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Abstract 

Gold, and other precious metals, are among the oldest and most widely held commodities used as a hedge 
against the risk of disruptions in financial markets. The prices of such metals fluctuate substantially, 
introducing risks of their own. This paper’s goal is to analyze the risk of investment in gold, silver, and 
platinum by applying Extreme Value Theory to historical daily data for changes in their prices. The risk 
measures adopted in this paper are Value at Risk and Expected Shortfall. Estimates of these measures are 
obtained by fitting the Generalized Pareto Distribution, using the Peaks-Over-Threshold method, to the 
extreme daily price changes. The robustness of the results to changes in the sample period, threshold 
choice, and distributional assumptions, are discussed. Our results show that silver is the most risky metal 
among the three considered. For negative daily returns, platinum is riskier than gold; while the converse is 
true for positive returns. 

 

Keywords:  Precious metals; extreme values; portfolio risk; value-at-risk; generalized Pareto  
  distribution   

JEL Classifications: C46 ; C58 ; G10; G32 
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1. Introduction 

Gold, and other precious metals, have long been held by investors as a hedge against the 

instability of international financial markets. Typically, the price of precious metals increases in times of 

actual, or perceived, international political unrest. Often, such price movements will run counter to 

movements in equity prices, allowing investors to spread the risk associated with their portfolios.  

The prices of gold, silver, and other precious metals fluctuate substantially over time and day-to-

day, and this introduces risks of their own. For example, while the US economy was recovering during 

2013, gold prices kept decreasing. On April 15th of that year, the price of gold dropped 9.6 percent in one 

day as a result of the decreasing inflation rate, and the increasing real interest rates in the US. According 

to data from the London Bullion Market between 1968 and 2014, the daily percentage change in the gold 

price was as high as 12.5% (on 3 January 1980) and as low as -14.2% (on 22 January of that year). The 

Soviet invasion of Afghanistan and the Iranian revolution of late 1979 and early 1980 motivated people to 

buy gold, which drove up gold prices.  

Conversely, the Hunt brothers’ failed attempt to corner the silver market, and the US Federal 

Reserve’s new policy that raised interest rates dramatically to about 20 percent, pushed gold prices 

downward because of panic selling. These fluctuations had a direct impact on international financial 

markets and therefore on the business cycles of the major economies, and the livelihood of their 

populations. Surprisingly, there has been very little formal empirical analysis of the risk of holding gold 

and other precious metals as assets in their own right, or as part of a portfolio. Exceptions include Jang 

(2007), Dunies et al. (2010), and Trück and Liang (2012). As in the present paper, Jang used extreme 

value theory to analyze the risk of holding gold. In contrast, Trück and Liang applied a threshold ARCH 

model to gold data from the London bullion market for the period 1999 - 2008, and Dunis et al. analyzed 

data from 2002 - 2008 using a neural network model. These methods are quite different from that adopted 

in this paper. 

Regulators and supervisors of financial institutions have been struggling for years to raise public 

awareness of risk control in investment activities. The Basel II Accord, an international agreement on 

banking regulation, sets a minimum capital requirement for banks according to the risk forecasts 

calculated by the banks on a daily basis. The Basel II Accord was widely implemented in many countries 

including the US, Canada, Australia, and the EU. The risk measure adopted by the Basel Committee to 

quantify the market or operational risks is Value at Risk (VaR). Value at Risk is the maximum loss/gain 

at a low probability (usually one per cent) for a certain time horizon. For example, if a trader whose 
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portfolio has a 1 percent VaR of $1 million in one day, it means there is a 1 percent probability that the 

trader will lose $1 million or more "overnight". VaR was first brought to the public’s attention by JP 

Morgan as its internal risk measure in its publication, Riskmetrics (1996), and it became widely accepted 

as a basic risk measure in financial markets after the Basel II Accord adopted VaR as a preferred risk 

measure in the late 1990s. There is a considerable literature relating to this financial risk measure. For 

example, see Jorion (1996), Dowd (1998), and Duffie and Pan (1997). Another common risk measure that 

is often used as an alternative to VaR is Expected Shortfall (ES). Expected Shortfall is the average 

loss/gain given that VaR already has been exceeded. ES is considered as a coherent alternative to VaR 

since VaR is non-subadditive and may have a misleading effect on portfolio diversification (Artzner et 

al., 1997, 1999). This paper estimates the values of both VaR and ES for daily changes in the prices of 

gold, silver, and platinum. 

In order to measure extreme risk and to be prepared for irregular losses, we are interested in the 

behavior of the tail of the distribution of price changes. Most conventional models take the normality 

assumption for granted and consider the tail part of a distribution as outlier events. In this paper, we 

employ a well-developed statistical method that models low frequency, high severity events, the Extreme 

value theory (EVT). EVT provides a firm theoretical foundation for analyzing those rare events that have 

serious consequences. EVT identifies the limiting distribution of the maxima of a random variable. Those 

exceedances, the values above a specified high threshold, must be generated by the Generalized Pareto 

Distribution (GPD) (Balkema and de Haan, 1974; Pickands, 1975). When studying extreme events, EVT 

plays a role that is analogous to that played by the Central Limit Theorem in the study of sums of a 

random variable. There has been much research related to the application of Extreme Value Theory to 

risk management and financial series, for example, the work of Embrechts et al. (1999), Gilli (2006), and 

McNeil (1999). EVT has been applied to many other markets, such as those for crude oil and agricultural 

products (e.g., Giles and Ren, 2007; and Odening and Hinrichs, 2003). Some of the pitfalls of EVT are 

discussed in Diebold, Schuermann and Stroughair (2000).  

In this paper, we use the Peaks-Over-Threshold (POT) method, and the GPD, to model the 

extreme risks associated with the daily price returns for gold, silver, and platinum. Section 2 presents the 

framework of EVT and the POT methodology. Section 3 introduces the standard risk measures - VaR and 

ES. Then we discuss our data, the process of the tail estimation, and the computation of estimates of our 

risk measures in section 4. The robustness of our risk estimates to the choice of sample, and to the choice 

of threshold in the POT analysis, is considered in section 5. The last section summarizes the empirical 

results and briefly discusses some directions for future research. 
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2. Models and Methods 

2.1 Extreme Value Theory 

In order to avoid systematic risk, regulators and supervisors of large financial institutions are 

concerned about the heavy tails of the time series for returns on financial assets. Many conventional 

models fail to model those irregular events properly. The past literature has discussed the superiority of 

EVT to other approaches, such as the GARCH model, historical simulation, the variance-covariance 

method, and Monte Carlo simulation. The EVT-based VaR is more robust than other model-based VaR - 

see Paul and Barnes (2010), and Gençay et al. (2003) for more details. Avdulaj (2011) found that the 

historical simulation method tends to overestimate the VaR, while the variance-covariance method tends 

to underestimate it. Two different methods are used to model extreme events. One is the block maxima 

method which involves the Generalized Extreme Value distribution; and another one is the POT method 

which involves the GPD. The block maxima method chooses the maximum values of a variable during 

successive periods to constitute the extreme events, and it is based on the Fisher–Tippet theorem (Fisher 

and Tippett, 1928; Gnedenko, 1943). The latter result ensures that the normalized maxima of the blocks 

of data follow one of the Fréchet, Weibull and Gumbel distributions. The block maxima method requires 

the data to be i.i.d. and they must converge to a non-degenerate distribution function. The POT method 

models the behavior of exceedances over a given high threshold, and requires that individual data-points 

be availabe. EVT implies that the limiting distribution of the exceedances (not the original data) is the 

GPD (Pickands, 1975; Balkema and de Haan, 1974). Some recent contributions to the theory of the GPD 

include those of Oakes and Dasu (1990), Asadi et al. (2001), and Tavangar and Asadi (2008, 2012). 

Previous research has indicated that the GPD uses the data more efficiently and effectively than 

does the block maxima method (e.g., Jang; 2007, Gilli, 2006; and Allen et al., 2013). Unnecessarily 

dividing the data into artificial blocks ignores the fact that each block may have a different characteristics. 

In some blocks, all of the values could be much smaller than in most blocks, and in other blocks, all the 

values might be quite large compared to the whole sample. It is inefficient to artificially “block” the data. 

Accordingly, in this paper we focus on the POT method, as the original daily data are readily available. 

2.2 Generalized Pareto Distribution 

An implication of EVT is that the maxima of a random variable above certain high threshold 

should be generated from a GPD. The distribution of the exceedances is presented by a Conditional 

Excess Distribution  , defined as  
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|  ;  for 0    .                     (1) 

X is a random variable, u is a given threshold,  are the exceedances, and ∞ is the right 

endpoint of the support of the unknown population distribution, F, of X. 

Equation (1) can be rewritten in terms of F: 

       .                                                 (2) 

For large enough u, the Conditional Excess Distribution  is approximated increasingly well by the 

GPD (Balkands and de Haan, 1974; Pickands, 1975): 

, ,  as → ∞ ; 

where the two-parameter GPD in terms of y takes the form: 

, =

			
1 1 ⁄ 									 	 0	

1 ⁄ 																						 	 0
                                           (3) 

for  ∈ 0, , 		 0 ; and  ∈ 0, 	 , 		 0 . 

Let , after reorganizing the equations we can get a three-parameter GPD in terms of x: 

 , , =

			
1 1 ⁄ 									 	 0	

1 ⁄ 																						 	 0
       .                            (4) 

Here, u is the threshold,  is the shape parameter, σ is the scale parameter. 

The shape parameter, , determines the heaviness of the tail of the distribution. The larger the 

shape parameter is, the heavier the tail will be. The shape parameter  can be positive, negative or equal 

to zero. If 0, the Conditional Excess Distribution  has an upper bound. If 0, the 

corresponding distribution has unbounded support and a fat tail. The latter case is usually the one of 

interest when modelling financial data, and indeed this is the case in our study.  

2.3 Peaks Over Threshold Method 

The POT methodology is a desirable approach to analyze extreme risks because it is based on a sound 

statistical theory, and it offers a parametric form for the tail of a distribution. The POT method focuses on 
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the exceedances above a specified high threshold. First, we need to determine the proper threshold. Then, 

with the given threshold we can fit the GPD to our data. The parameter estimates are computed by the 

method of maximum likelihood. There are two plots that help with the selection of thresholds. One is the 

Sample Mean Excess Plot and another one is the Shape Parameter Plot. So far, there is no algorithm based 

method available for the selection of the threshold u. Many researchers have analyzed this issue, but none 

have provided a convincing solution. 

1. Sample Mean Excess Plot  

For a random variable X with right end point , its mean excess function is defined as: 

|                                                        (5) 

for  . If the underlying distribution is a GPD, then the corresponding (population) mean excess 

function is:      

	          ;                                                           (6) 

for σ 0 , and 1. (e.g., Cole, 2001, p.79.) 

As we can see from (6), the mean excess function is linear in the threshold u when the exceedances 

follow GPD. This important property can help with the selection of the threshold value in practice.  

The empirical mean excess function is 

∑
,  	 	|	                                       (7) 

where n - k + 1 is the number of observations over the threshold u. The sample mean excess plot is the 

locus of , ,  , and an inspection of this plot facilitates the choice of threshold value. 

Specifically, we seek a threshold beyond which the empirical mean excess function is roughly upwards, 

and linearly, sloped. 

2. Parameter Plot 

We use the method of maximum likelihood to estimate the parameters. The log-likelihood function, 

based on a sample of n observations, is  
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L , |

			
1 ∑ 1 								 	 0	

∑ 																																									 	 0
          .        (8) 

When choosing the value of the threshold, there is a trade-off between the bias and variance of the 

maximum likelihood estimates of the shape and scale parameters. We need a large value of u for the EVT 

to hold, and to minimize bias. But as the threshold gets larger, there will be fewer observations in the tail, 

and this reduces the efficiency of estimation. If the threshold is too low, the conditional excess 

distribution function will not converge to that of the GPD. It is important to investigate the robustness of 

the results to the choice of the threshold, u. For a detailed discussion relating to threshold selection see 

Matthys and Beirlant (2000), Embrechts et al. (1997), and McNeil et al. (2010).  

Above a certain threshold, the exceedances should approach the GPD, so the estimated values of 

the parameters should be roughly constant. The so-called parameter plot is a graph of the maximum 

likelihood estimates of the shape and scale parameters for various choices of the thresholds. We choose 

the threshold beyond which the estimates of parameters become unstable. 

3. Risk Measures 

3.1 Value at Risk and Expected Shortfall  

We consider two standard choices of risk measurement in this paper. One is Value at Risk (VaR), 

and the other one is Expected Shortfall (ES). These two risk measures involve the estimation of extreme 

quantiles of the underlying distribution.  

VaR quantifies the maximum loss /gain occurring over a given time-period, with a specified 

(low) probability. VaR is often calculated at the 99th percentile over a one-day or ten day-period. In this 

paper, we compute the VaR associated with one day returns. Let X be a random variable with continuous 

distribution function F,  is 1  percentile of the distribution F : 1   

In our analysis, the VaR can be defined as a function of the parameters of the GPD. Re-

organizing (2), we get: 

1 	          .                                    (9) 

Replacing 	  with the GPD, and  with , where n is the sample size and  is the number of 

observations above the threshold, we have: 
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1 1 1      .                            (10) 

After simplifying and inverting (10), for a given percentile, p, we have 

1    .                                                  (11) 

Since VaR is a quantile of the distribution, we can obtain the formula for the VaR estimator: 

1      .                                              (12) 

ES describes the expected size of the return exceeding VaR. It is a conditional mean, given that VaR is 

exceeded, and is defined as |	 . 

By invariance, the maximum likelihood estimator of ES is: 

ES |      .                                    (13) 

The second term in equation (13) is the expected value of the exceedances above the , which is the 

mean excess function of  (see equation (5)). The mean excess function for the GPD is given in 

(6) in section 2.3. Thus, we get: 

     .                                                 (14) 

Substituting (12) into (13) yields the formula for the ES estimator: 

       .                                  (15) 

After we estimate the tail distribution using the GPD, we can calculate these risk measures by inserting 

the GPD parameter estimates into the above formulae.  

3.2 Interval Estimation of VaR and ES 

As the expressions for both the VaR and ES are non-linear in the parameters, we use the delta 

method (e.g., Oehlert, 1992) to calculate asymptotic standard errors for these measures. The asymptotic 

normality and invariance of maximum likelihood estimators imply that the estimates of VaR and ES are 
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also asymptotically normal in distribution. So, the construction of asymptotically valid confidence 

intervals is straightforward. Although most authors report only point estimates of VaR and ES, Ren and 

Giles (2007) also use the delta method in a similar context to obtain confidence intervals.  

Using the delta method, the estimated asymptotic variance of VaR can be calculated as:  

̂ ̂
̂ ̂   

																																										 ̂ ̂ ̂ ̂         ,               (16) 

where  				,																			
̂ ̂
̂ ̂ , 	, 							 ̂ ̂  

 is the estimated variance-covariance matrix of the (estimated) shape and scale parameters, and  is 

obtained by noting that: 

1   

1  . 

The asymptotic standard error for the estimated VaR is 

 	 . .             .                                         (17) 

As the VaR and ES maximum likelihood estimators are asymptotically normal, a 95% confidence interval 

is constructed as  

1.96 ∗ . . 		, 		 1.96 ∗ 	 . .       .                 (18) 

We compute the asymptotic standard error and 95% confidence interval for ES in the same way.  
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4. Data Characteristics and Application 

4.1 Data Characteristics 

The data that we use for gold is London Fixings p.m. Gold Price from the London Bullion Market 

Association (LBMA)1. Fixing levels are in USD per troy ounce. The sample period is from 1 April, 1968 

to 8 January, 2014. Of the 11,495 gold price returns, 5,447 are negative and 6,048 are positive.  

For silver, we use LBMA Silver Price: London Fixings, from London Bullion Market Association 

(LBMA)2. Again, fixing levels are set in troy ounces. The prices are from 2 January, 1968 to 14 March, 

2014, and are in USD. We have 11,680 silver daily returns in total, of which 5,968 are positive and 5,712 

are negative. In our sample, the data for some dates are missing. In these cases we converted data that are 

available in GBP to USD3. 

For platinum, we choose the Johnson Matthey Base Prices, London 8:00 a.m., which are the 

company’s quoted selling prices. The price is for metal in sponge form, with minimum purities of 99.95% 

for platinum4. Again, prices are in USD per troy ounce. The time horizon is the longest available – 

namely, from 1 July, 1992 to 24 March, 2014 (N = 5,578). There are 3,079 positive returns and 2,499 

negative returns. However, when comparing the risks of holding various commodities, we should keep in 

mind that these risks could be affected by the choice of time period. For a small number of dates, data are 

unavailable for the London market. Because all of the prices provided by Johnson Matthey are in USD, 

we simply use the platinum prices from the New York and Hong Kong markets in these cases.  

Daily price data for each precious metal are shown in Figures 1 to 3, and these are converted to 

daily returns by taking log-differences. We have modelled the positive returns and the (absolute values of 

the) negative returns for each metal separately, as there is no prior justification for assuming that the risk 

is symmetric, and there is recent evidence to suggest asymmetry (Blose and Gondhalekar, 2014).  

                                                            
1The data were retrieved on 9 January, 2014 from: http://www.quandl.com/OFDP-Open-Financial-Data-Project/GOLD_2-
LBMA-Gold-Price-London-Fixings-P-M 
2 Data retrieved on 15 March 2014 from http://www.quandl.com/OFDP/SILVER_5-LBMA-Silver-Price-London-Fixings 
3 The exchange rate was obtained from http://fxtop.com/en/historical-exchange-rates.php 
4 The data and data description are from http://www.quandl.com/JOHNMATT/PLAT-Platinum-Prices 
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Figure 1: Daily Gold Prices from the London Bullion Market for the period 1 April, 1968 to 8 January, 
2014.  

 

 

 

 

 

Figure 2: Daily Silver Prices from the London Bullion Market for the period 2 January, 1968 to 14 
March, 2014. 
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Figure 3: Daily Platinum Prices are the Johnson Matthey Base Prices, London 8:00 a.m. for the period 1 
July, 1992 to 24 March, 2014. 

 

  Mean  Max. Min. t-stat. Skewness Kurtosis J-B Test ADF 

Gold 0.03% 12.50% -14.20% 0.02 0.10 14.38 62048.84 -109.93 

Silver 0.02% 31.18% -25.75% 0.01 -0.06 19.23 128271.90 -14.86 

Platinum 0.02% 13.93% -15.54% 0.02 -0.31 13.79 27145.25 -74.33 

Table 1: Descriptive statistics and basic tests of daily gold, silver, and platinum returns.  

 

Figure 4: QQ plots of daily gold returns applied to normal distribution (left panel) and Student-t 
distribution (right panel). 
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The stationarity of the returns time-series is assessed by means of the augmented Dickey-Fuller 

(ADF) test (with no drift or trend), where the augmentation level is chosen by minimizing the Schwartz 

information criterion. For our large sample sizes the (one-sided negative) 1% critical value is -2.566. The 

results in Table 1 indicate a very clear rejection of the hypothesis that the returns series are non-

stationary.  

Also in Table 1, we see that the mean daily returns for each metal are essentially zero, and the t-

statistics for testing this null hypothesis are so small that zero means cannot be rejected at any reasonable 

significance level. Further, the daily returns are slightly skewed, and they have high kurtosis. The Jarque-

Bera (J-B) test statistics, which are asymptotically chi-square with two degrees of freedom under the null 

hypothesis of normality, clearly indicate that the daily returns are non-normal for each metal. Indeed, the 

quantile-quantile plots in Figure 4 show that the gold price returns data are not well explained by either a 

normal distribution or a Student-t distribution (with estimated degrees of freedom). The same is true for 

the other two metals under study. In fact, many researchers have found that an analysis based on the 

normal distribution will underestimate the VaR – a point to which we return in section 5.1. This suggests 

that, instead of considering those tail observations as outliers, we need a proper method to address the fat 

tails and model those extreme events. EVT is designed to deal with this situation.  

The application of this theory requires that the extremes data are independent. In particular it is 

important to check that the “exceedances” exhibit these properties before estimating the parameters of the 

GPD distribution in the context of the Peaks-Over-Threshold analysis. The independence of the various 

returns exceedances series has been verified by inspection of the associated correlograms and Ljung-Box 

Q statistics. We have also used the more general independence test of Brock et al. (1997). This test is 

applicable for a range of nonlinear multi-dimensional alternatives, and we have bootstrapped the p-values 

for the test statistic to allow for the modest sample sizes associated with the exceedances series. These 

results, for two and three embedding dimensions, appear in Table 2. The results for higher dimensions are 

very similar, and in all cases clearly support the null hypothesis of independence. 

We discuss the time sensitivity of our estimated risk measures in section 5. In some parts of the 

following discussion we use gold as an illustrative example, to conserve space. 
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                       Positive Returns        Negative Returns 

 

 

  

 

 

 

 

 

 

Table 2: Tests of independence of the excess returns series using the BDS test with 2 and 3 embedding 
dimensions. u = threshold value, determined in section 4. Sample sizes and bootstrapped p-values appear 
in parentheses. 

 

4.2 Determination of the Threshold 

As was discussed in section 2.3, there are two plots that can help us to determine the threshold 

level that is central to the Peaks-Over-Threshold analysis. Figure 5 presents the mean excess (ME) plots 

and parameter plots for positive and negative gold daily returns. The corresponding plots for the silver 

and platinum daily returns are available upon request. These results, and the associated maximum 

likelihood estimation results below, were obtained using the POT package (Ribabet, 2006) for the R 

statistical environment. 

For the ME plot, the upper and lower dashed lines constitute confidence bands at an approximate 

95% level. The ME plots are not very helpful in our case. We are looking for a point where the plot starts 

to be linear and upward sloping, but both positive and negative returns have positive slopes under all 

thresholds. Therefore, we focus primarily on the parameter plots to determine the thresholds. 

 u 

(N) 

BDS-2 

(p) 

BDS-3 

(p) 

u 

(N) 

BDS-2 

(p) 

BDS-3 

(p) 

Gold 0.030 2.080 1.959 0.022 -0.237 -0.333 

 (210) (0.225) (0.239) (398) (0.648) (0.578) 

Silver 0.018 -0.084 (0.946) 0.038 -0.238 -0.280 

 (1554) -0.121 (0.882) (391) (0.872) (0.894) 

Platinum 0.030 -0.206 -0.251 0.025 -0.105 -0.107 

 (119) (0.951) (0.991) (180) (0.638) (0.590) 
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Figure 5: ME plots of positive returns (top left) and negative returns (bottom left). Parameter plots for 
positive returns (top right) and negative returns (bottom right). 

 

On the basis of the plots in Figure 5, for positive returns, we choose a threshold u = 0.030; for 

negative returns, we choose u = 0.022. As we will see in Section 4.4, the estimated risk measures are 

quite robust to the choice of threshold, u. As long as the threshold is within a proper range so that the 

exceedances above the threshold follow GPD, the estimates of VaR and ES are quite stable. We use 

corresponding plots to determine the thresholds for the silver and platinum daily returns. For silver, we 
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choose thresholds u = 0.018 for positive returns and u = 0.038 for negative returns. For platinum, based 

on the two plots, we choose thresholds u = 0.030 for positive returns and u = 0.025 for negative returns. 

4.3 Parameter Estimation 

Given the thresholds selected in the previous section, we can estimate the shape and scale 

parameters of the corresponding GPD. Again, the POT package for R is used to implement maximum 

likelihood estimation, based on (8). Table 3 summarizes the parameter estimates and their asymptotic 

standard errors. In the case of gold, we illustrate the sensitivity of the parameter estimates to different 

threshold choices. The preferred thresholds, based on Akaike’s information criterion (AIC), are indicated 

with asterisks. These results are also statistically more significant than the others shown. 

Figure 6 provides a comparison of the empirical Cumulative Distribution Function (CDF) against 

the theoretical CDF for the GPD, for each of the metals’ returns. The theoretical CDFs are computed 

using the threshold values and parameter estimates in Table 3. All of the graphs show that the GPD 

models the tails of the corresponding empirical distributions extremely well.  

 

Maximum Likelihood Estimates: Gold 

 
Parameter Estimates For  

Positive Returns 

Parameter Estimates For  

Negative Returns 

Threshold u = 0.030*  u = 0.038     u = 0.022*  u = 0.042  

No. Exceedances 210  112  398  78  

 

(s.e.) 
0.1848  
(0.0910)  

0.1054  
(0.1267)  

0.1689  
(0.0616)  

0.0563   
(0.1078)  

 

(s.e.) 
0.0123  
(0.0014)  

0.0153  
(0.0024)  

0.0105  
(0.0008)  

0.0156  
 (0.0024)  

AIC -1347.096  -684.839  -2695.506  -480.997  

 

 

          (continued) 
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Maximum Likelihood Estimates: Silver 

 
Parameter Estimates For  

Positive Returns 

Parameter Estimates For  

Negative Returns 

Threshold      u = 0.018             u = 0.038   

No. Exceedances 1554   391   

 

(s.e.) 
0.1980  
(0.0282)  

 
 

0.3140  
(0.0740)  

 
 

 

(s.e.) 
0.0130  
(0.0005)  

 
 

0.0174  
(0.0015)  

 
 

AIC -9776.956   -2140.080   

Maximum Likelihood Estimates: Platinum 

 
Parameter Estimates For  

Positive Returns 

Parameter Estimates For  

Negative Returns 

Threshold      u = 0.030          u = 0.025   

No. Exceedances 119   180   

 

(s.e.) 
0.1692  
(0.0965)  

 
 

0.2829  
(0.1058)  

   
 

 

(s.e.) 
0.0101  
(0.0013)  

 
 

0.0099  
(0.0012)  

 
  

AIC -812.765   -1197.287  

Table 3: Maximum likelihood parameter estimates for gold, silver, and platinum. 
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CDF for Gold Daily Returns 

 

 

CDF for Silver Daily Returns 
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CDF for Platinum Daily Returns 

 

Figure 6: Empirical Cumulative Distribution Function (CDF) against the theoretical CDF for Positive 
Returns (left panel) and negative returns (right panel).  

4.4 Risk Measures Estimation 

The ultimate use of risk measures, such as VaR, is to help set risk adjusted minimum capital 

requirements to protect financial institutions from irregular, large losses. VaR and ES analyze the worst 

case scenario: if things go wrong, how wrong could they go? In this section we present both point and 

interval estimation results for gold, silver and platinum. Point estimates of VaR and ES are calculated at 

the conventional 99th percentile (i.e., 1% VaR and 1% ES), using the formulae in section 3.1. The results 

are presented in Table 4.  

For positive gold returns, with 1% probability (at the 99th percentile), the daily return for the gold 

price could exceed 4.72%, and the average return above this level will be 6.61%. For negative returns, 

with 1% probability, the daily return for the gold price could fall below -4.68%, and the average return 

below this level will be -6.45%. That means a trader holding a $1million position in gold faces a 1% 

chance of losing $46,800 or more “overnight”. If such an event occurred, the expected loss would be 

$64,500. 

For silver, the point and interval estimates of 1% VaR and 1% ES are also presented in Table 4. 

For positive returns, with 1% probability, the daily return for silver price could exceed 7.74%, and the 

average return above this level will be 10.82%. For negative returns, with 1% probability, the daily return 

for silver price could fall below -8.38%, and the average return below this level will be -13.01%.  
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For platinum, we see that for positive returns, there is 1% probability that the daily return for 

platinum price could exceed 4.53%, and the average return above this level will be 6.06%. For negative 

returns, there is 1% probability that the daily return for platinum price could fall below -5.11%, and the 

average return below this level will be -7.52%.  

Point and Interval Estimates - Positive Returns 

 Percentile VaR 95% CI Lower 95% CI Upper 

Gold 99th 0.0472 0.0444 0.0500 

Silver 99th 0.0774 0.0726 0.0821 

Platinum 99th 0.0453 0.0422 0.0484 

 Percentile ES 95% CI Lower 95% CI Upper 

Gold 99th 0.0661 0.0587 0.0736 

Silver 99th 0.1082 0.0972 0.1191 

Platinum 99th 0.0606 0.0527 0.0684 

     

 

Point and Interval Estimates - Negative Returns 

 Percentile VaR 95% CI Lower 95% CI Upper 

Gold 1st -0.0468 -0.0440 -0.0496 

Silver 1st -0.0838 -0.0778 -0.0899 

Platinum 1st -0.0511 -0.0462 -0.0561 

 Percentile ES 95% CI Lower 95% CI Upper 

Gold 1st -0.0645 -0.0571 -0.0718 

Silver 1st -0.1301 -0.1078 -0.1524 

Platinum 1st -0.0752 -0.0583 -0.0921 

Table 4: Point and interval estimates of VaR and ES for gold, silver and platinum. 

 

Table 4 summarizes all of the estimates of risk measure at the 99th percentile. Some evidence 

relating to the 95th percentile (i.e., 5% VaR and 5% ES) is given in section 5.3. The 95% confidence 

intervals are obtained using the delta method, described earlier. The results show that silver is the most 
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risky metal among the three. For negative returns, platinum is riskier than gold. For positive returns, gold 

is riskier than platinum. As investors and financial regulators generally care more about the downside 

risk, we conclude that gold is the least risky of these three precious metals. In addition, the narrow 

confidence intervals for the estimates indicate that EVT works well in modeling these extreme events and 

our risk measure estimates are quite precise. 

5. Some Robustness Checks 

5.1 Sensitivity to Distributional Assumption   

As we noted in section 1, many conventional approaches to risk analysis make the naïve 

assumption that the data are normally distributed. As we showed in section 4.1, this assumption is not 

tenable for our data. However, it is interesting to investigate the extent to which are results differ from 

those that would be obtained under the assumption of normally distributed returns for gold, silver, and 

platinum. 

For each metal, the returns data were standardized, and normal quantiles were computed. This 

yielded the 99th and 1st percentile values – i.e., the 1% VaR estimates – shown in Table 5. Then, the ES 

values in Table 5 were estimated by computing the mean of the sub-sample of returns in the tail beyond 

the VaR. Several results emerge. 

First, none of the VaR or ES values computed assuming normality are covered by the 

corresponding GPD-based 95% confidence intervals in Table 4. Loosely speaking, the results based on 

the normality assumption are significantly different from those based on the GPD. Second, in all cases, 

the VaR and ES estimates that are obtained when normality is assumed are smaller (in absolute value) 

than those based on the more appropriate GPD assumption. That is, the naïve methodology based on the 

assumptions that daily returns are normally distributed leads to a systematic under-estimation of the 

“risks” associated with holding these precious metals. We foreshadowed this result in our discussion in 

section 4.1. In many instances, this under-estimation is substantial in value, and this underscores the 

importance of using the appropriate EVT. 
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Risk Measures Based on Assumption that Returns are Normally Distributed 

 Positive 
Returns 

 Negative 
Returns 

 

 VaR ES VaR ES 

Gold 0.0299 0.0449 -0.0295 -0.0441 

Silver 0.0450 0.0658 -0.0469 -0.0812 

Platinum 0.0324 0.0449 -0.0323 -0.0490 

Table 5: 1% estimates of VaR and ES for gold, silver and platinum, assuming normally distributed 

returns. 

5.2 Sensitivity to Choice of Sample   

In this section, using the gold returns by way of illustration, we check the sensitivity of some of 

our results to the choice of sample period. We repeat our analysis for the gold daily returns using data 

only from 4 January 1982 to 8 January 2014. This omits the highly volatile period from 1980 to 1982. 

There are 8,025 daily returns in the shortened sample, of which 4,178 are positive and 3,847 are negative. 

The highest daily return is 10.48% and the lowest is -12.9%. Again, the positive returns and negative 

returns are modeled separately. We first use the ME and parameter plots to find appropriate thresholds 

and then estimate the GPD parameters by maximum likelihood. The threshold chosen for positive returns 

is 0.032, and for negative ones it is 0.028.  

Comparing Tables 6 and 3 allows us to assess the robustness of the parameter estimates to the 

choice of sample period. Although the point estimates of the shape and scale parameters are very similar 

in each case, the precision of estimation is generally greater when the full sample period is used. 

In Table 7, we see that the values of the risk measures are reduced when we omit the data from 

the early 1980s. The changes are not very significant as we include another volatile period 1982-1985 in 

our modeling. The choice of the time horizon does affect the estimation of risk, as expected. Accordingly, 

we might infer that if we modelled data from the late 1980s to 2014, the associated VaR and ES would be 

even smaller. The results of Jang (2007) support our argument. Jang analyzed only negative daily returns 

for gold and the estimated the 1% daily VaR to be 2.4%, and the associated ES to be 3.13%, both of 

which values are (absolutely) smaller than ours. His data were from 1985 to 2006, and so he excluded the 

volatile periods from 1980-1985 and after the 2008 financial crisis. The time horizon can have a 
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significant impact on the estimation of market risks. When using VaR and ES to compare the risk of 

different portfolios or assets, financial regulators and supervisors should take this factor into account. 

Maximum Likelihood Estimates: Gold 

 
Parameter Estimates For  

Positive Returns 

Parameter Estimates For  

Negative Returns 

Threshold u = 0.032           u = 0.028   

No. Exceedances 75   112   

 

(s.e.) 
0.1607  
(0.1370)  

 
 

0.1615  
(0.1016)  

 

 

(s.e.) 
0.0102  
(0.0018)  

  
0.01056  
(0.0014)  

  

AIC -510.071   -755.899   

Table 6: Maximum likelihood parameter estimates for gold daily returns from 4 January 1982 to 8 
January 2014. 

 

Time Sensitivity Check 

 Positive Returns Negative Returns 

 1% VaR 1% ES 1% VaR 1% ES 

Gold 1968 0.0472 0.0661 -0.0468 -0.0645 

Gold 1982 0.0383 0.0516 -0.0403 -0.0553 

Table 7: Point estimates of VaR and ES for gold daily returns with different time horizons. 

 

5.3 Threshold Selection Sensitivity 

As we can see in Table 8, the 1% daily VaR for positive gold price returns is 4.72% when the 

threshold is u = 0.030, and it is 4.77% for a threshold u = 0.038. This VaR estimate is very stable under 

different thresholds. This is true for both positive and negative returns. The estimates of 1% ES are also 

quite stable, consistent with our earlier assertion that as long as the threshold is within an appropriate 

range, the estimates of these risk measures will be robust.  
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VaR - Positive Returns 
 

VaR - Negative Returns 

Percentile  Threshold  Estimate  
 

Percentile  Threshold  Estimate  

99th  u = 0.030  0.0472 
 

1st  u = 0.022  -0.0468 

99th  u = 0.038  0.0477 
 

1st  u = 0.042  -0.0476 

95th  u = 0.030  0.0257 
 

1st  u = 0.022  -0.0261 

95th  u = 0.038  0.0236 
 

1st  u = 0.042  -0.0232 

 

ES - Positive Returns 
 

ES - Negative Returns 

Percentile  Threshold  Estimate  
 

Percentile  Threshold  Estimate  

99th  u = 0.030  0.0661 
 

1st  u = 0.022  -0.0645 

99th  u = 0.038  0.0666 
 

1st  u = 0.042  -0.0654 

95th  u = 0.030  0.0398 
 

1st  u = 0.022  -0.0396 

95th  u = 0.038  0.0390 
 

1st  u = 0.042  -0.0386 

Table 8: Point estimates of VaR and ES for gold daily positive and negative returns. 

 

Table 8 also includes 5% VaR and 5% ES estimates. Of course, these are lower than their 1% 

counterparts, but they too are very robust to the choice of threshold values, over sensible ranges. 

Although gold prices are used again here for illustrative purposes, our conclusions apply equally in the 

cases of silver and platinum. 

6. Conclusions and Policy Implications 

In this paper we have used extreme value theory to estimate potential extreme losses and gains in 

the markets for three key precious metals – gold, silver, and platinum. The Peaks-Over-Threshold 

method, in conjunction with maximum likelihood estimation of the parameters of the Generalized Pareto 

Distribution, is used. We report estimates of Value at Risk and Expected Shortfall associated with the 

daily returns on the prices of each of these metals, using a long time-span of data. One novel aspect of our 

results is that interval estimates of these risk measures are provided, rather than just point estimates. Of 

the three precious metals considered in this study, we find that gold has the least downside risk. The 

difference between the downside risk for gold, and that for platinum, is not significant at the 5% level. 
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However, the downside risk associated with holding silver is significantly greater than that of holding 

either platinum or gold, again at the 5% significance level. 

There are several important policy implications arising from this study. First, naively constructing 

risk measures on the assumption that the underlying data are normally distributed is extremely dangerous. 

Specifically, this can lead to estimates of Value at Risk that significantly under-state the risk involved. 

Portfolio managers are advised to base these measures, instead, on appropriately applied extreme value 

theory. 

Second, the choice of the time horizon for the data can affect the estimation of risk measures, and 

we have explored this issue using daily gold returns as an illustration. Even when the appropriate extreme 

value theory is applied, the choice of the sample period can affect the conclusions significantly, and can 

again lead to under-statements of Value at Risk. This is a point that must be borne in mind by regulators 

when they evaluate the reported market risk of firms, or assets.  

Third, portfolio managers should recognize that the downside risk associated with holding 

precious metals can vary substantially depending on the asset that is chosen. Among the three widely 

traded precious metals that we have considered, gold is the preferred choice in this respect. However, 

because the time horizons used for our gold, silver, and platinum daily returns data are slightly different, 

the comparisons that we make have some limitations. This warrants further study. 

Future work could also consider formalizing the choice of the threshold value when applying the 

Peaks-Over-Threshold methodology. Although our results appear to be very robust to this choice, this is 

an issue that is relevant for all studies that employ this particular methodology. Finally, our extreme value 

analysis has been based on univariate theory, with each of the three precious metals treated separately. An 

analysis of multivariate extremes is possible. However, this needs to be explored with care as it is well 

known that many dependent multivariate processes are almost independent in the tails of the distributions. 

In such cases a univariate analysis remains more appropriate. 
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