only one sample period for each country, one 

lag selection method (Akaike’s (1973) Information Criterion, denoted by AIC), and to the 

information sets examined by the original authors. 

 We address this part of our study by reconsidering the data used by Oxley (1993) for Portugal 

and Henriques and Sadorsky (1996) for Canada.  The authors of these studies kindly provided us with 

their data, and it is this that led to our choice, rather than the studies themselves.  It is our firm belief 

that we would observe similar sensitivities if we had used other data.  The analysis for Portugal is 

based on a bivariate GNC test, while that for Canada involves an auxiliary variable, as well as the 

usual variables representing overall economic activity and export performance; for the Canadian case 

we take the opportunity to present results based on a bivariate and trivariate model.  As our aim is to 

examine robustness issues, we do not discuss the trade policies and relevant economic issues for the 

countries, though we recognize the merits of this for a detailed individual country application. 
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3.1 Canadian study 

 

3.1.1  Previous Canadian GNC ELG papers 

GW provides information on nine studies that have estimated VAR/VECM models to examine 

for Canadian ELG using the GNC tests we have outlined: Afxentiou and Serletis (1991), Serletis 

(1992), Arnade and Vasavada (1995), Jin and Yu (1995), Bodman (1996), Henriques and Sadorsky 

(1996), Pomponio (1996), Riezman et al. (1996) and Yamada (1998).  Table 1 provides a summary.  

Given our aims, we do not discuss these papers in detail; it is clear that the lag selection methods, 

time periods, definitions of “relevant” information set, the forms of the “preferred” model (e.g., 

VARL, VECM, VARD), the methods adopted to arrive at this “preferred” model, the assumed 

deterministic trends differ widely, and given these variations in setups, it is extremely difficult to 

distinctly pinpoint reasons for the different GNC outcomes for these Canadian studies.  We make two 

observations at this stage:  first, several of the studies introduce deterministic trends in their models in 

ways that are not consistent with those discussed in sub-section 2.2; second, several authors directly 

impose noncointegration by using VARD models, which could be misspecified by ignoring potential 

Granger-causality from any long run relationships. 

 

 

3.1.2  Focus for Canada 

We use the full annual data set of Henriques and Sadorsky (1996), which covers the period 

1877 to 1991; we are aware that there are likely structural breaks present that we are ignoring. The 

data are real GDP and real exports, with real imports being included as an auxiliary variable; natural 

logarithms of the data are examined so that first differences are growth variables.  We use the AIC, 

calculated from the VARL model, to determine lag lengths, allowing for up to a maximum of 8 lags.  

We first illustrate in the next sub-section that modifying the testing method can alter the GNC 

conclusion.  We then show in sub-section 3.1.4 that the choice of deterministic trends also impacts on 

the GNC outcome by comparing the GNC results for Cases I, II and III. 

 

 



 
 

15

3.1.3  Canada: method matters 

We restrict our attention to pretests for cointegration.  We recognize that unit root tests are 

typically undertaken as well, but their impact is well researched in the literature.  To limit scope we 

assume that the data series in their log-levels are integrated of order one, which is a reasonable 

assumption from prior research.  We focus on the three cointegration PT strategies we outlined in 

sub-section 2.2, and we present results using the λmax statistic for the JJ PT method. We use a general 

to specific testing strategy to choose the augmentation terms for the EG-ADF PT method, and we 

follow the approach outlined by McCabe et al. (1997) and Leybourne and McCabe (1999) to 

consistently estimate the necessary autoregressive order for the auxiliary regression for the MLS PT 

method.  For this part of our study, we examine Case II; i.e.; we assume that there is a restricted 

constant in the VARL representation that results in a non-zero attractor for any cointegrating 

relationships. This implies that Zt consists of (3-r) I(1) variables and r level stationary variables when 

the cointegrating rank is r. For the trivariate model, we present results for the JJ PT approach that 

does not test for “sufficient” cointegration and for the Toda and Phillips (1993, 1994) method, which 

includes an additional pretest for sufficient cointegration; we denote the latter asTP PT. We follow 

the recommendation of Toda and Phillips (1994) and use their strategy P13.  Testing for “sufficient” 

cointegration is unnecessary in a bivariate model.   We compare these pretesting methods with the 

TYDL augmented lags approach, adding one additional lag given our assumption of I(1) variables.  

The AIC lag order is four for both the bivariate and trivariate models.   Table 2 summarizes the 

bivariate and trivariate results for testing for ELG and GLE, with the reported numbers being p-

values for the GNC statistics assuming a limiting χ2 null distribution for the W and LR statistics, and 

an appropriate central-F distribution for the F statistics. 

 The GNC outcomes, for this application, do not change when we add the auxiliary variable to 

the information set, nor do they alter with the choice of test statistic.  The TYDL augmented lag 

method suggests noncausality in both directions, while the residual based PT methods (EG-ADF PT 

and MLS PT) support GLE, but not ELG; this latter result occurs even though the two methods 

                                                
3
Suppose we wish to test that z3t noncauses z1t.  Let r̂  be the estimated cointegrating rank, α1 be the first row of α and is of 

dimension r̂ , β3 be the last row of β and let the relevant Γ parameters for the causal test be γ1...γp-1.  The strategy P1 of Toda and 
Phillips (1993) is to test H1: α1=0 via a Wald test statistic, which is asymptotically χ2( r̂ ) under the null.  If H1 is rejected, we then test 
H2: γ1=...=γp-1=0 & α1β3 =0 via a Wald test statistic, which is asymptotically χ2(p) under the null; otherwise we test H3: γ1=…=γp-1=0 
via a Wald test statistic, which is asymptotically χ2(p-1) under the null. 
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arrive at different cointegration conclusions.  In contrast, the JJ PT approach suggests support for 

bidirectional causality.  Simply by changing the method of dealing with nonstationarity, we observe 

GNC, GLE, and bidirectional Granger-causality. 

 The simulation experiments undertaken by Giles and Mirza (1999) show that the PT 

approaches often overreject a valid GNC null hypothesis, while the TYDL approach is typically more 

consistent at obtaining the correct conclusion.  We may be observing these features here.  Irrespective 

of reason, the results reported in Table 2 show the sensitivity of GNC outcomes to the method used 

to handle nonstationarity concerns. 

  

3.1.4 Canada: deterministic trends 

In this section we illustrate the impact of the choice of deterministic trends on the GNC 

outcome. We limit our attention to the JJ PT and TP PT approaches, and to the augmented lags 

method of TYDL, which remains valid with deterministic trend terms.  We present results for Cases I, 

II and III, which we outlined in sub-section 2.2, reporting results for Wald statistics only, as the 

previous sub-section suggests that the GNC outcomes are not sensitive to the statistic adopted.  The 

AIC is again applied to select the lag order from the VARL model augmented by appropriate 

deterministic components.  The optimal lag orders did not change from that determined for Case II in 

the previous sub-section. 

Table 3 provides the estimated asymptotic p-values for the λmax tests for cointegrating rank for 

both the bivariate and trivariate models.  Irrespective of the choice of deterministic components, there 

is strong support for one cointegrating vector in the bivariate case.  In the trivariate case, there is 

support for two cointegrating vectors with Cases I and II, but for only one stationary relationship 

with Case III; the choice of deterministic terms is important.  The p-values for the resulting Wald 

GNC tests, assuming a limiting χ2 null distribution, are presented in Table 4; the TYDL method 

provides no support for Granger-causality, irrespective of information set or deterministic trends, 

while the PT approaches result in outcomes that vary with information set and deterministic trends.  

Specifically, the bivariate model suggests bidirectional Granger-causality for Case I and II, but only 

GLE with Case III.  In contrast, we find GNC for Case III with the trivariate model, GLE with Case I 

and bidirectional Granger-causality with Case II.  Altering the information set and the deterministic 

trends impacts on the GNC test outcome.  
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3.2 Portuguese study 

 

3.2.1  Previous Portuguese GNC ELG papers 

GW details six papers that have examined for ELG via GNC tests for Portugal: Jung and 

Marshall (1985), Hutchison and Singh (1992), Dodaro (1993), Oxley (1993), Sharma and Dhakal 

(1994) and Riezman et al. (1996).  Table 5 provides a summary.  Due to space constraints, we do not 

discuss these papers, though as with the Canadian studies, it is evident that the lag selection methods, 

time periods, definitions of “relevant” information set, the forms of the “preferred” model, the 

methods adopted to arrive at this “preferred” model, and the assumed deterministic trends differ 

widely.  We again note that several of the studies introduce deterministic trends in ways that are not 

consistent with the models presented in sub-section 2.2, and that several authors directly use VARD 

models, which may be misspecified by omiting long run relationships.   

 

3.2.2 Focus for Portugal 

We use Oxley’s (1993) annual data on real exports and real GDP, which covers 1865 to 1991. 

 We employ the full bivariate data set and transform each series into natural logarithms.  The effects 

of structural breaks on the procedures are left for future work.  We use the AIC, calculated from the 

VARL model, to determine lag lengths, allowing for up to a maximum of 8 lags. This results in a 

VARL(5) for Case II, which we use to show that the GNC outcome varies with the method adopted 

to deal with nonstationarity issues; see sub-section 3.2.3.  We do not use the TP approach here, as 

cointegration in a bivariate system is sufficient.  We follow in sub-section 3.2.4 with a comparison of 

the GNC outcomes for Cases I, II and III.   

 

3.2.3 Portugal: method matters 

We examine Case II and the methods we detailed in sub-section 2.2: TYDL, JJ PT, MLS PT 

and EG-ADF PT.  As with our Canadian analysis, we assume that the log-levels data are integrated of 

order one.  Table 6 summarizes the results for testing for ELG and GLE, with the reported numbers 

being p-values for the GNC statistics, assuming a limiting χ2 null distribution for the W and LR 

statistics, and an appropriate central-F distribution for the F statistics. 
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 We observe that the GNC results do not vary with the choice of test statistic, and that the four 

methods we present each support GLE, while the JJ PT approach is the only method that suggests 

bidirectional causality.  Interestingly, the MLS PT indicates noncointegration while the EG-ADF  PT 

and JJ PT both suggest the existence of a cointegrating relationship; nevertheless, the MLS and EG-

ADF PT procedures still reached the same causality conclusions.  

 

3.2.4 Portugal: deterministic trends 

As for our Canadian study, we limit attention here to the JJ PT and TYDL methods, reporting 

results only for the Wald statistics.  Estimated asymptotic p-values for the λmax cointegrating rank test 

are reported in Table 7 for Cases I, II and III; there is support for cointegration, with some 

uncertainty with Case III.   We use the opportunty to illustrate the impact of this uncertainty on the 

GNC test outcome by examining Case III with a DVAR(4) and a VECM(4).  The asymptotic p-

values for the observed Wald GNC test statistics are given in Table 8.  Regardless of method and 

case, the results suggest that there is GLE, but there is mixed evidence for bidirectional causality.  

The TYDL augmented lags method suggests some support for bidirectional causality when there are 

no deterministic terms in the model, which may be spurious ELG arising from the omission of relevant 

deterministic components, as inclusion of the latter eliminates support for this outcome. The VECM 

models advocate bidirectional causality for Cases I, II and III (when r̂ =1), but not for Case III when 

r̂ =0; this illustrates the potential nonrobustness of the GNC outcome to the specification of the 

cointegrating rank and the importance of accurate determination of that rank when a pretest based 

approach is adopted.  The conflicting outcomes from the TYDL and JJ PT approaches could be due 

to either the JJ PT approach overrejecting GNC or the TYDL method showing power deficiency.  

Both are possibilities here.  Irrespective of reason, our Portugal example illustrates the sensitivity of 

GNC test results to nonstationarity methods, including specification of the deterministic trends. 

 

4. Concluding Remarks 

 

In this paper we have studied the sensitivity of Granger noncausality test outcomes for 

examining for causation between exports and overall economic activity to the method adopted for 

dealing with nonstationarity issues, including assumed deterministic trends.  Our study has shown the 
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nonrobustness of GNC test results, which is discouraging, as it implies that it is relatively easy to 

obtain different results.  Our study demonstrates that applied researchers need to exercise care when 

using GNC tests to avoid spurious outcomes. 

How can applied researchers proceed when they wish to use GNC tests to examine for ELG, 

given that GNC outcomes are sensitive to the deterministic trend assumptions and the specification of 

the cointegrating rank (when applicable)?  We offer the following thoughts.    Although our study 

suggested that the TYDL method, which does not require specification of the cointegrating rank, 

seemed relatively robust to the deterministic trend degree, we believe it would still be wise to attend 

to this issue.  One way to proceed is to adopt a general-to-specific testing strategy to determine the 

deterministic trend degree, while an alternative approach is to use an information criterion to 

simultaneously determine the lag order and the trend terms.   

Matters are further complicated when a method for testing for Granger noncausality is 

adopted that requires specification of the cointegrating rank.  This is a preferable route, but accurate 

determination of the cointegrating rank is needed, and this seems difficult, especially given that 

currently applied procedures are sensitive to the deterministic trend degree and lag order, typically 

specified prior to the cointegration pretest. One possible alternative is to simultaneously determine the 

cointegrating rank, the lag order and the trend degree, which could be readily achieved using an 

information criterion.  Let P=K(r+(p-1)K+d) be the number of fitted parameters for the VECM, 

where r denotes the cointegrating rank, d denotes the trend degree, p the VARL lag order, and K the 

system’s dimension.  Then, for example, the AIC and SC can be formed as AIC(p,r,d)=log|ω|+2P/T 

and SC(p,r,d)=log|ω|+Plog(T)/T respectively, where T is the sample size and ω an appropriate 

estimate of the error covariance matrix.  Phillips (1996) proposes a Bayesian model determination 

criterion, the posterior information criterion (PIC), explicitly for this problem.  Specifically, Phillips’ 

PIC is given by PIC(p,r,d)=log|ω|+log(φ)/T, where the penalty factor φ is a function of the dimension 

of the model and the observed data.  An alternative possibility is to undertake hypothesis tests for the 

presence of the deterministic trend terms; see, e.g., Johansen (1995) and Pesaran et al. (2000).  It 

remains for future research to explore the finite sample properties of GNC tests when such 

approaches are adopted.   
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Table 1 Canadian GNC Studies 
 
 
Authors 

 
Data 

 
Method and Modela 

 
Auxiliary 
Variables 

 
Result 

 
Afxentiou 
& Serletis 
(1991) 

 
annual, 1950:85; logs, real GNP, 
real exports. 

 
PT strategy using Phillips & Perron (1988) 
test; noncointegrated so VARD; Case I; 
FD; SC for lags. 

 
 

 
GLE 

 
Serletis 

(1992) 

 
annual, 1870:1985; 1870:1944; 
1945:85; logs, real GDP, real 
exports. 

 
PT strategy using Phillips & Ouliaris 
(1990) test; noncointegrated so VARD 
with unrestricted constant; FD; SC for lags. 
  

 
Real imports. 

 
ELG for 
1870:1944; 
1870:1985. 

 

NC for 
1945:85. 

 
Arnade & 
Vasavada 
(1995) 

 
annual, 1961:87; real agricultural 
output, real agricultural exports. 

 
JJ PT strategy; noncointegrated so VARD; 
Case II; FD; lags preset to 3. 

 
Unit export 
value. 

 
NC 

 
Jin & Yu 
(1995) 

 
qtrly, seas. adj. 1960(1):87(4); 

logs; real GDP, real exports. 

 
VARD with constant; FD; FPE for lags.   

 
 

 
GLE 

 
Bodman 
(1996) 

 
qtrly, seas. adj. 1960(1):95(4); 

logs; real manuf. output per 
employee; real total output per 
employee; real exports of manuf. 
goods; real exports. 

 
JJ PT strategy; cointegrated;VECM with 
unrestricted constant; zero mean for 
cointegrating relationship; FEC; lags by SC 
& LR.  

 
 

 
ELG & BD 
for manuf. 
exports & 
manuf. labor 
productivity.  

 
Henriques 
& Sadorsky 
(1996) 

 
annual, 1877:1945; 1877:1991; 
1946:91; logs, real GDP, real 
exports. 

 
JJ PT strategy; unrestricted constant; zero 
mean for cointegrating relationship; 
cointegrated; VARL with unrestricted 
constant; FL; SC, HQ & AIC for lags. 

 
Terms of 
trade (export 
unit 
value/import 
unit value) 

 
ELG 

 
Riezman et 
al. (1996) 

 
annual, 1950:90; GDP & export 
growth in real international dollars. 

 
VARD with no deterministic trends; FD; 
lags not specified.   

 
Real import 
growth. 

 
NC 

 
Pomponio 
(1996) 

 
annual, 1965:85; nominal manuf. 
output & exports. 

 
VARD or VARL depending on 
cointegration outcome (not reported for 
individual countries); Case I; FD or FL; lags 
preset to 2. 

 
Investment. 

 
ELG 

 
Yamada 
(1998) 

 
qtrly, seas. adj. 1960(1):87(4); 

logs; real GDP output per 
employee, real exports.  Only 
tested for ELG. 

 
TYDL augmented lags method with 
constant; WAL; AIC for lags. 

 
Terms of 
trade; real 
GDP of 
OECD 
countries. 

 
ELG 

a. SC denotes Schwarz’s (1978) criterion; HQ denotes Hannan and Quinn’s (1979) criterion; FPE denotes Akaike’s (1969) Final 
Prediction Error criterion; AIC denotes Akaike’s (1973) Information Criterion; ELG denotes export-led growth; GLE denotes growth-
led exports; BD denotes bidirectional Granger causality; NC denotes GNC in both directions.  
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Table 2 Canada: GNC p-values (Case II)  
GNC Hypothesis – Bivariate GNC Hypothesis – Trivariate   

GNC Statistic 
 

 
exp→/  gdp 

 
gdp→/  exp 

 
GNC Statistic  

exp→/  gdp 
 

gdp→/  exp 

TYDL - WAL (a) 0.659 0.283 TYDL - WAL (a) 0.614 0.169 
TYDL - LRAL (a) 0.664 0.294 TYDL - LRAL (a) 0.619 0.181 
TYDL - FAL (a) 0.660 0.290 TYDL - FAL (a) 0.615 0.179 
JJ PT – WEC (b) <0.001 <0.001 TP PT – WEC (e) 0.005 <0.001 
JJ PT – LREC (b) 0.035 0.005 TP PT – LREC (e) 0.054 0.001 
JJ PT – FEC (b) <0.001 <0.001 TP PT – FEC (e) 0.009 <0.001 
MLS PT – WD (c) 0.534 0.044 JJ PT – WEC (f) 0.005 <0.001 
MLS PT – LRD (c) 0.538 0.049 JJ PT – LREC (f) 0.054 0.001 
MLS PT – FD (c) 0.537 0.049 JJ PT – FEC (f) 0.009 <0.001 
EG ADF PT – WEC (d) 0.713 0.001 MLS PT – WD (g) 0.420 0.036 
EG ADF PT – LREC (d) 0.717 0.001 MLS PT – LRD (g) 0.425 0.042 
EG ADF PT – FEC (d) 0.714 0.001 MLS PT – FD (g) 0.424 0.042 
   EG ADF PT – WEC (h) 0.691 <0.001 
   EG ADF PT – LREC (h) 0.695 0.001 
   EG ADF PT – FEC (h) 0.691 0.001 

a. One additional lag is included in the system based on our prior belief that the variables are 
integrated of order one. 

b. The sample values of the λmax statistic are 19.156 and 10.758 for testing H01: r=0 vs. Ha1: 
r=1 and H02: r=1 vs. Ha2: r=2, respectively.  Estimated asymptotic p-values are 0.001 and 
0.270 respectively (MacKinnon et al., 1999).  We reject H01 and support H02, which  
suggests one cointegrating vector; GNC testing is then undertaken using a VECM(3). 

c. The observed value of the test statistic is 0.704, which can be compared to a 10% critical 
value of approximately 0.097 (McCabe et al., 1997), so we reject the null and support 
noncointegration. Consequently, a VARD(3) model, with no deterministic terms, is used 
to test for GNC. 

d. Eight augmentation terms are included as chosen via general to specific testing.  The 
observed test statistic value of -3.846 has an estimated p-value of 0.015  (MacKinnon, 
1994).  A VECM(3) is then used to test for GNC, with the error correction term formed 
from the residuals from the static cointegrating regression. 

e. Our estimate of r is 2.  For both GNC hypotheses, we reject H1, given in footnote 3, so 
that the p-value reported in the table is from testing H2. 

f. The sample values of the λmax statistic for testing H01: r=0 vs. Ha1: r=1, H02: r=1 vs. Ha2: 
r=2 and H03: r=2 vs. Ha3: r=3 are 24.381, 16.240 and 12.395 with estimated asymptotic p-
values of 0.0004, 0.044 and 0.616 respectively (MacKinnon et al., 1999).  These results 
suggest two cointegrating vectors in the VECM(3).  

g. The observed value of the test statistic is 0.594, which we compare to an approximate 
10% critical value of 0.081 (McCabe et al., 1997).  Consequently, a VARD(3) model, 
with no deterministic terms, is used to test for GNC. 

h. Eight augmentation terms (from a general to specific testing strategy) are included.  The 
observed value of the test statistic is -3.749, which has an estimated p-value of 0.020 
using MacKinnon (1994).  The GNC tests are undertaken via a VECM(3), with the 
residuals from the static cointegrating regression as the error correction term. 
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Table 3 Canada: Estimated asymptotic p-values for λmax cointegrating rank testsa 

 
Bivariate 

 
Trivariate 

 
Conclusion 

 
 
Case  

r=0 vs. 
r=1 

 
r=1 vs. 

r=2 

 
r=0 vs. 

r=1 

 
r=1 vs. 

r=2 

 
r=2 vs. 

r=3 

 
Bivariate 

r̂  

 
Trivariate 

r̂  
 
I 

 
<0.001 

 
0.995 

 
<0.001 

 
0.006 

 
0.999 

 
1 

 
2 

 
II 

 
0.001 

 
0.270 

 
<0.001 

 
0.044 

 
0.616 

 
1 

 
2 

III 
 

0.049 
 

0.875 
 
<0.001 

 
0.221 

 
0.990 

 
1 

 
1 

 
a. The estimated asymptotic p-values are generated from the Fortran code provided by MacKinnon et 
al. (1999). 
 
 
 
Table 4 Canada: TYDL, JJ PT and TP PT Wald GNC p-values 

TYDL JJ PT TP PT 

BIVARIATE TRIVARIATE BIVARIATE TRIVARIATE TRIVARIATE 

 
 

Case 
 
exp→/  

gdp  

 
gdp→/  

exp  

 
exp→/  

gdp  

 
gdp→/  

exp  

 
exp→/  

gdp  

 
gdp→/  

exp  

 
exp→/  

gdp  

 
gdp→/  

exp  

 
exp→/  

gdp  

 
gdp→/  

exp  
 
I 

 
0.682 

 
0.356 

 
0.604 

 
0.198 

 
<0.001 

 
0.006 

 
0.657 

 
0.012 

 
0.657a 

 
0.012a 

 
II 

 
0.659 

 
0.283 

 
0.614 

 
0.169 

 
<0.001 

 
<0.001 

 
0.005 

 
<0.001 

 
0.005a 

 
<0.001a 

 
III 

 
0.607 

 
0.341 

 
0.567 

 
0.208 

 
0.425 

 
0.002 

 
0.519 

 
0.240 

 
0.593b 

 
0.255b 

 
a. Reject H1. P-values are for testing H2. 
b. Do not reject H1. P-values are for testing H3. 
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Table 5 Portuguese GNC Studies 
 
 
Authors 

 
Data 

 
Method and Modela 

 
Auxiliary 
Variables 

 
Result 

 
Jung & 
Marshall 
(1985) 

 
annual, 1953:80; logs, real GNP, 
real exports. 

 
VARD with constant; FD; lags preset to 3. 
  

 
 

 
NC 

 
Hutchison 
& Singh 

(1992) 

 
annual,1956:82; logs, real GDP, 
real non-export GDP, real exports. 

 
VARD with no deterministic trends; FD; 
lags preset to 2.   

 
Real 
investment. 

 
NC 

 
Dodaro 
(1993) 

 
annual, 1967:86; logs, real GDP, 
real exports. 

 
VARD with constant; FD; lags preset to 2. 
  

 
 

 
NC 

 
Oxley 
(1993) 

 
annual, 1865:91; logs, real GDP, 
real exports. 

 
JJ PT strategy; cointegrated; VECM with 
unrestricted constant; zero mean for 
cointegrating relationship; WEC; lags by 
FPE.  

 
 

 
GLE 

 
Sharma & 
Dhakal 
(1994) 

 
annual, 1960:87; logs, real GDP, 
real exports. 

 
VARD with constant; FD; lags by FPE.  

 
Population, 
real world 
output, real 
exchange 
rate, real 
gross fixed 
capital 
formation. 

 

BD 

 
Riezman et 
al. (1996) 

 
annual, 1950:90; GDP & export 
growth in real international dollars. 

 
VARD with no deterministic trends; FD; 
lags not specified.   

 
Real import 
growth. 

 
NC from 
bivariate 
model; GLE 
from 
trivariate 
model. 

a. SC denotes Schwarz’s (1978) criterion; HQ denotes Hannan and Quinn’s (1979) criterion; FPE denotes Akaike’s (1969) Final 
Prediction Error criterion; AIC denotes Akaike’s (1973) Information Criterion; ELG denotes export-led growth; GLE denotes growth-
led exports; BD denotes bidirectional Granger causality; NC denotes GNC in both directions.  
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Table 6 Portugal: GNC p-values (Case II) 

GNC Hypothesis – Bivariate Model  
GNC Statistic 

 

 
exp→/  gdp 

 
gdp→/  exp 

TYDL - WAL (a) 0.191 0.002 
TYDL - LRAL (a) 0.206 0.004 
TYDL - FAL (a) 0.201 0.004 
JJ PT – WEC (b) <0.001 <0.001 
JJ PT – LREC (b) 0.012 0.002 
JJ PT – FEC (b) 0.003 <0.001 
MLS PT – WD (c) 0.356 0.002 
MLS PT – LRD (c) 0.366 0.003 
MLS PT – FD (c) 0.362 0.003 
EG ADF PT – WEC (d) 0.192 0.002 
EG ADF PT – LREC (d) 0.207 0.005 
EG ADF PT – FEC (d) 0.202 0.005 

 
 
a. One additional lag is included in the system. 
 
b. The λmax  statistic sample values for testing H01: r=0 vs. Ha1: r=1 and H02: r=1 vs. Ha2: r=2 
are 19.325 and 9.676, with estimated asymptotic p-values of 0.001 and 0.365, respectively 
(MacKinnon et al., 1999).  This cointegration is incorporated in a VECM(4) for the GNC tests. 
 
c. The observed value of the test statistic is 0.779 compared to a 10% critical value of 
approximately 0.097 (McCabe et al., 1997); we reject the null and support noncointegration.  The 
GNC tests are undertaken using a DVAR(4) model, with no constant term as this is restricted to 
zero with the noncointegration outcome. 
 
d. General to specific testing indicated the need for five augmentation terms.  The observed 
test statistic value of -3.302 suggests cointegration when compared with an estimated p-value of 
0.062 from MacKinnon (1994).  We then tested for GNC using a VECM(4) with the error 
correction term formed from the residuals from the static cointegrating regression. 
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Table 7 Portugal: Estimated asymptotic p-values for λmax cointegrating rank testsa  

 
Bivariate 

 
Conclusion 

 
 
Case  

r=0 vs. r=1 
 
r=1 vs. r=2 

 
r̂  

 
I 

 
<0.001 

 
1.000 

 
1 

 
II 

 
0.001 

 
0.365 

 
1 

 
III 

 
0.104 

 
0.834 

 
0 or 1 

 
a. Asymptotic p-values are generated from the Fortran code provided by MacKinnon et al. 
(1999). 
 
 
 
 
 
 
 

Table 8 Portugal: TYDL  and JJ PT Wald GNC p-values 

 
 

 
TYDL 

 
JJ PT 

 
 

Case III 

 

GNC Hypothesis 
 

 
Case I 

 
 

Case II 

 
 

Case III 

 
 

Case I 

 
 

Case II  
r̂ =0 

 
r̂ =1 

 
exp→/  gdp  

 
0.095 

 
0.191 

 
0.181 

 
0.008 

 
0.001 

 
0.144 

 
0.011 

 
gdp→/  exp 

 
0.002 

 
0.002 

 
0.003 

 
0.002 

 
<0.001 

 
0.001 

 
0.005 
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Figure 1. Schematic outline of pretest strategies  
 
JJ PT 
 
 
 

 
Determine 
lag length p̂  
in VARL 
model. 

Estimate 
cointegrating rank, 
r̂ , using sequential 
JJ procedure. 

Estimate VARD( 1p̂ − )  model; test for GNC using WD, LRD

or FD. 

Estimate VECM( 1p̂ − ) ; test for GNC using WEC, LREC or 
FEC. 
 

Estimate VARL( p̂ ) model; test for GNC using WL, LRL or 
FL. 
 

0r̂ =

0< r̂ <K 

Kr̂ =

EG-ADF PT 

Determine 
augmentation 
parameter v. 

Test for cointegration 
using EG-ADF for null 
of noncointegration. 

Determine p~ ; estimate VARD( 1p~ − ); test for GNC using 
WD, LRD or FD. 
 

Determine p~  via VECM; estimate VECM( 1p~ − ); test for 
GNC using WEC, LREC or FEC. 
 

Null not 
rejected 

Null 
rejected 

MLS PT 

Determine ŝ  . 
Test for cointegration 
using MLS for null of 
cointegration. 

Determine p~  via VECM; estimate VECM( 1p~ − ); test for 

GNC using WEC, LREC or FEC 

Determine p~ ; estimate VARD( p~ -1); test for GNC using 
WD, LRD or FD. 
 

Null not 
rejected 

Null 
rejected 


