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Abstract
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nonstationarity, including the choice of deterministic trend degree. We show that different
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1. Introduction

Since 1985 (Gupta, 1985; Jung and Marshall, 1985) there has been considerable interest in
testing for export-led growth (EL G) using the notion of Granger causdlity. The survey we providein
Giles and Williams (2000), hereafter denoted as GW, details over seventy such time series studies.
While the usefulness of this concept to test the ELG hypothesis has been questioned, and the
sengitivity of the causal outcome to certain characteristics of the modelling exercise (e.g., lag order,
estimation period, information set) has been considered, there does not appear to have been an
explicit examination of the sensitivity of the ELG causal outcome to the method adopted to deal with
nonstationarity issues, including the choice of the deterministic trend degree. Thisisour aim.

There are various methods of examining for ELG using the Granger noncausality (GNC)
concept; we detail several of thesein GW. In this paper we limit attention to the common approach
of formulating the GNC null hypothesis as atest of exact linear restrictions on the coefficients of a
finite-order dynamic model, which may be a vector autoregressive (VAR) modd in the levels data
(hereafter denoted by VARL), a VAR mode in the first-differenced data (hereafter denoted by
VARD), or a vector error correction model (hereafter denoted by VECM). Other methods of
detecting ELG include innovation accounting (e.g., forecast error variance decompositions and
impulse response functions), Sims (1972, 1980) noncausality test, and an approach suggested by
Geweke (1984). A consideration of these other techniquesis beyond the scope of this paper, though
our expectation is that they too would be similarly nonrobust. Our choice is based on the fact that
over eight-five percent of the GNC export-led growth studies surveyed by GW usethe hypothesistest
we examine.

We examine robustness of GNC test outcomesto changesin the deterministic trend degreein
the models and to the method used to handle nonstationarity concerns by reconsidering the data used
by two export-led growth applications. Oxley’s(1993) Portugal study and Henriques and Sadorsky’s
(1996) application for Canada. That we draw upon these should not be interpreted to imply our
criticism of thiswork; on the contrary, both studies were quite rigorousin their investigations. They
were chosen merely because the authors obligingly provided us with their data. 1t is our belief that
the features we observe would result with any of the data setsin the literature. We carry out our

analysis using two data sets so that we can assess whether the results are unduly sensitive to our
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choices. We consider Wald and likelihood ratio (LR) test statistics, as well as the F-variant of the
Wald satistic adjusted for finite sample degrees of freedom; none of the studies in GW use a
Lagrange Multiplier test statistic and as our aim isto replicate applied practice, we do not undertake
testing with this statistic. We show that the GNC outcomes are sensitive to variations in the
deterministic trend degree and to the nonstationarity method adopted.

The plan of this paper is as follows. In section 2 we provide the setup and information on
testing for GNC. Wealso detail some potential concernsin section 2. Section 3 provides brief details
about prior ELG studies for Canada and Portugal. This section also outlines the scope of our

sensitivity study for these two countries and presentsthe results of our analysis. Section 4 concludes.
2. Testing for GNC

2.1. Background

The EL G causdlity studies base their notion of causality on that proposed by Granger (1963,
1969), which builds on earlier research by Weiner (1956). The premise is that causdlity is
synonymouswith predictability. The approach isatheoretical in the sensethat no attempt ismadeto
incorporate economic theory to impose any a priori restrictions upon the relationships between the
variables of interest to the researcher. We say that y Granger-causes X if relevant past information
allows us to predict x better than when past information except y is used.

More formaly, let W, be the information set containing relevant information available up to
and including the time period t; let x:(1|W) be the optimal (minimum mean squared error (MSE)) 1-
step predictor of x; at timet, based on the information in W; let M«(1|VWW) denote the resulting 1-step
forecast MSE. Then, y;issaid to Granger-causex; one-period ahead if, in the matrix sense, My(1|W) <
My (1|W excluding{ y:|sEt} ), where W, excluding { yi|sEt} isthe set containing the relevant information
except that pertaining to the past and present of y;. We denote GNC from y; to x; asy(® X;.

Given our task at hand, we limit attention to testing for GNC within a finite-order vector

autoregressive model of order p in the levels of the variables, denoted asa VARL (p) mode:

Z = §F>izt_i+ut (1)

i=1



foraK” 1timeseriesZ; {Z: t=1,2,...,T} containing z;; through z« ;, where u isa(K" 1) vector white
noiseseriesand P are K™ K parameter matrices. Thesystem (1) isinitialized at t=-p+1, ..., 0and the
initia values can be any random vectorsincluding constants. Asour study will involve cointegration
analysis, wewrite (1) asavector error correction model of order (p-1); we denote this representation
asaVECM(p-1):

p-1
DZ,=PZu+ & GDZ,_, + U )

i=1
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where D is the first-difference operator (DZ=2-Z1), P = a? - 2 P. 2 and G =- 2 P . +for
g K a Ib a ] =
i=1 =i+l Qg

i=1,2,...,p-1. We assume that all the roots of

& i : . L
- Piw" =0 lie outside the complex unit circle
i=1

except for possibly some unit roots. The matrix P contains information on cointegrating relations
between the K elements of Z;,. When 0<r<K, there are r stationary relationships between the K
variables; see Engle and Granger (1987) and Johansen (1995). Then, P can be decomposed as
P=ab', wherea and b are K" r matrices of rank r, with the matrix b giving ther linear combinations
b'Z, that are stationary, and the matrix a contains the error correction or adjustment vectors that
measure the response of the process Z; to the disequilibirum error. When r=0 we have P =0, thereis
noncointegration and (2) collapsesto a VAR in first-differences, denoted by VARD(p-1). Findly,
when r=K, the variablesin Z; are stationary. Given the nature of the datainvolved in our study, our
focusison OEr<K.

The statistic we use to test for GNC depends on the value of r, and is obtained from one of
four models: a VARL, an augmented VARL model, a VECM, or a VARD model; the augmented
VARL is considered below. In each of these models, we need to specify the lag length p prior to
calculating the GNC dtatistic; the selection of p is considered in sub-section 2.2. Irrespective of the
model adopted, the GNC hypothesis can bewritten asfollows. Let gbeanm” 1 vector of parameters
and let R be aknown nonstochastic ° m matrix with rank . To test Ho: Rg=0, aWald statisticis



W=Tq"R™{RV[q]R™} 'Rq (3)
wherefq isaconsistent estimator of ¢, and \7[&] isaconsistent estimator of the asymptotic variance-
covariance matrix of /T (a- g). We assume a is the unconstrained least squares (LS) and

maximum likelihood estimator (MLE) of . Given appropriate conditions, W is asymptotically
distributed as a c*(q) variate under Ho. A LR statistic to test Ho is

LR=2(1(q)-1(q)) (4)

where 1(q) is the log-likelihood function satisfying certain regularity conditions, and qis the
constrained MLE of g. Thisstatistic, given appropriate conditions, isalso asymptotically distributed
asac?(q) variate under Ho. Itiswell recognized that the asymptotic critical values may beinaccurate
in finite samples, which leads some researchers to examine an F-type statistic to test Ho, assuming an

F(q, df) approximate null distribution:

F=W/q ()

where df is the appropriate denominator degrees of freedom.

3
Let z=(2], 25,27 ) where Zy isaKy 1 vector for s=1,2.3withK=3 K . Also, with P,

1
conformably partitioned, let P; 13 bethe K;" K3 top-right partition of P;. Supposewe wish to test for
GNC from Zz to Zy,. Then, inthe VARL () model, given by (1), the null hypothesisof GNCisH:
P13=0 where P13=[P 113, P 213,..., P p13]. Thisnull hypothesiscan bewritten in theform Rq=0, so the
Wald dtatistic from (1), denoted W, is then given by (3) where qis the estimator of g=vec[P 1,
P,...,P ] and Risaselector matrix such that Rq=vec[Pi3]. Correspondingly, we respectively denote
the LR statistic and F statistic for examining Hyas LR, and F.. The statistic W, is asymptotically

distributed asac?(K1K3p) variate under H - when each seriesis either stationary or nonstationary with
0

“sufficient” cointegration concerning the variables whose causal effects are under examination: Sims
et a. (1990) and Toda and Phillips (1993, 1994). The condition for “sufficient” cointegration is
difficult to test for and tendsto beignored in practical applications. When the data are nonstationary
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and noncointegrated, the statistic W, has a nonstandard, but free of nuisance parameters, limiting
distribution for a non-intercept or an intercept/time trend VARL model, and a nonstandard
asymptotic null distribution involving nuisance parameters results for an intercept/ no time trend
model. The dtatistic W, has a nonstandard limiting distribution that may depend on nuisance
parameters when the relevant nonstationary series are “insufficiently” cointegrated.

Within the framework of the error correction model (2), with G conformably partitioned with

Dz, let G5 be the K;" K3 top-right partition of G, j=1,..p-1. Then, the null hypothesis of GNC
(between Zz and Zy) isH§C: Gi3=0 and a:b ] =0 where G15=[G; 13, Gr13,..., Gy1.13], @1 contains the
first Ky rowsof a,and b containsthe last K3 columnsof b'. We estimate system (2) by maximum
likelihood as outlined in Johansen (1988) using the normalization suggested by Johansen (1988: 235).
The Wald dtatistic from (2) with P=ab', denoted Wec, is then given by (3) where ais the
unconstrained estimator of g=vec[G,, G, ..,G.1, ab'] and R is a selector matrix such that

Rog=vec[Gus, a;b]]. The sample value can be obtained using the transformations given in (for

instance) Liitkepohl (1993). We likewise denote the LR statistic and F statistic of H 5° from (2) as
LRec and Fec.
The statistic Wec is an asymptotic c*(K;Ksp) variate under HE°when rank(a)=K; or

rank(bs)=K3, with thisnull limiting distribution being maintained, provided that the definitions of the
statistics are altered appropriately, whether or not the model has a constant term, or Z; has a
deterministic trend, and whether we take account of this when estimating the model. Nuisance
parameters and nonstandard distributions result for the asymptotic null distribution when the rank
conditions fail. Applied researchers rarely examine for the validity of these rank conditions, which
impliesthat the GNC hypothesis may be examined using incorrect asymptotic distributions, Todaand
Phillips (1994) provide some test suggestions.

When the variables in Z; are integrated series of order one, but not cointegrated, we can
examine the GNC hypothesis (between Z3 and Zy;) using the VARD(p-1) model, given by

DZ, = glG,th_i+ W (6)
i=1

In this first-differences model, the GNC null hypothesisis HY: G;3=0 where Gy3is as above so the
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Wald statistic from (6), denoted Wp, isthen given by (3) where a isthe unconstrained estimator of
g=vec[G,, G, ...,G,1] and R is a selector matrix such that Rg=vec[G,3]. Corresponding LR and F
statistics can also be obtained, denoted as LRp and Fp respectively. The results of Todaand Phillips
(1994, Proposition 1) ensure that Wp is asymptotically distributed as a c*(K,K»(p-1)) variate under
Hg. The reader should note that as the degrees of freedom of this test is different from that of the
previous GNC tests we need to take care when interpreting the results.

Theuseof the VARL, VECM, or VARD modelsto test for GNC presupposes knowledge of
the nonstationarity characteristics of the data. Toda and Yamamoto (1995) and Dolado and
Litkepohl (1996) (hereafter denoted as TYDL) propose one method that does not require such
information; we call this the augmented lags approach. Consider the augmented VARL model

o d
Zt:aPiZt—i+éPp+iZt—p—i+ut (7)

i=1 i=1

where d is the highest order of integration for any element of Z; and note that the elements of
P p+1,...,P p+a @€ zero under our assumptions. In thisaugmented levels model, the null hypothesis of
GNC (between Zz and Zy,) isH 5" : P13=0 where Py; is as above so that H ; and H £ test the same set
of restrictionsin the VARL and augmented VARL models, respectively. TheWald statistic from (7),
denoted W, , isthen given by (3) where a isthe unconstrained estimator of g=vec[P 1, P»,...,P p:d]
and R is a selector matrix such that Rg=vec[P3]. Correspondingly, we respectively denote the LR
gtatistic and F statistic for examining H." asLRa, and Fa.. The statistic W isshown by TYDL to

be asymptotically distributed as a ¢*(K;Kasp) variate under H2", irrespective of the integration or

cointegration properties of Z;; theinclusion of the augmentation terms removes the covariance matrix
singularity problem that can arise with nonstationarity. Thisapproachis practicaly appeding, though
not costless, as there are power and efficiency losses arising from the inclusion of redundant
regressors in the model.

There are other methods available within the VAR framework to examine for GNC allowing
for nonstationarity; e.g., the fully modified VAR (FM-VAR) procedures (e.g., Phillips, 1995 and



8

Quintos, 1998). We do not examine these other approaches here, as they were not used by the
applied ELG studies outlined in GW. Further, note that the model in (1) or (2) assumes that the K
time series do not have deterministic trends, and that the cointegrating relations b'Z; have zero
equilibrium values. This may not be realistic with economic data; we return to this issue in the next
sub-section.

2.2 Potential issues when testing for GNC
Evenwithin therelatively straightforward framework we examine, there are several sources of
difficulties that may lead to nonrobustness of the GNC outcome. We briefly outline four issues

below.

Definition of theinformation set: The definition of relevant information is problematic. Thisrelatesto

both the issue of which variables to include, the level of tempora aggregation of the data, and
estimation time period. The finding of GNC in an annua system need not imply GNC with higher
frequency data. Likewise, employing seasonally adjusted variables may not produce the same causal

outcome as using seasonally unadjusted variables.

Lag-order selection: Typicaly, the VAR lag order is unknown; researchers usually either arbitrarily

assign alag-order or they employ a databased method to estimate p. The choice of thelag length is
important to avoid spurious causality (or spurious absence of causality). GW'’ s survey suggeststhat
common approachesinclude presetting the lag order and choosing p using amodel selection criterion.
The impact of always under-specifying or over-specifying thelag order on the size and power of the
wald dtatistic for GNC is evaluated with Monte Carlo experiments by Toda and Phillips (1994),

Dolado and L ttkepohl (1996), and Zapataand Rambaldi (1997), while Gilesand Mirza (1999) allow
for the lag order to be selected by sequential testing methods and two information criterion:

Schwarz' s (1978) criterion (SC) and Akaike's (1969) Final Prediction Error (FPE) criterion. The
findings of Gilesand Mirzaindicate some preference for the SC in lower dimensional systems, and the
FPE in larger systems. Typicadly, the size distortions for the GNC Wald statistics when using

databased lag order selection methods are not as serious as those found when p is always under- or



over- specified, and over-specifying seems preferable to under-specifying.

Non-stationarity: We outlined in sub-section 2.1 the model s and test stati stics researchers commonly

use to examine for GNC when there are nonstationarity concerns. When the dataare stationary it is
preferable to test H ; from the VARL (p) model (1) using Wy, LR, or F.. This approach is aso
applicablewhen Z; isintegrated (we assume at most 1(1) data) and thereis“sufficient” cointegration,
though in this latter case, assuming knowledge of r, we could alternatively test H® from the

VECM(p-1) using Wec, LRec or Fec. When Z, is nonstationary and noncointegrated, one approach is
to examine for GNC viathe VARD(p-1) model, testing H 7 using Wp, LRp or Fp. Alternatively, we

could ignore the cointegration issue, assume avaue for theintegration order of Z, and undertake the

GNC test ViaHQL Us-ng WaL, LRaL Or Far.

A key ingredient to several of these approaches is knowledge of the cointegrating rank, r.
Thisisrarely known apriori, which hasled to acommon practice of using prior cointegration teststo
estimate r, so that (hopefully) appropriate conditions are met for vaid ¢ GNC inference, at least
asymptotically. The particular pretest (PT) strategy differs with the choice of cointegration test; we
schematically outline three such PT dtrategies in Figure 1. We consider the Engle-Granger
Augmented Dickey-Fuller (EG-ADF) noncointegration test (Engle and Granger, 1987); the
commonly called Johansen maximum likelihood test for the cointegrating rank, r, denoted by JJ
(Johansen, 1988 and Ahn and Reinsel, 1990); and the McCabe et al. (1997) test for cointegration,
denoted as MLS. The EG-ADF and JJ tests dominate applied practice, but given classica
significance levels, we only reject in favour of cointegration for extreme samples. Asour primary
interest is usually with cointegration, rather than noncointegration, it may be preferable to have this
outcome as the null hypothesis asisthe case with the ML Stest. Given space constraints, we do not
outline the cointegration tests here; Giles and Mirza (1999) provide details for instance.

Thefirst step of the sequential JJ PT procedure, based on the JJ cointegrating rank test, isto
estimate the lag order from the VARL model, denoted p. The cointegrating rank is then estimated,

denoted as T, within the K-dimensional VARL(p) model. There are two common statistics for

testing for the value of r: the maximal eigenvalue statistic, denoted | ., and the trace statistic.

Although the limiting null distributions of the test statistics do not depend on the lag length, the
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choice of p may result in the use of amisspecified model, and so the value used for p will affect finite

sampleinferenceonr. Thefinal step inthe JJ PT strategy, having determined pand T, isto test for

GNC using one of Wp, LRy or Fp when =0, or to use Wec , LRec or Fec when 0<t <K, or, when
=K, to examine for GNC using W, LR, or F..

The EG-ADF PT procedure, assuming Z~l(1), beginswith determination of the augmentation
parameter, denoted v, which is needed to undertake the ADF test on the cointegrating regression
residuals. There are many suggestions for assigning avalue to v: Hall (1994) and Ng and Perron
(1995), among others. The null hypothesis of noncointegration is then tested, from which we use
either a VARD model when the outcome is noncointegration, or a VECM when cointegration is
supported, with the residuals from the cointegrating regression forming the error correction term.
The lag order is then estimated, denoted p, with the final task being to test for GNC, either using

Wb, LRp or Fp when the model isaVARD(p -1), or using Wec, L Rec or Fec for the VECM(p -1).

The MLSPT strategy isidentical to that just outlined for the EG-ADF PT method, except for
thefirst stage, which involves estimating an appropriately specified autoregressive integrated moving
average model to account for correlation patterns; specific details can be found in Giles and Mirza
(1999). Theestimator S isthe autoregressive order for thisauxiliary regression. TheMLS tatisticis
then used to test for cointegration, from which we model the nonstationary dataaseither aVARD or
aVECM, and proceed as for the EG-ADF PT approach.

The PT approach of testing for GNC dominates the applied EL G literature examined by GW;
of the seventy four studies that employ some form of VAR model to explore for GNC between
exports and economic growth, 10% adopt aVARL model; 30% useaVARD model without pretests
for unit roots; 3% (two studies) apply some other filter to transform the data to stationarity; 54% use
the PT approach (though no study examines for “sufficient” cointegration); while only four studies
apply the TY DL augmented lags method. Those analysesthat employ VARL modelsin theraw data
may well suffer from spurious regression problems, asthe series under study aretypically believed to
be nonstationary, which may result ininvalid GNC testing. Inasimilar way, the VARD models are
mi sspecified when thereisindeed cointegration, asthismodel then omitsthe error correction term(s).

These preliminary test methods can also suffer problems; in particular, the method depends

crucialy ontheability of the prior teststo accurately determine the cointegrating rank. However, itis



11

well known that typically applied nonstationarity tests suffer from size distortion and often have low
power, which suggests that an appropriate model may often not be used for the GNC test. Gilesand
Mirza's (1999) Monte Carlo study, on the properties of GNC procedures, indicates that this
pretesting route is often unsatisfactory. In many common types of situationsthe PT strategy leadsto
severe over-rgiection of anoncausal null; i.e., pretesting for nonstationarity before the GNC test can
often lead to wrong conclusions of causality. Their results also demonstrate that the method used to
pretest for nonstationarity is crucial. In contrast, the smulations undertaken by Giles and Mirza
(1999) suggest that the augmented lags approach of TY DL performswell acrossawide range of data
generating processes, including those that are mixed stationary-integrated or near-integrated systems.

Deterministic trends. This is an important question that is ignored by virtualy al of the studies
examined by GW?. What deterministic trends should be included? How should they be included?

Does it matter in terms of GNC conclusions? Limiting our attention to at most linear deterministic
components, there are several possible extensions to (1) and (2): e.g., Johansen (1995), Franses
(1999) and Pesaran et al. (2000). A natura extension of the VARL(p) model (1) is:

Zemd) = & P (Z,, - m- d(t- i)+ u @®

i=1

where mand d are K-vectors of unknown coefficients. We can write (8) equivaently as

Zt=rﬁ+d*t+§PiZt_i+ut (9)

i=1

Qoo
-

1
=

wherem=(-Pm+P "d), d =-Pd, P*:é jP, ,and P isasdefined previoudly; i.e,, P=-§K -

=

&-_I_;I-O:

We can also write (8) (and (9)) asa VECM(p-1)

2 The exception is Marin (1992: 685) who tries four different specifications for each country - with and without an

error correction (EC) term and, with and without alinear trend term. He concludes “...the specification matters for the causality test
results. Theinclusion of the error-correction terms and/or the time trend have changed the p-values and the F-stetistics considerably in
most cases, athough the basic results do not depend on the specification.”
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%l
DZ, = P'd+ P (Z.,-mdt) + § GDZ,.. + u (10)

i=1

which, when rank(P)=r so that P=ab", can be written as

Bl
DZ,=P'd+ a(bTZt-l'm)'dOt) +a GDZ,  +u (11)

i=1
wherem = b 'mand d, = b'd. The vector (m+dyt) can be regarded as the attractor for the stationary
relationships b'Z...

These models suggest that there are three practical cases to examinein practice. The first
case, denoted as Case |, results when m=d=0, so that we consider models (1) and (2), which contain
no deterministic components. This case corresponds to Case 0 in Osterwald-Lenum (1992), model
Hy(r) in Johansen (1995), and Case | in Pesaran et a. (2000) and MacKinnon et a. (1999). The

second case of interest, denoted as Case |1, results when d=0, which gives

Zt:'Pm+ épizt_i'i'ut (12)
i=1
and
%l
DZt = P(Zt-l'm + a GfDZt—i + U (13)

i=1
so that theintercept term isrestricted. Specifically, when there arer cointegrating relationships, out
of the K intercept termsin (12), r of the terms are unrestricted while the remaining (K-r) terms must
satisfy prior restrictions. Moreover, ther cointegrating relationships have anonzero attractor given

by m = b'm This Case Il is denoted as Case 1" in Osterwald-Lenum (1992), Model H(r) in

Johansen (1995), and Case Il in Pesaran et a. (2000) and MacKinnon et a. (1999).

The final case, denoted by Case I11, is as given in (9) and (10), and it is called Case 2" in
Osterwal d-Lenum (1992), Model H'(r) in Johansen (1995), Model (13) in Franses (1999), and Case
IV in Pesaran et al. (2000) and MacKinnon et al. (2000). Note that the linear trend coefficient in (9)
is restricted as it depends on P; e.g., it is zero when there is noncointegration. Other ways of
incorporating deterministic trends are sometimes examined (e.g., Osterwal d-Lenum, 1992; Johansen,
1995; Pesaran et a ., 2000; MacKinnon et a ., 1999), but they are not necessarily compatible with the
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underlying VARL modéd (8), and so perhaps implausible. It is feasible to extend (1) to allow for
quadratic trends; we leave thisfor future research as our aim of illustrating the nonrobustness of GNC

outcomes to the specification of deterministic trends can be achieved by examining Casesl, Il and I11.

3. Sensitivity analysis for Canada and Portugal

Our discussion in the previous section, and that associated with some empirical research in
GW, suggests that the GNC test results are sensitive to the estimation period, the adopted lag
selection method, the economic growth and export growth definitions used, the choice of auxiliary
variables in the VAR analyss, the method used to dea with issues arising from potential
nonstationarity, including whether any alowance is made for deterministic trends. Our aim in this
section isto undertake asmall sensitivity study of the GNC test outcomesinthe ELG case. Welimit
our attention to examining the impact on the GNC result of the method used to account for
nonstationarity issues, including the choice of deterministic trends. Others have illustrated that
noncausality test results are sensitive to the functional form structure of the estimating equations, the
specified lag structure, the approach used to obtain white-noise errors, and to variable
misspecification: e.g., Feige and Pearce (1979), Jacob et a. (1979), Roberts and Nord (1985),
Sephton (1989). Accordingly, welimit our attention to only one sample period for each country, one
lag selection method (Akaike's (1973) Information Criterion, denoted by AIC), and to the
information sets examined by the original authors.

We addressthis part of our study by reconsidering the data used by Oxley (1993) for Portugal
and Henriques and Sadorsky (1996) for Canada. The authors of these studieskindly provided uswith
their data, and it isthisthat led to our choice, rather than the studies themselves. It isour firm belief
that we would observe similar sengitivities if we had used other data. The analysis for Portugal is
based on a bivariate GNC test, while that for Canada involves an auxiliary variable, as well as the
usual variables representing overall economic activity and export performance; for the Canadian case
we take the opportunity to present results based on abivariate and trivariate model. Asour aimisto
examine robustness issues, we do not discuss the trade policies and relevant economic issuesfor the

countries, though we recognize the merits of thisfor a detailed individua country application.
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3.1 Canadian study

3.1.1 Previous Canadian GNC ELG papers

GW providesinformation on nine studiesthat have estimated VAR/VECM modelsto examine
for Canadian ELG using the GNC tests we have outlined: Afxentiou and Serletis (1991), Serletis
(1992), Arnade and Vasavada (1995), Jin and Y u (1995), Bodman (1996), Henriques and Sadorsky
(1996), Pomponio (1996), Riezman et al. (1996) and Y amada (1998). Table 1 providesasummary.
Given our aims, we do not discuss these papers in detail; it is clear that the lag selection methods,
time periods, definitions of “relevant” information set, the forms of the “preferred” model (e.g.,
VARL, VECM, VARD), the methods adopted to arrive at this “preferred” model, the assumed
deterministic trends differ widely, and given these variations in setups, it is extremely difficult to
distinctly pinpoint reasonsfor the different GNC outcomesfor these Canadian studies. Wemake two
observationsat thisstage: first, severa of the studiesintroduce determinigtic trendsin their modelsin
ways that are not consistent with those discussed in sub-section 2.2; second, severa authorsdirectly
impose noncointegration by using VARD models, which could be misspecified by ignoring potentia

Granger-causality from any long run relationships.

3.1.2 Focus for Canada

We use the full annual data set of Henriques and Sadorsky (1996), which covers the period
1877 to 1991; we are aware that there are likely structural breaks present that we areignoring. The
dataarereal GDP and rea exports, with real imports being included as an auxiliary variable; natural
logarithms of the data are examined so that first differences are growth variables. We use the AIC,
calculated from the VARL model, to determine lag lengths, allowing for up to amaximum of 8 lags.
We firgt illustrate in the next sub-section that modifying the testing method can alter the GNC
conclusion. We then show in sub-section 3.1.4 that the choice of deterministic trendsalso impactson

the GNC outcome by comparing the GNC results for Cases|, Il and I11.
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3.1.3 Canada: method matters

We restrict our attention to pretests for cointegration. \WWe recognize that unit root tests are
typicaly undertaken aswell, but their impact iswell researched in the literature. To limit scope we
assume that the data series in their log-levels are integrated of order one, which is a reasonable
assumption from prior research. We focus on the three cointegration PT strategies we outlined in
sub-section 2.2, and we present resultsusing thel o Statistic for the JJPT method. We use ageneral
to specific testing strategy to choose the augmentation terms for the EG-ADF PT method, and we
follow the approach outlined by McCabe et a. (1997) and Leybourne and McCabe (1999) to
consistently estimate the necessary autoregressive order for the auxiliary regression for the MLS PT
method. For this part of our study, we examine Case |1; i.e.; we assume that there is a restricted
constant in the VARL representation that results in a non-zero attractor for any cointegrating
relationships. Thisimpliesthat Z; consistsof (3-r) (1) variablesand r level stationary variableswhen
the cointegrating rank isr. For the trivariate model, we present results for the JJ PT approach that
doesnot test for “ sufficient” cointegration and for the Todaand Phillips (1993, 1994) method, which
includes an additiona pretest for sufficient cointegration; we denote the latter asTP PT. We follow
the recommendation of Toda and Phillips (1994) and use their strategy P1°. Testing for “sufficient”
cointegration is unnecessary in abivariate model.  We compare these pretesting methods with the
TYDL augmented |ags approach, adding one additional lag given our assumption of 1(1) variables.
The AIC lag order is four for both the bivariate and trivariate models. Table 2 summarizes the
bivariate and trivariate results for testing for ELG and GLE, with the reported numbers being p-
vaues for the GNC statistics assuming alimiting ¢ null distribution for the W and LR statistics, and
an appropriate central-F distribution for the F statistics.

The GNC outcomes, for this application, do not change when we add the auxiliary variableto
the information set, nor do they alter with the choice of test statistic. The TYDL augmented lag
method suggests noncausality in both directions, while the residua based PT methods (EG-ADF PT
and MLS PT) support GLE, but not ELG; this latter result occurs even though the two methods

3Suppose we wish to test that zg noncauses zy:. LetT be the estimated cointegrating rank, a1 be the first row of a and is of
dimension T, bz bethe last row of b and let the relevant G parameters for the causal test be gi...gb-1. The strategy P1 of Toda and
Phillips (1993) isto test Hi: a1=0 viaaWald test statistic, which is asymptotically c*( T ) under the null. If Hy isrejected, we then test
Ha: gi=...=0-1=0 & a1b3 =0 viaaWald test statistic, which is asymptotically c?(p) under the null; otherwise we test Ha: gi=...=gy-1=0
viaaWald test statistic, which is asymptotically ¢(p-1) under the null.
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arrive at different cointegration conclusions. In contrast, the JJ PT approach suggests support for
bidirectional causality. Simply by changing the method of dealing with nonstationarity, we observe
GNC, GLE, and hidirectional Granger-causality.

The smulation experiments undertaken by Giles and Mirza (1999) show that the PT
approaches often overregject avalid GNC null hypothesis, whilethe TY DL approachistypically more
consistent at obtaining the correct conclusion. We may be observing these features here. Irrespective
of reason, the results reported in Table 2 show the sensitivity of GNC outcomes to the method used

to handle nonstationarity concerns.

3.1.4 Canada: deterministic trends

In this section we illustrate the impact of the choice of deterministic trends on the GNC
outcome. We limit our attention to the JJ PT and TP PT approaches, and to the augmented lags
method of TY DL, which remainsvalid with deterministic trend terms. We present resultsfor Casesl,
Il and I11, which we outlined in sub-section 2.2, reporting results for Wald statistics only, as the
previous sub-section suggests that the GNC outcomes are not sensitive to the statistic adopted. The
AIC is again applied to select the lag order from the VARL model augmented by appropriate
deterministic components. The optimal lag ordersdid not change from that determined for Casell in
the previous sub-section.

Table 3 providesthe estimated asymptotic p-valuesfor thel . testsfor cointegrating rank for
both the bivariate and trivariate models. Irrespective of the choice of deterministic components, there
is strong support for one cointegrating vector in the bivariate case. In the trivariate case, there is
support for two cointegrating vectors with Cases | and |1, but for only one stationary relationship
with Case I1; the choice of deterministic terms isimportant. The p-vaues for the resulting Wald
GNC tests, assuming a limiting ¢? null distribution, are presented in Table 4; the TYDL method
provides no support for Granger-causdlity, irrespective of information set or deterministic trends,
while the PT approaches result in outcomes that vary with information set and deterministic trends.
Specifically, the bivariate model suggests bidirectional Granger-causality for Casel and 11, but only
GLE with Caselll. Incontrast, wefind GNC for Case |11 with thetrivariate model, GLE with Case|
and bidirectional Granger-causality with Casell. Altering the information set and the deterministic

trends impacts on the GNC test outcome.
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3.2 Portuguese study

3.2.1 Previous Portuguese GNC ELG papers

GW details six papers that have examined for ELG via GNC tests for Portugal: Jung and
Marshall (1985), Hutchison and Singh (1992), Dodaro (1993), Oxley (1993), Sharma and Dhakal
(1994) and Riezman et al. (1996). Table5 providesasummary. Dueto space constraints, we do not
discuss these papers, though aswith the Canadian studies, it is evident that the lag selection methods,
time periods, definitions of “relevant” information set, the forms of the “preferred” model, the
methods adopted to arrive at this “preferred” model, and the assumed deterministic trends differ
widely. We again note that several of the studiesintroduce deterministic trends in ways that are not
consistent with the models presented in sub-section 2.2, and that several authorsdirectly use VARD
models, which may be misspecified by omiting long run relationships.

3.2.2 Focus for Portugal

We use Oxley’ s(1993) annua dataon real exportsand real GDP, which covers 1865 to 1991.
We employ the full bivariate data set and transform each seriesinto natural logarithms. The effects
of structural breaks on the procedures are | eft for future work. We usethe AlIC, calculated from the
VARL model, to determine lag lengths, allowing for up to a maximum of 8 lags. Thisresultsin a
VARL(5) for Casell, which we use to show that the GNC outcome varies with the method adopted
to deal with nonstationarity issues; see sub-section 3.2.3. We do not use the TP approach here, as
cointegration in abivariate system is sufficient. Wefollow in sub-section 3.2.4 with a comparison of

the GNC outcomes for Cases |, Il and 1.

3.2.3 Portugal: method matters

We examine Case Il and the methods we detailed in sub-section 2.2: TYDL, JJPT, MLSPT
and EG-ADF PT. Aswith our Canadian analysis, we assume that the log-levelsdata are integrated of
order one. Table 6 summarizesthe resultsfor testing for ELG and GLE, with the reported numbers
being p-values for the GNC statistics, assuming a limiting ¢® null distribution for the W and LR
statistics, and an appropriate central-F distribution for the F statistics.
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We observethat the GNC results do not vary with the choice of test statistic, and that the four
methods we present each support GLE, while the JJ PT approach is the only method that suggests
bidirectional causality. Interestingly, the MLSPT indicates noncointegration whilethe EG-ADF PT
and JJ PT both suggest the existence of a cointegrating relationship; nevertheless, the ML S and EG-

ADF PT procedures still reached the same causality conclusions.

3.2.4 Portugal: deterministic trends

Asfor our Canadian study, we limit attention here to the JJPT and TY DL methods, reporting
resultsonly for theWald statistics. Estimated asymptotic p-valuesfor thel . cointegrating rank test
are reported in Table 7 for Cases I, 1l and IllI; there is support for cointegration, with some
uncertainty with Case Ill.  We use the opportunty to illustrate the impact of this uncertainty on the
GNC test outcome by examining Case |11 with a DVAR(4) and a VECM(4). The asymptotic p-
values for the observed Wald GNC test statistics are given in Table 8. Regardless of method and
case, the results suggest that there is GLE, but there is mixed evidence for bidirectional causality.
TheTY DL augmented lags method suggests some support for bidirectional causality when there are
no deterministic termsin the model, which may be spurious EL G arising from the omission of relevant
deterministic components, asinclusion of the latter eliminates support for thisoutcome. The VECM
models advocate bidirectional causality for Casesl, [l and I11 (when 7 =1), but not for Case Il when
t =0; this illustrates the potential nonrobustness of the GNC outcome to the specification of the
cointegrating rank and the importance of accurate determination of that rank when a pretest based
approach isadopted. The conflicting outcomes from the TYDL and JJ PT approaches could be due
to either the JJ PT approach overrgjecting GNC or the TYDL method showing power deficiency.
Both are possibilities here. Irrespective of reason, our Portugal example illustrates the sensitivity of

GNC test results to nonstationarity methods, including specification of the deterministic trends.

4. Concluding Remarks

In this paper we have studied the sensitivity of Granger noncausality test outcomes for

examining for causation between exports and overall economic activity to the method adopted for

dealing with nonstationarity issues, including assumed deterministic trends. Our study has shown the



19

nonrobustness of GNC test results, which is discouraging, as it implies that it is relatively easy to
obtain different results. Our study demonstratesthat applied researchers need to exercise care when
using GNC tests to avoid spurious outcomes.

How can applied researchers proceed when they wish to use GNC teststo examinefor ELG,
given that GNC outcomes are sensitive to the deterministic trend assumptions and the specification of
the cointegrating rank (when applicable)? We offer the following thoughts.  Although our study
suggested that the TYDL method, which does not require specification of the cointegrating rank,
seemed relatively robust to the deterministic trend degree, we believe it would still be wiseto attend
tothisissue. Oneway to proceed isto adopt a general-to-specific testing strategy to determine the
deterministic trend degree, while an alternative approach is to use an information criterion to
simultaneously determine the lag order and the trend terms.

Matters are further complicated when a method for testing for Granger noncausality is
adopted that requires specification of the cointegrating rank. Thisisa preferable route, but accurate
determination of the cointegrating rank is needed, and this seems difficult, especially given that
currently applied procedures are sensitive to the deterministic trend degree and lag order, typically
specified prior to the cointegration pretest. One possible alternative isto simultaneously determinethe
cointegrating rank, the lag order and the trend degree, which could be readily achieved using an
information criterion. Let P=K(r+(p-1)K+d) be the number of fitted parameters for the VECM,
where r denotes the cointegrating rank, d denotesthe trend degree, p the VARL lag order, and K the
system’sdimension. Then, for example, the AIC and SC can be formed as AIC(p,r,d)=logwj+2P/T
and SC(p,r,d)=loglwj+Plog(T)/T respectively, where T is the sample size and w an appropriate
estimate of the error covariance matrix. Phillips (1996) proposes a Bayesian model determination
criterion, the posterior information criterion (PIC), explicitly for this problem. Specifically, Phillips
PICisgiven by PIC(p,r,d)=logw{+log(f )/T, where the penalty factor f isafunction of thedimension
of themodel and the observed data. An alternative possibility isto undertake hypothesistestsfor the
presence of the deterministic trend terms; see, e.g., Johansen (1995) and Pesaran et al. (2000). It
remains for future research to explore the finite sample properties of GNC tests when such

approaches are adopted.
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Authors Data Method and Model® Auxiliary Result
Variables
Afxentiou annual, 1950:85; logs, real GNP, PT strategy using Phillips & Perron (1988) GLE
& Serletis real exports. test; noncointegrated so VARD; Casel;
(1991) Fp; SCfor lags.
Serletis annual, 1870:1985; 1870:1944; PT strategy using Phillips & Ouliaris Real imports. | ELG for
(1992) 1945:85; logs, real GDP, real (1990) test; noncointegrated so VARD 1870:1944;
exports. with unrestricted constant; Fp; SC for lags. 1870:1985.
NC for
1945:85.
Arnade & annual, 1961:87; real agricultural JIPT strategy; noncointegrated so VARD; | Unit export NC
Vasavada output, real agricultural exports. Case ll; Fp; lags preset to 3. value.
(1995)
Jné& Yu qtrly, seas. adj. 1960(1):87(4); VARD with constant; Fp; FPE for lags. GLE
(1995) logs, real GDP, red exports.
Bodman qgtrly, seas. adj. 1960(1):95(4); JIPT strategy; cointegrated;VECM with ELG & BD
(1996) logs; real manuf. output per unrestricted constant; zero mean for for manuf.
employee; real total output per cointegrating relationship; Fec; lagsby SC exports &
employee; rea exports of manuf. &LR. manuf. Iabor
goods; real exports. productivity.
Henriques annual, 1877:1945; 1877:1991; JJ PT strategy; unrestricted constant; zero Terms of ELG
& Sadorsky | 1946:91; logs, real GDP, red mean for cointegrating relationship; trade (export
(1996) exports. cointegrated; VARL with unrestricted unit
constant; F; SC, HQ & AICfor lags. value/import
unit value)
Riezmanet | annual, 1950:90; GDP & export VARD with no deterministic trends; Fp; Real import NC
al. (1996) growth inreal internationd dollars. | lags not specified. growth.
Pomponio annual, 1965:85; nominal manuf. VARD or VARL depending on Investment. ELG
(1996) output & exports. cointegration outcome (not reported for
individual countries); Casel; Fp or F; lags
preset to 2.
Y amada qtrly, seas. adj. 1960(1):87(4); TYDL augmented lags method with Terms of ELG
(1998) logs; real GDP output per constant; Wa; AlC for lags. trade; real
employee, real exports. Only GDP of
tested for ELG. OECD
countries.

a. SC denotes Schwarz' s (1978) criterion; HQ denotes Hannan and Quinn’s (1979) criterion; FPE denotes Akaike's (1969) Final
Prediction Error criterion; AlC denotes Akaike's (1973) Information Criterion; ELG denotes export-led growth; GLE denotes growth-
led exports; BD denotes bidirectional Granger causdity; NC denotes GNC in both directions.
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GNC Hypothesis— Bivariate

GNC Hypothesis— Trivariate

GNC Statistic GNC Statistic
exp® gdp gdp® exp exp® gdp gdp® exp
TYDL - Wy, () 0.659 0.283 TYDL - Wa () 0.614 0.169
TYDL - LRa. (3) 0.664 0.294 TYDL - LR (3) 0.619 0.181
TYDL - Fy (3) 0.660 0.290 TYDL - Fy (3) 0.615 0.179
JIPT —Wec (b) <0.001 <0.001 TP PT —Wec (€) 0.005 <0.001
JIPT — LRec (b) 0.035 0.005 TPPT —LRec () 0.054 0.001
JIPT — Fec (b) <0.001 <0.001 TPPT —Fec () 0.009 <0.001
MLSPT — W () 0.534 0.044 JIPT — Wec (f) 0.005 <0.001
MLSPT —LR; () 0.538 0.049 JIPT — LRgc (f) 0.054 0.001
MLSPT —F5 (0) 0.537 0.049 JIPT — Fec (f) 0.009 <0.001
EG ADF PT — W (d) 0.713 0.001 MLSPT — W, (g) 0.420 0.036
EG ADF PT — LRec (d) 0.717 0.001 MLSPT —LR; () 0.425 0.042
EG ADF PT — Fec (d) 0.714 0.001 MLSPT —F5 (9) 0.424 0.042
EG ADF PT — Wgc (h) 0.691 <0.001
EG ADF PT — LRegc (h) 0.695 0.001
EG ADF PT — Fec (h) 0.691 0.001

a. Oneadditional lag isincluded in the system based on our prior belief that the variables are
integrated of order one.

b. The sample values of the | o Statistic are 19.156 and 10.758 for testing Ho,: r=0 vS. Ha:
r=1 and Hoy: r=1vs. Hy: =2, respectively. Estimated asymptotic p-values are 0.001 and
0.270 respectively (MacKinnon et al., 1999). We regject Ho, and support Ho,, which
suggests one cointegrating vector; GNC testing is then undertaken using a VECM(3).

c. Theobserved vaue of the test statistic is 0.704, which can be compared to a 10% critical
value of approximately 0.097 (McCabe et a., 1997), so we regject the null and support
noncointegration. Consequently, a VARD(3) model, with no deterministic terms, is used
to test for GNC.

d. Eight augmentation terms are included as chosen via general to specific testing. The
observed test statistic value of -3.846 has an estimated p-value of 0.015 (MacKinnon,
1994). A VECM(3) isthen used to test for GNC, with the error correction term formed
from the residuals from the static cointegrating regression.

e. Our estimate of r is 2. For both GNC hypotheses, we reject H;, given in footnote 3, so
that the p-value reported in the table is from testing H..

f. Thesample values of the | nx statistic for testing Hos: r=0 vs. Ha: r=1, Hop: r=1 vs. Hy:
r=2 and Hos: r=2 vs. Has: r=3 are 24.381, 16.240 and 12.395 with estimated asymptotic p-
values of 0.0004, 0.044 and 0.616 respectively (MacKinnon et al., 1999). These results
suggest two cointegrating vectors in the VECM(3).

g. Theobserved value of the test statistic is 0.594, which we compare to an approximate
10% critical value of 0.081 (McCabe et al., 1997). Consequently, a VARD(3) model,
with no deterministic terms, is used to test for GNC.

h. Eight augmentation terms (from a general to specific testing strategy) are included. The
observed value of the test statistic is -3.749, which has an estimated p-value of 0.020
using MacKinnon (1994). The GNC tests are undertaken viaa VECM(3), with the

residuals from the static cointegrating regression as the error correction term.
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Table 3 Canada: Estimated asymptotic p-values for | ., cointegrating rank tests®

Bivariate Trivariate Conclusion
Case
r=0vs. r=1vs. r=0vs. r=1vs. r=2vs. Bivariate Trivariate
r=1 r=2 r=1 r=2 r=3 T T
| <0.001 0.995 <0.001 0.006 0.999 1 2
I 0.001 0.270 <0.001 0.044 0.616 1 2
I 0.049 0.875 <0.001 | 0.221 | 0.990 1 1

a. The estimated asymptotic p-vaues are generated from the Fortran code provided by MacKinnon et
al. (1999).

Table 4 Canada: TYDL, JJPT and TP PT Wald GNC p-values

TYDL JIPT TPPT
Case BIVARIATE TRIVARIATE BIVARIATE TRIVARIATE TRIVARIATE
exp® | gdp® | exp® gdp® exp®@ gdp® exp®@ gdp® exp®@ gdp®
gdp exp gdp exp gdp exp gdp exp gdp exp
| 0682 | 0356 | 0604 | 0198 | <0001 | 0006 | 0657 |0012 | 0657 [ 0.012%
I 0659 | 0283 | 0614 | 0169 | <0.001 | <0.001 | 0.005 | <0.001 | 0.005* | <0.001?
1 0607 | 0341 | 0567 | 0208 | 0425 | 0002 |[0519 |0240 | 0593 [ 0.255°

a Regect Hy. P-values are for testing H..

b. Do not reject H;. P-values are for testing Ha.




Table 5 Portuguese GNC Studies
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Authors Data Method and Model® Auxiliary Result
Variables
Jung & annual, 1953:80; logs, real GNP, VARD with constant; Fp; lags preset to 3. NC
Marshall real exports.
(1985)
Hutchison annual,1956:82; logs, real GDP, VARD with no deterministic trends; Fp; Real NC
& Singh real non-export GDP, redl exports. | lags preset to 2. investment.
(1992)
Dodaro annual, 1967:86; logs, real GDP, VARD with constant; Fp; lags preset to 2. NC
(1993) real exports.
Oxley annual, 1865:91; logs, real GDP, JIPT strategy; cointegrated; VECM with GLE
(1993) real exports. unrestricted constant; zero mean for
cointegrating relationship; Wec; lags by
FPE.
Sharma & annual, 1960:87; logs, real GDP, VARD with constant; Fp; lags by FPE. Population,
Dhakal real exports. real world BD
(1994) output, real
exchange
rate, real
gross fixed
capital
formation.
Riezmanet | annual, 1950:90; GDP & export VARD with no deterministic trends; Fp; Real import NC from
al. (1996) growth inreal internationd dollars. | lags not specified. growth. bivariate
moded; GLE
from
trivariate
model.

a. SC denotes Schwarz' s (1978) criterion; HQ denotes Hannan and Quinn’s (1979) criterion; FPE denotes Akaike's (1969) Final
Prediction Error criterion; AlIC denotes Akaike' s (1973) Information Criterion; ELG denotes export-led growth; GLE denotes growth-
led exports; BD denotes bidirectional Granger causdity; NC denotes GNC in both directions.
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Table 6 Portugal: GNC p-values (Case ||

GNC Hypothesis— Bivariate Model
GNC Statistic exp® gdp odp® exp

TYDL - Wy, () 0.191 0.002
TYDL - LRa. (3) 0.206 0.004
TYDL - Fa (a) 0.201 0.004
JIPT — Wec (b) <0.001 <0.001
JIPT - LRec (b) 0.012 0.002
JIPT — Fec (D) 0.003 <0.001
MLSPT —Wj () 0.356 0.002
MLSPT - LR, () 0.366 0.003
MLSPT —Fp () 0.362 0.003
EG ADF PT — Wec (d) 0.192 0.002
EG ADF PT — LRgc (d) 0.207 0.005
EG ADF PT — Fec (d) 0.202 0.005

a One additional lag isincluded in the system.

b. Thel mx statistic sample values for testing Hoa: r=0 vs. Ha: r=1 and Hgy: r=1 vs. Hy: r=2
are 19.325 and 9.676, with estimated asymptotic p-values of 0.001 and 0.365, respectively
(MacKinnon et a., 1999). This cointegration is incorporated in a VECM(4) for the GNC tests.

C. The observed value of the test statistic is 0.779 compared to a 10% critical value of
approximately 0.097 (McCabe et a., 1997); we reject the null and support noncointegration. The
GNC tests are undertaken using a DVAR(4) model, with no constant term as thisis restricted to
zero with the noncointegration outcome.

d. General to specific testing indicated the need for five augmentation terms. The observed
test statistic value of -3.302 suggests cointegration when compared with an estimated p-value of
0.062 from MacKinnon (1994). We then tested for GNC using a VECM (4) with the error
correction term formed from the residuals from the static cointegrating regression.
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Table 7 Portugal: Estimated asymptotic p-values for | . cointegrating rank tests®

Bivariate Conclusion
Case
r=0vs.r=1 | r=1vs.r=2 r

| <0.001 1.000 1

Il 0.001 0.365 1

I 0.104 0.834 Oorl
a Asymptotic p-values are generated from the Fortran code provided by MacKinnon et al.
(1999).

Table 8 Portugal: TYDL and JJ PT Wald GNC p-values

_ TYDL JIPT
GNC Hypothesis

Casel | Casell | Caselll | Casel | Casell [ R

exp® gdp 0.095 | 0191 | 0.181 | 0.008 | 0.001 | 0.144 | 0.011

gdp® exp 0.002 | 0.002 | 0.003 | 0.002 | <0.001 | 0.001 | 0.005




Figure 1. Schematic outline of pretest strategies

Estimate VARD(p- 1) mode!; test for GNC using Wp, LRy
or Fp.

JPT
F=0
Determine Estimate
lag length p cointegrating ran_k, 0<? <K
in VARL p| I',using sequential
model. JJ procedure.
r=
EG-ADF PT Null ot
rejected
Determine Test for cointegration
augmentation P using EG-ADF for null
parameter v. of noncointegration.
Null
rejected
MLSPT
Null not
rejected
A Test for cointegration
Determine s . using MLS for null of
> coi ntegration.
Null

rejected

Estimate VECM(p- 1) ; test for GNC using Wec, LRgc or
FEC.

Estimate VARL (p) mode!; test for GNC using W, LR, or
F.

Determine p ; estimate VARD(p - 1); test for GNC using
Whp, LRp or Fp.

Determine p viaVECM; estimate VECM(p- 1); test for
GNC us ng Wee, LRgc or Fec.

Determine p viaVECM; estimate VECM(p- 1); test for
GNC us ng Wee, LRgc or Fec

Determine p ; estimate VARD( p -1); test for GNC using
Whp, LRp or Fp.
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