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Summary 

 Recently, many papers have obtained analytic expressions for the biases of various 
maximum likelihood estimators, despite their lack of closed-form solution. These bias 
expressions have provided an attractive alternative to the bootstrap. Unless the bias 
function is “flat,” however, the expressions are being evaluated at the wrong point(s). We 
propose an “improved” analytic bias adjusted estimator, in which the bias expression is 
evaluated at a more appropriate point (at the bias adjusted estimator itself). Simulations 
illustrate that the improved analytic bias adjusted estimator can eliminate significantly 
more bias than the simple estimator which has been well established in the literature. 
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1. Introduction 

Let  denote the MLE for a parameter vector, . Provided that  exists, we can write 

, 

where  is the bias function of , which depends on the true value of . Typically, 

 is difficult to determine since  often does not have closed form, so that in order 

to obtain a bias corrected estimator  must be either estimated or approximated. 

A number of recent papers have successfully obtained analytic expressions for 

 which are valid to O(n-1), based on the work of Cox and Snell (1968), and 

Cordeiro and Klein (1994). Some examples include: Cordeiro and McCullagh (1991), 

Cordeiro et al. (1996), Cribari-Neto and Vasconcellos (2002), Cordeiro and Vasconcellos 

(1997), Silva et al. (2008), Giles (2012), Giles et al. (2013, 2016), Schwartz et al. (2013), 

Schwartz and Giles (2016), and Godwin (2016). A useful overview of this topic is 

provided by Cordeiro and Cribari-Neto (2014). This literature has established the analytic 

Cox-Snell/Cordeiro-Klein method as a viable way of reducing bias, and as an attractive 

competitor to bias correction via the bootstrap. However, this literature has ignored an 

important refinement in the bias correction technique; namely the appropriate point at 

which to evaluate . The aim of this paper is to propose that the analytically 

obtained bias expression should be evaluated at the bias-corrected MLE itself, and to 

illustrate that this proposal is justified. The basic analytic bias correction technique is 

now outlined. 

Let l(θ) be the log-likelihood function based on a sample of n observations, and θ  

be a p-dimensional parameter vector. It is assumed that l(θ) is regular with respect to all 
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derivatives up to and including the third order. The joint cumulants of l(θ) are defined as 

follows: 

 	 ; 	 , 1,2, … . ,  (1) 

 	 ; 	 , , 1,2, … . ,  (2) 

 , 	 ; 	 , , 1,2, … . , . (3) 

The derivatives of these cumulants are: 

 	 ; 	 , , 1,2, … . , . (4) 

All of the expressions in (1) - (4) are assumed to be O(n), and (1) is the ,  element of 

Fisher’s expected information matrix, . Cox and Snell (1968) proved that 

when the sample data are independent, the bias of the sth element of the MLE of θ is: 

 ∑ ∑ ∑ 0.5 , ; 1,2, … . , , (5) 

where  is the ,  element of the inverse of . Our notation of the bias function, 

, highlights the dependence on the unknown parameter vector, . Extending the 

work of Cox and Snell (1968), Cordeiro and Klein (1994) showed that even when the 

data are not necessarily independent, (5) can be written as: 

 ∑ ∑ ∑ 0.5 ; 	 1,2, … . , , (6) 

provided that all of the k terms are O(n). 
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Note that the expression in (6) does not involve the terms as defined in (3), and is 

generally easier to evaluate than (5). Now, let 0.5 , for , , 1,2, … . , ; 

and define the following matrices: 

 	; 	 , , 1,2, … . ,  (7) 

 …… . | . (8) 

Equations (7) and (8) allow (6) to be rewritten as: 

 	 . (9) 

Finally, we can define the “bias-corrected” MLE for θ as: 

 	 , (10) 

where | , | ,  is the vector obtained by stacking the 

columns of the matrix , and  is the MLE of . Note how (9) and (10) illustrate that 

the Cox and Snell/Cordeiro and Klein bias correction procedure can be implemented even 

when the MLE cannot be expressed in a closed form solution, since (9) and (10) are 

obtained solely through manipulation of the cumulants of the log-likelihood function, and 

do not require an explicit algebraic expression for . This adds greatly to the usefulness 

of this bias correction procedure. 

In contrast to this “corrective” approach to dealing with estimation bias, Firth 

(1993), and other authors, have considered “preventive” methods based on an adjustment 



 5

to the score vector associated with the log-likelihood function. We do not consider this 

alternative approach in this paper. 

 

2. Improved Analytic Bias Correction 

The analytic bias expression,  in (9), is in general a function of the true and 

unobservable parameter vector, . The simple analytic bias corrected MLE (10), may be 

re-written as: 

 | , (11) 

where the new notation highlights that the analytically determined bias expression is 

evaluated at the MLE, , in order for it to be used in practice. However, unless the bias 

function is ‘flat’ or constant, the motivation for evaluating  at the biased MLE  is 

unclear. If the bias function is non-constant, then ideally the analytic bias expression 

should be evaluated at the bias corrected MLE itself. MacKinnon and Smith (1998) 

discuss just such an estimator, which they term the non-linear bias correcting (NBC) 

estimator (but which is also valid for linear bias functions): 

 | . (12) 

In (12), the bias function, , is evaluated at  (which is unbiased), rather than 

evaluated at  (which is biased). Of course, the difficulty with  is that there is likely no 

closed-form solution for this expression. However, standard numerical algorithms may be 

used to solve for . For example, by rearranging (12): 

| 0, 
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and algorithms which find the roots of non-linear equations may be used to find . One 

such option is the “nleqslv” package (Hasselman, 2015), in R. The usual algorithms used 

for locating roots in nonlinear equations can be imprecise1. Hence, an alternative and 

potentially more attractive way to solve for  is seen by rearranging (12) yet again: 

| . 

The estimator  may then be obtained by substituting  for  in the log-

likelihood function, and maximizing as usual. 

The estimator in (12) has been applied in the bootstrap bias correction literature, 

but to our knowledge, (12) has not been applied in the literature where  is obtained 

analytically. Hence, we propose  as an improvement over . A practical limitation to 

obtaining  via the bootstrap is that  must be estimated several times requiring 

considerable additional computation in the form of additional bootstrap loops. In contrast, 

the proposed improved analytical bias corrected MLE requires minimal additional 

computation. In addition to MacKinnon and Smith (1998), Cribari-Neto and Lima (2011) 

propose a related estimator. They obtain a sequence of bias-corrected 

heteroskedasticconsistent estimators for standard errors in the linear regression model. 

The estimator obtained by Cribari-Neto and Lima (2011) is similar to the one proposed 

here in that their estimator is obtained by iteratively bias correcting “in an accurate 

fashion.” 

 The biases of  and , when   is non-linear, have been determined by 

MacKinnon and Smith (1998), and are: 

                                                 
1 We are grateful to an anonymous referee for pointing this out. 
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  (13) 

and 

  (14) 

where  and  are the first and second derivatives of . Note that (13) and 

(14) depend on the true unobservable bias function , and that when  is 

approximated, such as by equation (9) which is valid to O(n-1), additional bias terms at 

O(n-2) will enter (13) and (14). By examining (13) and (14) MacKinnon and Smith (1998) 

show that: (i) when  is non-linear both  and  are unbiased to O(n-1), and that  

and  differ only by terms that are O(n-2); (ii) depending on whether  is positive or 

negative,  may be either more or less biased than , through terms of order n-2; (iii) 

when  is linear then the first term of (13) disappears and  is less biased than . 

Furthermore, the slope of the bias function, as well as the magnitude of the bias of  

relative to its variance, determines whether bias correction results in smaller or larger 

mean-squared error; when  is negative the variances of  and  will be larger than that 

of . 

Finally, it is possible to eliminate the O(n-2) bias terms in (13) by obtaining the 

first and second derivatives of (9), and evaluating them and  at the bias-

corrected estimator. This would eliminate some of the O(n-2) bias in , which arises when 

 is non-linear. However, the motivation for doing so is dubious since an O(n-2) bias 
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will still remain due to  being approximated or estimated by methods that are valid 

only to O(n-1). 

 

3. A Simple Example 

Consider the biased estimator of the error variance of a linear regression model with p 

fixed regressors, ⁄ , where SSR is the sum-of-squared residuals. Applying the 

Cordeiro-Klein procedure to this estimator yields the familiar bias expression: 

	
, 

and in this case we know that the higher order bias terms (O(n-2), etc.) are zero. Using the 

bias correction as established in the Cordeiro-Klein based literature (the estimators in 

(10) or (11)), the simple analytic bias corrected estimator (that is unbiased to O(n-1)) is: 

	
. 

Using the improved bias correction proposed in this paper, (12), a better bias-corrected 

estimator is: 

	
, 

giving a familiar estimator. In  the O(n-1) bias has been evaluated at a biased estimator, 

whereas in  the O(n-1) bias has been evaluated at an estimator that is unbiased. In this 

simple example, a closed-form solution for  ( ) is available, however, in most practical 

situations numerical methods will be required to solve for . 
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4. Illustrative Examples 

In this section, four illustrative examples are provided. For each example, four different 

MLEs are simulated for each parameter of the distribution, in experiments consisting of 

10,000 replications for each sample size. The different estimators simulated are: (i) , the 

(un-corrected MLE); (ii) , the simple analytic bias adjusted estimator obtained from 

(11); (iii) , the parametric bootstrap bias adjusted estimator; and (iv) , the improved 

bias adjusted estimator from (12), proposed in this paper.  

The parametric bootstrap bias adjusted estimator is included, but is not a focus. 

The intent of this paper is to improve upon , which has already been extensively 

compared to bootstrap bias-adjustment (for example, in those papers referenced in 

Section 1). The parametric bootstrap bias adjusted estimator is obtained as 2

1⁄ ∑ , where  is the MLE of  obtained from the jth of the NB bootstrap 

samples, and where each bootstrap sample NB has been randomly generated as though  

were the data generating process. We set NB = 1,000 which implies 1 million replications 

for each row of the results reported below, with some rows requiring several days of 

computational time. The choice of NB = 1,000 is quite standard, and increasing NB is 

unlikely to alter the performance of the bootstrap estimator. 

In each illustrative example, the percent bias and percent mean-squared error 

(MSE) of the various estimators (averaged over the 10,000 replications) are reported. In 

most instances, the proposed estimator  is the least biased of the four considered. As the 

sample size is increased to say n = 1,000, all four estimators become similar, reflecting 

the well known asymptotic properties of the MLEs. The MSE of  can be higher than that 
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of  or even . This is likely due to the variance of  increasing when the slope of the 

bias function is negative (as discussed in Section 2 and by MacKinnon and Smith, 1998).    

The simulations were carried out in the R Statistical Environment (versions 3.3.1 

and 3.2.1) on two different machines: one with a 4.70 GHz AMD FX-9590 eight-core 

processor and the other with a 4.00 GHz AMD FX-8350 eight-core processor. Random 

variates were generated via: the rlogis function in the base of R for Section 4.1; the 

rpospois function in the VGAM package (Yee, 2017) for Section 4.2; random uniform 

variates and the cumulative density function for the Lomax distribution in Section 4.3; 

and the rgpd function in the evd package (Stephenson, 2002). 

 

4.1: The Half-Logistic Distribution with Known Location Parameter 

Under independent sampling from the half-logistic distribution, with uncensored data, 

when the location parameter is equal to zero, the log-likelihood function is: 

ln 2 ln ⁄ 2∑ ln 1 exp ⁄ . 

The MLE of  is found by numerically solving the following first-order condition: 

⁄ ⁄ ⁄ 2⁄ ∑ exp ⁄ 1 exp ⁄⁄ 0. 

Despite the lack of closed-form solution for the MLE, , using the Cox-Snell/Cordeiro-

Klein procedure outlined in Section 1, Giles (2012) determines the following bias 

expression for : 

0.052567665 ⁄ . 

Using (11), the simple analytic bias adjusted estimator is: 
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0.052567665 ⁄ 0.052567665 ⁄ , 

however, it is clear that  is not constant but is indeed a linear function of  and that 

 has been evaluated at the wrong point; a biased estimator. Using (12), the 

improved bias adjusted estimator is: 

0.052567665 ⁄ 0.052567665⁄ . 

The improved bias-adjusted estimator has closed form solution, however, this is due to 

the linearity of  and is the only such case that the authors are aware of. 

 The three bias-corrected MLEs,  (simple analytic adjusted,  (bootstrap 

adjusted) and  (improved analytic adjusted), are quite similar. Monte Carlo results for 

the percent bias and percent MSE for the various MLEs are presented in Table 1. All bias 

corrected estimators reduce the bias of  in most cases, but tend to increase the MSE. 

This finding is not surprising since the bias function, , is downward-sloping 

(MacKinnon and Smith, 1998).  

 

4.2: The Positive Poisson Distribution 

Under independent sampling from the positive Poisson distribution, the log-likelihood 

function is 

ln ln 1 ∑ ! . 

The MLE of  is obtained by solving 1 , numerically. Through the 

procedure outlined in Section 1, Godwin (2016) obtains the Cox-Snell/Cordeiro-Klein 

analytic bias expression of the MLE, , to be: 
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 . 

Table 2 presents simulation results over 10,000 Monte Carlo replications, for the %bias 

and %MSE of: the MLE ; the simple analytic bias adjusted MLE , obtained from (11); 

the bootstrap bias adjusted estimator ; and the improved analytic bias adjusted MLE , 

obtained from (12). For this example, the estimator  in (12) is solved for by substituting 

 for  in the log-likelihood function: 

ln ln 1 ! 

and maximizing as usual. Obtaining  by solving the roots of (12) provides near identical 

results. Both methods are illustrated via R code in the Appendix. 

All bias corrected estimators reduce the bias but slightly increase the MSE. The 

reason why both  and  are nearly identical is because the O(n-1) bias expression is 

essentially ‘flat’ over the range of values in which the O(n-1) bias expression is being 

evaluated. A plot of the bias expression is shown in Figure 1. While the expression 

certainly does not look flat, the MLE  contains so little bias that it is of little import 

where the bias expression is evaluated. 

Note that when  = 0.75, the bias function is downward-sloping, and according to 

Table 2, the bias adjustment has increased the %MSE. When the bias function is 

increasing, e.g., for  > 1.5, bias-correction tends to reduce the %MSE. For example, for 

n = 15 and  = 2.5, the %MSE of , , and  is 3.212, 3.193 and 3.193, respectively 

(obtained from 10,000 Monte Carlo replications). Again, this finding is consistent with 

MacKinnon and Smith (1998).  
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4.3: The Lomax Distribution 

Based on n independent observations, the log-likelihood function for the Lomax 

distribution is: 

log log 1 ∑ log 1 ⁄ . 

The O(n-1) Cox-Snell/Cordeiro-Klein bias expressions for the MLEs  and , obtained by 

Giles et al. (2013), are: 

 	 , (15) 

where 

2⁄ 1 1⁄
1 1⁄ 1⁄

, 

and 

0
. 

The simple analytic bias adjusted MLEs,  and , are obtained by evaluating (15) at the 

MLEs  and . The improved analytic bias adjusted MLEs,  and , are obtained by 

evaluating (15) at the bias corrected MLEs themselves (  and ). The algorithms 

proposed in the Appendix is not complicated by the fact that there are two parameters, 

and works just as well as in the one-parameter cases already discussed. 

Monte Carlo results for the %bias and %MSE of the various MLEs are presented 

in Table 3. The reduction in bias when using the improved analytic bias adjustment 
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compared to the simple analytic bias adjustment can be quite dramatic. For example, for 

n = 80, α = 2.1, λ = 1.0, the MLEs  and  have %bias of 29.50 and 20.87, respectively. 

The simple analytic bias adjusted estimators over-correct the bias, so that the estimators  

and  have %bias of -25.43 and -17.95, respectively. The improved analytic bias adjusted 

estimators, however, do not suffer from over-correction. The improved estimators  and 

 have %bias of -1.642 and -1.040, respectively. In all but four instances, the improved 

estimator has the lowest bias, however, the MSE is almost always greater than the simple 

analytic adjusted estimator, but is almost always smaller than the bootstrap bias adjusted 

estimator. The increase in MSE for the improved estimator is likely due to the downward 

slope of the bias function. 

 

4.4: The Generalized Pareto Distribution 

Assuming independent observations the log-likelihood for the generalized Pareto 

distribution (GPD) is: 

, ln 1 1⁄ ∑ ln 1 ⁄ . 

The log-likelihood surface is fraught with abnormalities, and great care must be taken 

when solving for the MLEs,  and . For the simulations, the log-likelihood was 

maximized using the method outlined by Grimshaw (1993), and by using R code 

generously supplied by that author. For this same reason, the improved estimator is 

solved for by finding the roots of equation (12), and not by modifying the log-likelihood 

function. 

Provided that -1/3 <  < 1, Giles et al. (2016) obtain the O(n-1) bias expressions 

for the MLEs  and  to be: 
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1 3 1 3⁄ , 

3 5 4 1 3⁄ . 

Table 4 provides some Monte Carlo results for the %bias and %MSE of the MLEs (  and 

), the simple analytic bias adjusted MLEs (  and ), the bootstrap bias adjusted 

estimators (  and ), and the improved analytic bias adjusted MLEs (  and ). In almost 

all cases the improved estimator has smaller bias than the simple analytic adjusted 

estimator, while maintaining a similar MSE. The bootstrap bias adjusted estimator, 

however, often has the lowest bias of all, albeit at the cost of higher MSE. 

 

5. Conclusions 

Many recent papers have obtained analytic O(n-1) bias expressions for MLEs that do not 

admit a closed form solution, via the Cox-Snell/Cordeiro-Klein method. These papers 

then evaluate the bias expression at the MLE, and subtract it from the MLE, in order to 

correct for bias. This paper argues that the bias expression should be evaluated at the bias 

corrected MLE itself, leading to an “improved” analytic bias corrected estimator. In most 

cases this implies that the improved analytic bias corrected estimator does not have a 

closed form solution, however, it can be solved for numerically while imposing 

negligible computational burden. Monte Carlo evidence suggests that the improved 

analytic bias corrected estimator can reduce considerably more bias compared to the 

simple analytic bias corrected estimator already established in the literature, when the 

MLE has relatively high bias to begin with. 

 
Acknowledgment: We are grateful to two anonymous referees for their helpful and 
constructive comments on an earlier version of this paper.  
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Appendix. Two Suggested Methods for Finding  in the Case of the Positive 

Poisson Distribution, Illustrated by R Code 

       
library (VGAM) 
library (maxLik) 
library (nleqslv) 
 
# The Cordeiro/Klein analytic bias expression (equation (9)) 
ckbias <- function(lam) { 
  lam * (exp(lam)-1) * (2 * exp(lam) - lam * exp(lam) - lam - 2) / 
    (2 * n * exp(lam) * (lam - exp(lam) + 1) ^ 2) 
} 
 
# The log-likelihood for the positive Poisson distribution 
loglik <- function(lam) sum(y) * log(lam) - n * log(exp(lam) - 1) 
 
# The modified log-likelihood, where lambda has been replaced with  
# lambda + bias(lambda hat) 
loglikmod <- function(lcup) { 
  sum(y) * (log(lcup + ckbias(lcup)))  
    - n * (log(exp(lcup + ckbias(lcup)) - 1)) 
} 
 
# Generate a sample from the positive Poisson distribution 
n <- 20 
y <- rpospois(n,lambda=1) 
 
# Estimate the MLE 
lhat <- maxLik(loglik, start=1)$estimate 
 
# Obtain the simple analytic bias-adjusted estimator (equation (11)) 
ltilde <- lhat - ckbias(lam=lhat) 
 
# Obtain the improved analytic bias-adjusted estimator from equation 
# (12) by solving for the roots 
lcup1 <- nleqslv(lhat, function(lcup) lcup - lhat + ckbias(lam=lcup))$x 
 
# Obtain the improved analytic bias-adjusted estimator from equation 
# (12) by maximizing the modified log-likelihood 
lcup2 <- maxLik(loglikmod, start=1)$estimate 
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Table 1. %Bias, %MSE for , , , and , for  = 1, for various sample sizes, and for 

10,000 Monte Carlo replications. 

 

n 
%Bias  
[%MSE] 

%Bias  
[%MSE] 

%Bias  
[%MSE] 

%Bias  
[%MSE] 

10 
-0.81 
[6.90] 

-0.29 
[6.97] 

-0.26 
[6.97] 

-0.28 
[6.96] 

15 
-0.12 
[4.72] 

0.23 
[4.75] 

0.24 
[4.76] 

0.23 
[4.75] 

20 
-0.56 
[3.47] 

-0.30 
[3.48] 

-0.30 
[3.48] 

-0.30 
[3.48] 

100 
-0.07 
[0.71] 

-0.01 
[0.72] 

-0.01 
[0.72] 

-0.01 
[0.72] 

 

 

Table 2. %Bias, %MSE for , , , and , for  = 0.75, for various sample sizes, and for 

10,000 Monte Carlo replications. 

  

n 
%Bias  
[%MSE] 

%Bias  
[%MSE] 

%Bias  
[%MSE] 

%Bias  
[%MSE] 

15 
-1.25 

[14.20] 
0.02 

[14.39] 
-0.01 

[14.41] 
0.03 

[14.39] 

25 
-1.17 
[8.38] 

-0.40 
[8.44] 

-0.40 
[8.44] 

-0.39 
[8.44] 

50 
-0.63 
[4.27] 

-0.23 
[4.28] 

-0.23 
[4.29] 

-0.23 
[4.28] 

100 
-0.34 
[2.13] 

-0.14 
[2.13] 

-0.15 
[2.14] 

-0.14 
[2.13] 

1000 
-0.03 
[0.21] 

-0.01 
[0.21] 

-0.01 
[0.21] 

-0.01 
[0.21] 
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Table 3. %Bias, and %MSE for the various estimators for the parameters of the Lomax 

distribution, for various sample sizes and parameter configurations, and for 10,000 Monte 

Carlo replications. 

 

 
%Bias 
[%MSE] 

 
 

α = 1.1, λ = 1.0 

n                 

35 
19.60 
[30.82] 

‐15.82 
[6.67] 

7.91 
[44.44] 

‐1.66 
[11.79] 

33.83 
[84.72] 

‐28.54 
[20.03] 

16.34 
[132.59] 

‐2.56 
[30.92] 

50 
15.46 
[21.79] 

‐6.28 
[5.68] 

3.79 
[26.84] 

0.29 
[10.31] 

27.61 
[61.84] 

‐11.24 
[15.94] 

8.55 
[80.90] 

1.20 
[27.85] 

100 
7.70 
[8.13] 

‐0.71 
[4.86] 

‐0.64 
[6.96] 

0.53 
[5.49] 

13.61 
[23.29] 

‐1.37 
[13.30] 

‐0.99 
[20.36] 

1.07 
[15.15] 

150 
4.90 
[4.41] 

‐0.21 
[3.28] 

‐0.70 
[3.41] 

0.27 
[3.42] 

7.99 
[12.16] 

‐1.03 
[8.85] 

‐1.86 
[9.33] 

‐0.07 
[9.24] 

250 
2.79 
[2.18] 

‐0.09 
[1.86] 

‐0.30 
[1.83] 

0.07 
[1.88] 

4.79 
[6.27] 

‐0.28 
[5.25] 

‐0.67 
[5.19] 

0.04 
[5.32] 

500 
1.43 
[0.99] 

0.05 
[0.92] 

‐0.00 
[0.92] 

0.09 
[0.92] 

2.57 
[2.82] 

0.14 
[2.58] 

0.05 
[2.58] 

0.21 
[2.58] 

100
0 

0.64 
[0.46] 

‐0.03 
[0.44] 

‐0.05 
[0.44] 

‐0.02 
[0.44] 

1.11 
[1.31] 

‐0.08 
[1.26] 

‐0.11 
[1.26] 

‐0.06 
[1.26] 

 
 

α = 2.1, λ = 1.0 

n                 

80 
20.87 
[34.63] 

‐17.95 
[9.48] 

9.33 
[51.83] 

‐0.36 
[12.17] 

29.50 
[67.65] 

‐25.43 
[18.86] 

14.23 
[104.13] 

‐0.20 
[23.58] 

100 
17.32 
[27.50] 

‐10.42 
[5.61] 

5.22 
[37.73] 

0.34 
[11.12] 

24.21 
[52.20] 

‐14.88 
[10.99] 

7.74 
[72.91] 

0.50 
[20.90] 

150 
10.94 
[14.78] 

‐3.51 
[5.10] 

‐0.22 
[15.49] 

0.21 
[7.91] 

15.44 
[28.75] 

‐5.02 
[9.88] 

‐0.08 
[30.56] 

0.39 
[15.22] 

250 
6.45 
[6.87] 

‐0.72 
[4.15] 

‐1.10 
[5.50] 

0.33 
[4.72] 

9.08 
[13.21] 

‐1.04 
[7.92] 

‐1.55 
[10.52] 

0.50 
[8.99] 

500 
2.84 
[2.48] 

‐0.27 
[2.05] 

‐0.54 
[2.02] 

‐0.06 
[2.09] 

3.99 
[4.84] 

‐0.39 
[3.98] 

‐0.78 
[3.92] 

‐0.08 
[4.06] 

750 
1.90 
[1.52] 

‐0.10 
[1.34] 

‐0.22 
[1.33] 

‐0.02 
[1.35] 

2.73 
[2.95] 

‐0.09 
[2.61] 

‐0.25 
[2.58] 

0.05 
[2.63] 

200
0 

0.68 
[0.50] 

‐0.04 
[0.48] 

‐0.06 
[0.48] 

‐0.03 
[0.48] 

0.96 
[0.97] 

‐0.05 
[0.93] 

‐0.08 
[0.93] 

‐0.03 
[0.93] 
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Table 4. %Bias, and %MSE for the various estimators of the parameters of the GPD 

distribution, for various sample sizes and parameter configurations, and for 10,000 Monte 

Carlo replications. 

 
%Bias 
[%MSE] 

 
ξ = 0.1, σ = 1 

n                 

50 
‐56.41 
[354.51] 

5.16 
[275.85] 

3.38 
[296.17] 

‐4.71 
[246.35] 

6.09 
[5.99] 

‐2.28 
[3.63] 

‐0.82 
[4.72] 

‐0.72 
[3.05] 

100 
‐26.76 
[150.17] 

4.25 
[113.02] 

1.29 
[137.05] 

0.27 
[114.17] 

2.69 
[2.57] 

‐1.12 
[1.69] 

‐0.37 
[2.32] 

‐0.48 
[1.79] 

200 
‐12.98 
[66.97] 

1.45 
[57.07] 

0.64 
[63.84] 

0.40 
[58.07] 

1.37 
[1.21] 

‐0.26 
[0.98] 

‐0.08 
[1.15] 

‐0.11 
[1.02] 

100
0 

‐2.42 
[12.71] 

0.25 
[12.36] 

0.23 
[12.60] 

0.21 
[12.38] 

0.30 
[0.22] 

0.02 
[0.22] 

0.02 
[0.22] 

0.01 
[0.23] 

 
ξ = ‐0.1, σ = 1 

50 
‐64.75 
[306.65] 

‐27.94 
[330.71] 

5.27 
[231.46] 

‐14.58 
[267.22] 

6.63 
[5.45] 

2.56 
[4.92] 

‐1.18 
[3.96] 

‐2.56 
[2.25] 

100 
‐31.26 
[119.66] 

‐3.79 
[120.83] 

1.95 
[103.45] 

4.49 
[85.21] 

3.00 
[2.25] 

0.07 
[1.92] 

‐0.44 
[1.96] 

‐1.74 
[1.17] 

200 
‐15.99 
[51.26] 

1.66 
[47.15] 

0.64 
[46.98] 

3.68 
[37.22] 

1.59 
[1.04] 

‐0.28 
[0.87] 

‐0.09 
[0.97] 

‐0.49 
[0.75] 

100
0 

‐3.31 
[8.88] 

0.60 
[8.24] 

0.17 
[8.68] 

0.51 
[8.27] 

0.36 
[0.19] 

‐0.03 
[0.17] 

0.02 
[0.18] 

‐0.03 
[0.18] 

 
ξ = ‐0.2, σ = 1 

50 
‐34.98 
[73.66] 

‐29.81 
[78.08] 

3.64 
[51.40] 

‐14.41 
[71.44] 

7.03 
[5.25] 

6.42 
[5.00] 

‐1.56 
[3.55] 

‐3.58 
[2.22] 

100 
‐17.18 
[27.43] 

‐12.40 
[30.08] 

1.15 
[22.90] 

1.61 
[23.22] 

3.23 
[2.11] 

2.58 
[2.06] 

‐0.48 
[1.80] 

‐3.90 
[0.95] 

200 
‐9.00 
[11.48] 

‐5.74 
[12.82] 

0.33 
[10.23] 

2.68 
[10.67] 

1.75 
[0.97] 

1.25 
[0.97] 

‐0.10 
[0.89] 

‐0.60 
[0.88] 

100
0 

‐2.02 
[1.86] 

‐1.03 
[2.05] 

0.07 
[1.79] 

0.91 
[1.58] 

0.42 
[0.17] 

0.25 
[0.17] 

0.02 
[0.16] 

‐0.17 
[0.15] 
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Figure 1. The Cox-Snell O(n-1) bias expression (n = 15) for the MLE , evaluated 

numerically. 

 

 

 


