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Summary 
 
The Topp-Leone distribution is attractive for reliability studies as it has finite support and a bathtub-

shaped hazard function. We compare some properties of the method of moments, maximum 

likelihood, and bias-adjusted maximum likelihood estimators of its shape parameter. The last of these 

estimators is very simple to apply and it dominates the method of moments estimator in terms of 

relative bias and mean squared error. 
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1. Introduction 

In this note we study the sampling properties of the maximum likelihood (ML) and method of 

moments (MOM) estimators of the shape parameter of an important distribution that has finite support 

– the Topp-Leone (T-L) distribution. The selection of distributions whose support is finite is relatively 

sparse. Obvious examples include the Beta and Uniform distributions, but there are also less well-

known examples such as the doubly-truncated Weibull distribution (McEwan and Parresol, 1991), the 

distributions of Haupt and Schäbe (1992, 1997), and Schäbe (1994). 

 

Nadarajah and Kotz (2003) “re-discovered” such a distribution, first proposed by Topp and Leone 

(1955), and this distribution has attracted recent attention – e.g., Ghitany et al. (2005), Van Dorp and 

Kotz (2006), Zhoiu et al. (2006), Kotz and Seier (2007), Nadarajah (2009), and Genç (2012). As well 

as having finite support, the T-L distribution has a “J-shaped” density function and a hazard function 

that is “bathtub-shaped”. The latter characteristic is especially important in reliability applications in a 

wide range of fields, as is discussed recently by Reed (2011). 

 

For a given support, the shape parameter of the T-L distribution is easily estimated by ML or MOM. 

We show that both of these estimators are positively biased in finite samples. The ML estimator can 

be expressed in closed form, so it is especially simple to compute. It exhibits greater (relative) bias 

than the method of moments estimator, but smaller relative mean squared error. We derive the bias of 

the ML estimator to O(n-1), and prove that the corresponding bias-corrected estimators based on the 

different approaches of Cox and Snell (1968) and Firth (1993) are identical for this problem. A 

simulation experiment illustrates that the bias-corrected ML estimator dominates the MOM estimator 

in terms of both (relative) bias and mean squared error. 

 

2.  The Topp-Leone distribution 

The density function for the T-L distribution is: 

 

	݂ሺݔሻ ൌ ሺ2ݒ/ܾሻ	ሺݔ/ܾሻሺ௩ିଵሻ	ሺ1 െ ሺ2	ሻܾ/ݔ െ 0	 ;			ሻሺ௩ିଵሻܾ/ݔ ൏ ݔ ൏ ܾ ൏ ∞		; ݒ			 ൐ 0 .        (1) 

 

In contrast to the Beta distribution, for example, the T-L hazard function has a simple closed form, 

namely: 

   

ሻݔሺߣ   ൌ ሺ2ݒ/ܾሻݕሺ1 െ ଶሻ௩ିଵ/ሾ1ݕ െ ሺ1 െ  ଶሻ௩ሿ ,             (2)ݕ
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where ݕ ൌ 1 െ ሺݔ/ܾሻ . 

 

Following Nadarajah and Kotz (2003, p.317) we will set b = 1, so that 

 

 		݂ሺݔሻ ൌ ௩ିଵሺ1ݔݒ2 െ ሻሺ2ݔ െ 0					 ;		ሻ௩ିଵݔ ൏ ݔ ൏ 1		; ݒ			 ൐ 0 .            (3) 

The J-shape of this density, and the bathtub shape of the hazard function (for all ݒ ∈ ሺ0,1ሻሻ, are 

illustrated by Nadarajah and Kotz (2003, pp. 312-313). 

 

Under independent sampling, with sample size n, the log-likelihood function is: 

 

݈ ൌ ሺ2ሻ݃݋݈݊ ൅ ሻݒሺ݃݋݈݊	 ൅ ∑ ሾሺݒ െ 1ሻ݈݃݋	ሺݔ௜ሻ ൅ ሺ1݃݋݈ െ ௜ሻݔ ൅ ሺݒ െ 1ሻ݈݃݋ሺ2 െ ௜ሻሿݔ
௡
௜ୀଵ    .      (4) 

 

Noting that 

ݒ߲/݈߲   ൌ ሺ݊/ݒሻ ൅ ∑ ሾ݈݃݋ሺݔ௜	ሻ ൅ logሺ2 െ ሻሿ	௜ݔ
௡
௜ୀଵ  ,            (5) 

and 

  ሺ߲ଶ݈ሻ/ሺ߲ݒଶ	ሻ ൌ െ݊/ݒଶ ,               (6) 

it follows trivially that the ML estimator for v can be expressed in closed-form as  

 

ොݒ   ൌ െ݊/∑ ሾ1 െ ሺݔ௜ െ 1ሻଶሿ௡
௜ୀଵ ,                      (7) 

and so ݒො ൐ 0.  

 

Bayoud (2016, p.74) shows that this ML estimator coincides with the mean of the posterior density 

(which is gamma in form) in a Bayesian analysis of this problem with a non-informative prior. 

Accordingly, the ML estimator is also the Bayes estimator of ݒ when the loss function is quadratic. 

 

As the T-L density satisfies the usual regularity conditions, the ML estimator of v is weakly consistent 

and best asymptotically normal. However, its finite-sample properties are not readily deduced, given 

that the estimator is a highly non-linear function of the data.  

 

The MOM estimator of v is obtained by solving the moment equation, ܧሺܺሻ ൌ തܺ, for v. From 

Nadarajah and Kotz (2003; p.315), when b = 1, ܧሺܺሻ ൌ 1 െ 4௩൫Гሺ1 ൅ ሻ൯ݒ
ଶ
/Гሺ2 ൅  ሻ , so theݒ2

MOM estimator (ݒොெைெሻ	is obtained as the solution to the nonlinear equation, 
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  Гሺ2 ൅ ሻሺݒ2 തܺ െ 1ሻ ൅ 4௩ሺГሺ1 ൅ ሻሻଶݒ ൌ 0 .             (8) 

 

Although the MOM estimator is also weakly consistent for v, by construction, its finite-sample 

properties have not been explored previously. While the function of v in (8) is non-trivial, 

straightforward numerical evaluations show that it has a unique (positive) root for all 0 ൏ തܺ ൏ 1. 

 

By construction, ݒො ൐ 0 and ݒොெைெ ൐ 0, but it is possible for these estimators to yield estimates that 

exceed unity, especially for very small n. For such estimates the density function is not J-shaped, and 

the corresponding hazard function no longer has a bathtub shape. 

 

3. Bias-adjusted estimators 

One would anticipate the ML and MOM estimators of v may each be biased in finite samples. If so, 

this could be of concern when the T-L distribution is applied to reliability problems. Here, we 

investigate this issue, and consider bias-correction strategies for the ML estimator. 

 

Cox and Snell (1968) provided a framework for estimating the bias, to O(n-1) for ML estimators of the 

parameters of “regular” densities. Then, subtracting the estimated bias from the original ML estimator 

produces a bias-corrected estimator that is unbiased to O(n-2). This type of “corrective” bias 

adjustment has been applied successfully in many contexts. Recent examples include Cordeiro and 

Klein (1994), Lemonte et al. (2007), Lemonte (2011), Giles et al. (2013), Schwartz et al. (2013), Xiao 

and Giles (2014), Schwartz and Giles (2016), and Giles et al. (2016). 

 

In general terms, suppose that the parameter vector, θ, is of dimension p. Defining 

 )/( 2
jiij lEk     ; i, j = 1, 2, …., p             (9) 

)/( 3
ljiijl lEk     ; i, j, l = 1, 2, …., p      (10) 

)]/)(/[( 2
, ljilij llEk    ; i, j, l = 1, 2, …., p           (11) 

Cox and Snell (1968) showed that the bias of the sth element of the ML estimator of θ ( )̂ is: 

    
  


p

i

p

j

p

l
lijijl

jlsi
s nOkkkkBias

1 1 1

2
, )(]5.0[)ˆ( ; s = 1, 2, …., p,         (12) 

where kij is the (i,j)th element of the inverse of the information matrix, }{ ijkK  .        

 

Cordeiro and Klein (1994) note that this bias expression can be re-written as: 
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    
  


p

i

p

j

p

l

jl
ijl

l
ij

si
s nOkkkkBias

1 1 1

2)( )(]5.0[)ˆ( ; s = 1, 2, …., p         (13) 

where   

 lij
l

ij kk  /)(    ; i, j, l = 1, 2, …., p.          (14) 

The computational advantage of (13) over (12) is that it avoids computing expectations of products 

(see (11). Then, defining )2/()()(
ijl

l
ij

l
ij kka  , for i, j, l = 1, 2, …., p ; and constructing the matrices: 

 }{ )()( l
ij

l aA  ; i, j, l = 1, 2, …., p             (15) 

 ]|.......||[ )()2()1( pAAAA  ,              (16) 

Cordeiro and Klein (1994) show that the expression for the O(n-1) bias of  ̂  can be re-written as:  

 

)()()ˆ( 211   nOKvecAKBias  .             (17) 

Here, }{ ijkK  , is the (expected) Fisher information matrix. Then, a “bias-corrected” ML estimator 

for θ can then be constructed as: 

)ˆ(ˆˆˆˆ 11  KvecAKCS  ,              (18) 

where  ̂|)(ˆ KK   and  ̂|)(ˆ AA  . 

 

In our problem, p = 1, ܭ ൌ ሺ݊/ݒଶ	ሻ,		ሺ߲ଷ݈ሻ/ሺ߲ݒଷ	ሻ ൌ ݇ଵଵଵ ൌ ݇ଵଵ
ሺଵሻ ൌ ሺ2݊/ݒଷ	ሻ, and ܣ ൌ ܽଵଵ

ሺଵሻ ൌ

ሺ݊/ݒଷ	ሻ. So, from (16), )()/()ˆ( 2 nOnvvBias , and the Cox-Snell bias-corrected estimator is 

 

ො஼ௌݒ  ൌ ොݒ െ ሺݒො	/݊ሻ ൌ ሺ݊ െ 1ሻݒො/݊ ,             (19)

  

where ݒො is defined in (7). This result is confirmed by Mazucheli et al. (2017; p.6), using the R 

package ‘mle.tools’ (Mazucheli, 2017).  

         

Firth (1993) suggested an alternative “preventive” approach to bias correction that involves adjusting 

the score vector before solving the likelihood equation(s) for the ML estimator. In the present context 

and notation, Firth’s estimator requires that we solve the equation 

     

 ܷ∗ ൌ ሺ߲݈/߲ݒሻ െ ଵሻିܭሺܿ݁ݒܣ ൌ 0.                (20)
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Using (4), and the expressions for K and A, we immediately obtain the solution: 

  

ොிݒ  ൌ ሺ1 െ ݊ሻ/∑ ሾlog	ሺݔ௜ሻ ൅ logሺ2 െ ሻሿ	௜ݔ
௡
௜ୀଵ 	 .                              

      ൌ ሺ1 െ ݊ሻ/∑ ሾ1 െ ሺݔ௜ െ 1ሻଶሿ ൌ௡
௜ୀଵ  ො஼ௌ                     (21)ݒ

 

So, for this particular estimation problem, the Cox-Snell and Firth bias-corrected ML estimators are 

identical. Moreover, ݒො஼ௌ is also a Bayes estimator. Bayoud (2016) shows that under a non-informative 

prior the posterior for ݒ is a gamma distribution with a shape parameter of n, and a scale parameter of 

െ1/݈݊ܶ, where ܶ ൌ ∏ ሾݔ௜ሺ2 െ ௜ሻሿݔ
௡
௜ୀଵ . If ݈݊ܶ ൒ െ1, the mode of this distribution is  ሺ1 െ ݊ሻ/݈݊ܶ = 

 .if we have a “zero-one” loss function ݒ  ො஼ௌ.  This is the Bayes estimator ofݒ

 

4.  Simulation results 

The (percentage) biases and mean squared errors of the ML, bias-adjusted ML, and MOM estimators 

of v have been investigated in a small simulation experiment. This experiment was conducted using 

the R software environment (R Core Development Team, 2016). The MOM estimator was obtained 

by solving equation (8) using the uniroot function in R. The Monte Carlo simulation involved 25,000 

replications, and the T-L random variates were generated by inverting the distribution function. That 

is, ݔ ൌ 1 െ ඥ1 െ ݑ√
ೡ , where u is drawn from a U(0,1) distribution (Nadarajah and Kotz, 2003, p.317). 

The results appear in Table 1. There, for example, if ݒොሺ௜ሻ is the MLE of v obtained from the ith 

replication of the experiment, then the percentage bias is vvvBias
i

i /]ˆ)25000/1[(100)ˆ(%
25000

1
)( 


  , 

and 2225000

1
)( /])ˆ()25000/1[(100)ˆ(% vvvMSE

i
i 


 , etc. 

 

It transpires that the percentage biases and MSEs of the ML and bias-corrected ML estimators of v are 

invariant to the value of v itself. In contrast, the relative bias and relative MSE of the MOM estimator 

of v depend on the value of that parameter. We see in Table 1 that the MOM estimator exhibits less 

relative bias, but much greater percentage MSE than does the ML estimator of v. However, the simple 

Cox-Snell/Firth bias correction is extremely effective. The positive relative bias of the adjusted ML 

estimator is much less than that of the MOM estimator of v (typically by an order of magnitude); and 

in addition, bias-correcting the ML estimator also reduces the %MSE of that estimator slightly. In 

summary, the easy-to-apply bias-corrected ML estimator is recommended, even for very small sample 

sizes. 
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5.  Conclusions  

Recently, there has been renewed interest in the Topp-Leone distribution, especially in relation to 

reliability studies, where its finite support and bathtub-shaped hazard function are appealing. For a 

fixed support, method of moments estimation of the distribution’s shape parameter is straightforward 

enough, but the maximum likelihood estimator is trivial to compute. Correcting the latter estimator for 

its bias to O(n-1) is also straightforward. This bias-corrected estimator is attractive because it has 

smaller percentage bias and mean squared error than the method of moments estimator in samples of 

the size likely to be encountered in practice. It also has a natural Bayesian interpretation. 
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Table 1: Percentage biases [and MSEs]  

 

n )ˆ(% Bias  )ˆ(% CSBias     )ˆ(% MOMBias      

 )]ˆ([% MSE  )]ˆ([% CSMSE       )]ˆ([% MOMMSE     

 

     v 

0.2  0.4  0.6  0.8  

 

10 11.168  0.052  6.353  6.682  6.953   7.174  

 [16.648] [12.475] [48.141] [31.126] [25.657]           [23.030] 

25 4.018  -0.143  2.209  2.319  2.415  2.494 

 [4.850]  [4.321]  [16.802] [10.616] [8.600]              [7.619] 

50 1.915  -0.122  1.022  1.079  1.127  1.168 

 [2.192]  [2.070]  [8.116]  [5.090]  [4.101]              [3.618] 

75 1.299  -0.050  0.593  0.679  0.728  0.763  

 [1.416]  [1.362]  [5.316]  [3.329]  [2.679]             [2.361]  

100 0.973  -0.036  0.423  0.483  0.523  0.551 

 [1.052]  [1.022]  [3.998]  [2.497]  [2.008]             [1.768] 

250 0.399  -0.022  0.219  0.228  0.237  0.245 

 [0.405]  [0.400]  [1.580]  [0.985]  [0.790]             [0.694] 

500 0.177  -0.022  0.073  0.076  0.082  0.087 

 [0.202]  [0.201]  [0.795]  [0.494]  [0.396]             [0.348]  

1000 0.089  -0.011  0.032  0.033  0.033  0.035  

 [0.100]  [0.100]  [0.395]  [0.247]  [0.198]             [0.174] 
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