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Summary 

More commonly, applied and theoretical researchers are examining model averaging as a tool when 

considering estimation of regression models.  Weighted-average least squares (WALS), originally 

proposed by Magnus and Durbin (1999, Econometrica) within the framework of estimating some of the 

parameters of a linear regression model when other coefficients are of no interest, is one such model 

averaging method with their proposed approach being a Bayesian combination of frequentist ordinary 

least squares and restricted least squares estimators.  We generalize their work, along with that of other 

researchers, to consider averaging ordinary least squares (OLS) and two stage least squares (2SLS) 

estimators when possibly one or more regressors are endogenous.  We derive asymptotic properties of our 

weighted OLS and 2SLS estimator under a local misspecification framework, showing that results from 

the existing WALS literature apply equally well to our case.  In particular, determining the optimal weight 

function reduces to the problem of estimating the mean of a normally distributed random variate, which is 

unrelated to the details specific to the regression model of interest, including the extent of correlation 

between the explanatory variable(s) and the error term.  We illustrate our findings with two examples.  

The first example, from a commonly adopted econometrics textbook, considers returns to schooling, and 

the second case is a growth regression application, which examines whether religion assists in explaining 

disparities in cross-country economic growth.  
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1. Introduction and Preliminaries 

We consider a structural equation 

 � = ���� + ���� + �,   �� = � + � (1) 

 

that is part of a system of simultaneous equations.  The setup of this equation is as follows: the 

vectors � and � are 
 −dimensional, � is a (
 × ��) random matrix; the full-rank regressor 

matrices �� and �� are, respectively, (
 × ��) and (
 × ��) with � = ��� ��� and � = �� + ��; the (�� × 1) and (�� × 1) vectors of unknown parameters are, respectively, �� and ��; and � is a (
 ×��) nonstochastic matrix.  We can equivalently write model (1) as � = �� + � , where �� =����  ��� �.  Our assumptions and notation are: 

Assumption 1: ��� ���~ �. �. �.  ��0�×( !"�), Ω$, � = 1, … , 
, where Ω = &'� (′( Ω*+. 
Assumption 2: The regressors in the matrix �� are exogenous, independent variables with ,(�|��) = 0.×� & ,(��� �) = 0 0×�. 

Assumption 3:  The (� × �) matrix 122 = 34�5(�′� 
⁄ ) exists. Appropriate submatrices are 

denoted by 12020 , 1202!, 12!2! and 12!20. 

Assumption 4: The system provides a (
 × 7�) matrix of instruments 8� such that 7� ≥ �� and 

(i) 34�5(8�� �� 
⁄ ) = 1:!2!  exists with rank ��.  We denote 1:!2!�  as 12!:!. 

(ii) 34�5(8�� � 
⁄ ) = 0;!×�, 34�5(8�� � 
⁄ ) = 0;!×;! . 
Assumption 5: Let 7 = �� + 7� and 8 = ��� 8�� be the instrument matrix.  We assume that: 

(i) 34�5(8′� 
⁄ ) = 1:2 exists with rank �, 
(ii) 34�5(8′8 
⁄ ) = 1:: exists with rank 7. 

Some relevant submatrices, to be used in a later section, are given by 12!:, 120:, 1:2! and 1:20.   

These assumptions imply some possible correlation between the errors and the explanatory 

variables in �� with there being no correlation when ( = 0.  Explicitly, we have  

34�5(��� 
)⁄ = &34�5(��� � 
)⁄34�5(��� � 
)⁄ + = &0 0×�( + = ξ. 
The instrument matrix 8 is employed to form the two-stage least squares (2SLS) estimator.  

Then, the ordinary least squares (OLS) and 2SLS estimators of � are, respectively:  

  �=(�) = (��>��)?���>��    ; � = 1,2 (2) 

 



 

 

where >� = B. and >� = 8(8�8)?�8′; we denote �=(�,C) as the estimator of �C (D = 1,2) using OLS (� = 1) and 2SLS (� = 2).   With ( ≠ 0, the OLS estimator is both biased and inconsistent1, 

whereas the 2SLS estimator is (usually) biased but consistent.  Specifically, it is straightforward 

to show that the limiting distributions of �=(�) and �=(�) are: 

  �=(�)  ~F   � G� + 122?�H, '�
 122?�I 
(3a) 

and 

 �=(�)  ~F   � G�, '�
 J?�I, (3b) 

   

where J = 1:2� 1::?�1:2.  The asymptotic covariance matrix of �=(�) is never “larger”, in the matrix 

sense, than that of �=(�) and will usually be “smaller”, unless a regression of � on 8 perfectly 

predicts �.  These features of the limiting distributions imply a potential asymptotic mean 

squared error (or asymptotic risk under quadratic loss) gain of  �=(�) over �=(�), despite the 

inconsistency, dependent on the degree of correlation between �� and �, as given by (.  

 Traditionally, the goal has been to choose either OLS or 2SLS.  From an empirical 

perspective, this uncertainty about which estimator (model) to adopt is potentially troubling as 

the estimates we obtain, and so any subsequent conclusions using such estimates, likely depends 

on which estimator (model) is employed.  This leads to a popular strategy2 of undertaking a 

preliminary test of whether there is no covariance between � and �: 

  K*: ,(��� �) = ,(���) = 
( = 0    MNM�
OP K�: 
( ≠ 0. (4) 

 

The OLS estimator is unbiased, efficient and consistent under the null hypothesis whereas we are 

only confident that the 2SLS is consistent when ( = 0.  When the null hypothesis is not valid, the 

2SLS estimator is still consistent while the OLS estimator is biased and inconsistent but may still 

have “smaller” variance.   Prior testing aims to ensure that a researcher uses the more efficient 

OLS estimator when endogeneity is not an issue but employs the less efficient 2SLS estimator in 

the face of large possible risk for OLS when endogeneity covariance is serious.  A common route 

is to apply the so-called Durbin-Wu-Hausman (DWH) (Durbin, 1954; Wu, 1973; Hausman, 

1978) test based on the difference (�=(�)-�=(�)).  When the null is valid, the two estimators should 

only differ due to sampling error, as both estimators are consistent, whereas only the 2SLS 

estimator is consistent under the alternative hypothesis.  One version of the DWH test statistic, 

the Hausman form, is:  

 QRK = ��=(�) − �=(�)$�STU��=(�)$ − TU��=(�)$V?��=(�) − �=(�)$ (5) 

 

                                                           
1 For estimating both �� and ��. 
2 For instance, Baum et al. (2003, p2) state “…the use of IV estimation to address this problem (nonorthogonality) 

must be balanced against the inevitable loss of efficiency vis-à-vis OLS.  It is therefore very useful to have a test of 

whether or not OLS is inconsistent …”. 



 

 

where TU��=(�)$ is the usual asymptotic variance of �=(�) (� = 1,2), as provided in expressions (3a) 

and (3b), and the operator "?" denotes a generalized inverse.  Under our assumptions, it can be 

shown that the limiting null distribution of QRK is central X�(��), the distribution usually 

adopted in practice to generate p-values, as opposed to the exact finite-sample null distribution3.  

Critical values and p-values are often obtained also from an appropriate central F-distribution.  

Let Y be the critical value associated with some chosen nominal significance level Z.   Adopting �=(�) or �=(�) dependent on the outcome of the test leads to the pretest estimator: 

 �=[\ = �=(�)B�]^_`a� + �=(�)B�]^_ba� (6) 

 

where B�]^_`a� = 1 when the sample value of the statistic is less than the critical value, zero 

otherwise.  A similar definition holds for B�]^_ba�;  note that B�]^_ba� = 1 − B�]^_`a�.  Morey 

(1984) obtains the asymptotic bias and asymptotic risk (under quadratic loss) functions of �=[\ 

showing the common outcome that the pretest estimator is never preferred (in terms of risk) to 

either of its component estimators4.  Further, the pretest estimator is asymptotically unbiased 

(Skeels and Taylor, 1995).   

 Although the use of �=[\ is common, it is well-known that such pretest estimators, being 

discontinuous and therefore not differentiable, are inadmissible (see, e.g., Judge and Bock, 1978; 

Magnus, 1999; Magnus, 2002)5.  An additional, practical concern is that the pretest estimator 

implies a switch from one estimator (e.g., OLS) to the other estimator (e.g., 2SLS) around the 

adopted critical value Y, a point at which the two component estimators are likely quite similar.  

Recognizing that the purpose is to find a preferred estimator of �, allowing for uncertainty about 

some feature of the underlying data generating process, rather than a goal of obtaining the 

outcome of a preliminary hypothesis test or choosing between one or more models or estimators, 

has resulted in a wide literature that considers combining component estimators in a smooth, 

averaging way.  The notion is that as each model or estimator provides information about the 

parameters of interest, it is most likely preferable to use some weighted-average of the 

component estimators, rather than to employ only one of the estimators in the switching manner 

implied by pretesting; see, for example, the eloquent discussion in Magnus and De Luca (2016).  

Averaging in this way incorporates the uncertainty the researcher has regarding the model 

specification.  Non-Bayesian and Bayesian approaches have been proposed, with random and 

non-random weight functions6.  A model averaging estimator of �, �=cd, for our problem is: 

 �=cd = e�=(�) + (1 − e)�=(�) (7) 

                                                           
3 The test is really one of the implications of using two different estimators as opposed to a strict test of endogeneity.   
4 Skeels and Taylor (1995) investigate the finite-sample properties of �=[\ providing approximate bias and risk 

functions using a Taylor series expansion to approximate the bias function and nonparametric methods to evaluate 

pretest risk, following the approaches of Richardson and Wu (1971) and Gourieroux and Trognon (1984). 
5 We refer the reader to, for instance, Giles and Giles (1993), Danilov and Magnus (2004) and Magnus and De Luca 

(2016) for discussions on various implications of employing pretest estimators. 
6 There is an extensive literature related to Bayesian model averaging (BMA); e.g., Raftery et al. (1997), Hoeting et 

al. (1999) and the recent survey of Moral-Benito (2015).  See the excellent monograph of Claeskens and Hjort 

(2008) for a discussion on non-Bayesian/frequentist model averaging approaches, along with, amongst many others, 

Hjort and Claeskens (2003a), Hansen (2007), Liang et al. (2011) and Moral-Benito (2015).   



 

 

 

where the non-negative e is some continuous, weighting function, possibly specified according 

to a statistical criteria, along with perhaps prior information.  Expression (7) shows that we can 

view �=cd as a direct, continuous form of the discontinuous, inadmissible pretest estimator, �=[\, 

and highlights that model averaging proceeds in two steps.  We first estimate the parameters 

conditional on the model assumptions (the regressors of concern are endogenous or the relevant 

explanatory variables are indeed, at least, weakly exogenous). The second stage is to form the 

model averaging estimator as a weighted-average of these conditional estimators.  Of interest is 

the sampling properties of �=cd, along with optimal (according to some specified criterion) choice 

of e.  Our consideration of the estimator �=cd follows the suggestions of, for example, Morey 

(1984), Moral-Benito (2014) and Magnus and De Luca (2016).  Specifically, Morey (1984, p70) 

says, following his observations on the risk properties of �=[\, “Possibly a more rational and 

powerful strategy … (is to) employ some weighted linear combination of the OLS and IV 

estimators …”, Moral-Benito (2015, p69) ends his survey paper stating “How to tackle the issue 

of endogenous regressors in the model averaging framework is an interesting line of open 

research. … Allowing for endogenous regressors in the FMA7 approach could be an interesting 

topic for future research,” and Magnus and De Luca (2016, p138) remark that an important 

addition to their work would be “a WALS version of instrumental variables or two-stage least 

squares”.  Our work begins this research. 

We average the OLS and 2SLS estimators using weighted-average least squares (WALS), a 

method originally proposed by Magnus and Durbin (1999) in the context of deciding on a 

preferred set of explanatory variables in a classical linear regression model, and further examined 

by Danilov and Magnus (2004), Danilov (2005), Zou et al. (2007), Clarke (2008), Magnus et al.  

(2010), De Luca and Magnus (2011) to name but a few.  We write our weighted OLS and 2SLS 

estimator, based on WALS, as �=^, to distinguish this estimator from some other, feasible model 

averaging estimator, �=cd.  We show that results from the already existing WALS literature, 

despite the seemingly quite different setting of that body of work, can be readily extended to 

obtain the asymptotic bias, variance and risk (under quadratic loss) functions of �=^, under a 

structure of local misspecification.  This outcome implies that the optimal (in terms of 

asymptotic risk under quadratic loss) �=^ is determined solely by establishing the optimal 

estimator of the mean of a normal random variate, unrelated to the specifics of the regression 

model (1), including the degree of correlation between � and �.  Our findings also mean that 

prior research on selecting e, dependent on adopted criterion, apply to optimally combining the 

OLS and 2SLS estimators, at least asymptotically, to obtain preferred coefficient estimates. 

Although we are novel in applying WALS in the context of weighting the frequentist OLS 

and 2SLS estimators, we note that other researchers have considered Bayesian model averaging 

of 2SLS/LIML (limited information maximum likelihood) estimators, including Durlauf et al. 

(2008, 2012) and Lenkoski et al. (2014).    Concern about the selection of endogenous and 

exogenous regressors is the focus of the work of Durlauf et al. (2008) when exploring empirical 

evidence for a number of growth theories.  They suggest that their approach can be regarded as a 
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frequentist/Bayes hybrid method that averages frequentist 2SLS estimates from each of the 

considered models with weights regarded as posterior probabilities that link prior weights with 

complexity-penalized goodness of fit measures.  Lack of formal justification for their choice of 

weights is noted by the authors.  A similar hybrid Bayesian model averaging approach is adopted 

by Durlauf et al. (2012) in their re-examination of the robustness of Barro and McCleary’s 

(2003) finding that some facets of religious dogmas are relevant for economic growth.  Taking 

account of model uncertainty, their results highlight the lack of robustness of findings based on 

models that assume to be the true specification. Extending such BMA methods of mixing 2SLS 

estimators when there is additionally uncertainty with regard to the choice of instruments is the 

topic of interest for Lenkoski et al. (2014).   

Our work of examining mixing OLS and 2SLS estimators within a WALS framework is 

organized as follows.  In Section 2 we outline key papers exploring WALS, as applied to model 

averaging in the context of the presence of uncertain auxiliary variables, the question of which 

has dominated this body of work.  We also provide salient details on considered extensions and 

some Monte Carlo (MC) experiments.  We derive further generalizations to the existing WALS 

literature in Section 3, which we then apply, in Section 4, to examine the WALS estimator that 

averages the OLS and 2SLS estimators.  Specifically, we show that the asymptotic bias and 

asymptotic risk (under quadratic loss) functions of the weighted estimator �=^ are readily 

obtained from the extensions of the theory presented in Section 3.  In Section 5, we draw on 

existing empirical studies to demonstrate our results, illustrating with two applications, and 

Section 6 concludes. 

 

2. WALS: Some Research 

Predominantly, the current WALS literature examines a classical linear regression model for 

which uncertainty exists on whether to include one or more of a set of possible auxiliary 

variables, with the other explanatory variables (so-called focus variables) being deemed required 

in the specification.  Specifically, consider the linear model: 

 � = R�f� + R�f� + g = Rf + g,   g~ �(0, 'h�B.×.) (8) 

 

where the vectors � and g are 
 −dimensional, the full-rank regressor matrices R� and R� are, 

respectively, (
 × i�) and (
 × i�) with R = �R� R�� and i = i� + i� and the (i� × 1) and (i� ×1) vectors of unknown parameters are, respectively, f� and f�; let f� = �f��  f�� �.  The columns in R� contain the “focus” variables, those regressors that must be in the specification, whereas 

inclusion of the “auxiliary” variables in R� is less certain.  Key interest is in the estimation of f�, 

the “focus” parameters; one or more of the regressors in R� are included only to lead to a 

“better” estimator of f�.  This framework implies a model space, say Υ, which comprises the set 

of submodels of (8) that include all focus variables in R� and some (one or more) of the auxiliary 

variables in R�; there are 2k! submodels in this space with the �lm submodel Υ�, being model (8) 

subject to the restriction K��f� = 0, where K� is a selection matrix of dimension (i� × n�) that picks 

out the variables in R� excluded to form submodel Υ�, � = 1, … , 2k!; 0 ≤ n� ≤ i�. The goal is to 



 

 

examine the sampling properties of the model averaging, WALS, estimators of f� and f� defined 

respectively as:  

 N� = p q(�)fr�(�)
�s!
�t�      &       N� = p q(�)fr�(�)

�s!
�t�  

(9) 

 

where fr�(�) and fr�(�) are the OLS estimators of f� and f� for submodel Υ�, � = 1, … , 2k!.  The 

model weights are given by q(�), assumed to satisfy 0 ≤ q(�) ≤ 1; ∑ q(�)� = 1; and q(�) =q(�)�v 0̂�$, where v 0̂ = B.×. − R�(R��R�)?�R��; see, e.g., Magnus and De Luca (2016, p.123) 

for a discussion on the latter condition8.   Let w = �R��v 0̂R�$0!f� and wx = �R��v 0̂R�$?0!R��v 0̂�; 

note that wx~��w, 'h�Bk!×k!$.  A key result shown from this body of research (specifically Magnus 

and Durbin, 1999; Danilov and Magnus, 2004; Magnus et al., 2010, Magnus and DeLuca, 2016) 

is that yz,(N�) and yz,(N�) are determined solely by yz,�w{$, where w{ = |wx with | =∑ q(�)|��s!�t� , |� = Bk!×k! − P�, P� = �R��v 0̂R�$?0!K� × }K���R��v !̂R�$?�K�~?� K���R��v 0̂R�$?0!, where 

mean squared error (yz,(. )) is risk under squared error loss.  This fundamental result implies 

that the mean squared error of the complicated estimators N� and N� is determined by the mean 

squared error of the simpler estimator w{ = |wx of w.  In particular, the question of the “best” 

weight function for the WALS estimators N� and N� is decided on by ascertaining the “best” 

weight function for the weighted estimator w{ of w, the mean vector of a normal distribution  – a 

problem that does not depend on the specifics of the underlying regression model (8).   

Various studies have extended the seminal works of Magnus and Durbin (1999) and 

Danilov and Magnus (2004).  We detail a few of them here.  Zou et al. (2007), within the 

framework of Magnus and Durbin (1999), generalize results to the large-sample non-normal 

errors case, presenting asymptotic bias and risk functions.  They show that the findings of 

Magnus and Durbin still hold; i.e., the question of the optimal choice of weight function for the 

WALS estimator is addressed by determining how best to estimate the mean from a single 

normal observation.  As well as broadening the applicability of Magnus and Durbin’s 

conclusions to the large-sample non-normal case, Zou et al. examine the issue of the optimal 

weight function, including the “neutral” Laplace Bayesian approach of Magnus (2002) and the 

James and Stein (1960) type weight studied by Kim and White (2001).  In addition, these authors 

explore non-random weight functions, along the lines considered by, amongst others, Kim and 

White (2001) and Hjort and Claeskens (2003a).   

 Clarke (2008) considers estimation of the full parameter vector f in model (8), when 

there is uncertainty about a set of � exact linear restrictions about f, say �f = �, where � (� × i) 

and � (� × 1) are nonstochastic with the matrix � being of full row-rank, � < i.  Her framework 

covers, but is not limited to, the case of estimating some coefficients when others are not of 

interest that had dominated research.  She shows that the theorems of Magnus and Durbin (1999) 

                                                           
8 In addition, Magnus and De Luca (2016, pp. 124-125) present discussion on the question of limiting weights to lie 

between zero and one. 



 

 

and Danilov and Magnus (2004) hold equally well to this commonly applied broader setup; the 

optimal MSE weighted estimator of f is determined solely by the weight function for optimally 

estimating the mean vector of an uncorrelated, homoskedastic normally distributed variate.  Her 

work and the asymptotic approach taken by Zou et al. (2007) are useful for our research. 

  Irrespective of the elegance of the findings from these aforementioned papers, at first 

glance these results suggest that determining the optimal WALS estimators, N� and N�, implies 

ascertaining 2k! different q(�)′O.  This is not the case – of importance is resolving the question of 

the matrix |, a symmetric (i� × i�) matrix with only i�(i� + 1) 2⁄  distinct elements.  Indeed, if 

certain orthogonalizations are applied to the model prior to estimation, this matrix can be 

rendered diagonal so that only i� elements need be established – a significantly smaller task than 

might originally be suspected, and rendering WALS readily useable in applications, especially 

when compared with commonly adopted BMA approaches.  Considering a semi-orthogonal 

transformation of the auxiliary regressors, within the setup of Danilov and Magnus’s (2004) 

“focus” and “auxiliary” variables modelling exercise, is one goal of Magnus et al. (2010), along 

with the question of how then to practically proceed; see, also, for instance, Magnus (2002), Zou 

et al. (2007), Magnus et al. (2010), Kumar and Magnus (2013), Magnus and De Luca (2016).     

Several studies expand on the initial WALS framework.  Allowing for nonspherical 

disturbances partly motivates Magnus et al. (2011) in their extension of the theorems of Magnus 

and Durbin (1999) and Danilov and Magnus (2004), again within the setup of “focus” and 

“auxiliary” variables.  After semi-orthogonalizing the model and considering appropriate 

unrestricted and restricted generalized least squares estimators, they show that the theorems of 

Magnus and Durbin (1999) and Danilov and Magnus (2004) (as well as Magnus et al., 2010) can 

be extended to the nonspherical disturbances case.  An interesting tiered approach is proposed by 

Magnus and Wang (2014), so-called hierarchical WALS, whereby model averaging is performed 

over uncertain explanatory variable concepts and the different ways one might measure the 

variable concept.  De Lucca et al. (2017) broaden the WALS approach, still within the 

framework of “focus” and “auxiliary” regressors, to consider the specification of the linear 

predictor in the class of generalized linear models.   

Some researchers have undertaken Monte Carlo (MC) experiments to ascertain the 

properties of WALS estimators.  For instance, Magnus et al. (2011) use their real-world data to 

setup a MC experiment that compares the root mean squared error of their considered WALS, 

BMA and pretest estimators, with their simulations showing that their WALS estimator is 

typically more accurate.  Poghosyan and Magnus (2012) undertake a small MC experiment based 

on their facto-based dynamic models using Armenian data, examining the performance of their 

WALS and BMA estimators.  They find that, although the WALS method usually outperforms, 

in terms of root mean squared error, the BMA estimator, the differences can be quite small.  

Using the first two waves of the Survey of Health, Ageing and Retirement in Europe as a base 

for the design of their MC study, De Lucca et al. (2017) investigate the finite sample properties 

of their WALS estimator. 

In addition to exploring properties of WALS estimators, several studies have employed 

WALS estimators in applied research.  Magnus et al. (2010), who contrast WALS and BMA 



 

 

estimates, along with a general-to-specific pretesting strategy and those from fully unrestricted 

and restricted versions, consider modelling growth in per capita GDP between 1960 and 1996 for 

a cross-section of 74 countries9.  They split their 13 possible regressors into two groups: the 

focus variables and auxiliary variables, examining several frameworks; e.g., one specification (a 

neo-classical growth model) contains six focus and four auxiliary regressors, whereas another 

(an endogenous growth model) consists of nine focus and four auxiliary variables.  On the basis 

of this work, the authors suggest that their WALS findings clarify some issues on growth 

determinants and theories; in particular, that robust growth models should include information on 

institutions, along with neoclassical growth variables.  

An hedonic housing price model for apartments using data from the Hong Kong real estate 

market is estimated by Magnus et al. (2011), contrasting outcomes of the WALS estimator10, a 

BMA estimator11 and a stepwise fit pretest estimator12.  WALS13 and BMA estimators, similar to 

those considered by Magnus et al. (2011), are compared for four factor-based dynamic models 

using quarterly Armenian data in Poghosyan and Magnus (2012).  The concept of hierarchical 

WALS is applied by Magnus and Wang (2014) to re-examine data from Sala-i-Martin et al. 

(2004), who consider the effects of various growth factors.  One key aim of the study of Magnus 

and Wang (2014) is to illustrate how WALS is helpful in handling the common situation of more 

than one variable being available for a factor; a two-level strategy is proposed whereby the first 

layer considers which concepts are best included in the model with the second layer exploring 

the question of how best to represent the concept with the various available variables.  Adopting 

the form of WALS examined by Magnus et al. (2010) and De Luca and Magnus (2011), with a 

Laplace prior to form the weight function, Magnus and Wang’s results suggest that the signs of 

the hierarchical WALS estimates are more intuitive and robust than those from traditional 

methods.  These empirical works highlight that WALS is a viable estimation approach for 

practitioners.  

  

3. Main General Results 

Our goal in this section is to generalize the results of Magnus and Durbin (1999), Danilov and 

Magnus (2004), Zou et al. (2007) and Clarke (2008).  Specifically, consider estimation of model 

(8) in the face of uncertainty about � (< i) exact linear restrictions on f, written as �f = �, where � (� × i) and � (� × 1) are nonstochastic with � of full-row rank.  With Q = (R�R), the 

unrestricted least squares estimator of f is denoted by N� = Q?�R′�, and we write the restricted 

least squares (RLS) estimator by N� = N� − Q?�����Q?����?�(�N� − �).  We are interested in the 

                                                           
9 Their primary source of data is from Sala-i-Martin et al. (2004).  In addition to their exploration of 74 countries, 

the authors analyze Sala-i-Martin et al.’s (2004) full data set.  
10 Employing a weight function based on the method suggested by Magnus et al. (2010). 
11 With priors based on the normal distribution. 
12 The authors adopt a model with six “focus” variables and six “auxiliary” variables.  The stepwise fit pretest 

strategy starts with the model with the six focus variables, adding an auxiliary regressor based on statistical 

significance. 
13 The version of WALS applied is that detailed in Magnus et al. (2010), using the weighting scheme outlined by De 

Luca and Magnus (2011) to ensure scale-independent estimates.  



 

 

asymptotic bias and risk (under quadratic loss) functions of the weighted combination of  N� and N�: 

 N = q��x$N� + �1 − q��x$� N� 

 

(10) 

where q(. ) is a continuous, random function, dependent on �x = ��Q?����?0!(�N� − �), an 

estimator of �, defined below, and perhaps some other arguments (e.g., an estimator of 'h�).  We 

assume that 'h� is known but, given our asymptotic focus, this is not a limiting assumption should 

a consistent estimator of 'h� be available.  We later discuss estimation of 'h�. 

Following Zou et al. (2007), let f* be any solution to �f = �, and let f = f* + � √
⁄ , so that 

the elements of �, ��, … , �k, denote departures from the restrictions of interest.  This setup 

implies that we are examining asymptotic properties of the WALS estimator for small departures 

from the beliefs regarding the parameters, which we hope does not limit the applicability of our 

results.  Then, it is straightforward to show that: 

�x = S�Q∗?���V?�/��� + S�Q∗?���V?�/��Q∗?�U�, 
√
(N� − f) = Q∗?�U�, 

√
(N� − f) = −Q∗?���S�Q∗?���V?��� + }Bk×k − Q∗?���S�Q∗?���V?��~ Q∗?�U�, 
√
(N� − N�) = Q∗?���S�Q∗?���V?���Q∗?�U� + �$ 

where U� = √
T with T = R′g 
⁄ , and Q∗ = Q/
.  Let y^^ = 34�5 Q∗, which we assume is a 

nonstochastic positive-definite matrix.  In addition, we assume that the regressors are such that 34�5T = 0k×�.   Now, with � = y^^?� ����y^^?� ���?�/�, Ψ = y^^?� − ���, writing � as � =��y^^?� ���?�/��� and noting that U�  →�  ��~�(0, 'h�y^^), we have: 

 

��
� �x√
(N� − f)√
(N� − f)√
(N� − N�)��

�  →�  � ~ �(�, Σ) 

 

(11) 

where � = ���������
� =  � � + ����−�� + Ψ��y^^?� �����

� , � = � �−��0k×��� �  and 

Σ = 'h�
��
� B�×� 0�×k �� �′0k×� Ψ Ψ 0k×k� Ψ y^^?� ���� 0k×k ��� ��� ��

�. 
Using these various expressions, we have: 



 

 

√
(N − f) = q��x$�√
(N� − N�)$ + √
(N� − f) 

→� q(�)�� + �� 

 = q(�)(���) + ��. (12) 

 

Denoting Ξ = q(�)(���) + ��, the asymptotic bias function for N is: TJ(N, f) = ,(Ξ) = ,(q(�)(���) + ��) = �,(q(�)�� − �). 
It then follows that the asymptotic variance of N is: TU(N, f) = TU(Ξ) = TU(q(�)(���) + ��) = ��TU(q(�)��)��� + 'h�Ψ. 
In terms of asymptotic risk, we follow, for example, Zou et al. (2007), along with many others, 

in considering the quadratic loss function 7�(N, f) = �√
(N − f)�� Π. �√
(N − f)� =¡√
(N − f)¡¢£
�

 and the matrix loss function 7�(N, f) = (
(N − f)(N − f)�) , where Π. is a random, 

positive semi-definite (i × i) matrix.  Common choices of Π. include an identity matrix, which 

leads to the sum of squared error losses, and Π. = R′R results in the so-called predictive loss 

function.  Using these definitions, with 
�. Π. →¤ Π, our results imply: 

7�(N, f) →�  ‖Ξ‖¢� = ‖q(�)(���) + ��‖¢�  

and 

7�(N, f) →�  ΞΞ� = (q(�)(���) + ��)(q(�)(���) + ��)�, 
which leads to the following asymptotic risk functions: T��(N, f) = ,‖q(�)(���) + ��‖¢�  = ,‖q(�)(���) − ��‖¢� + ,‖�� + ��‖¢�  = ,‖q(�)(���) − ��‖¢� + ,‖Ψ��‖¢�  

 = ,‖q(�)�� − �‖¦§¢¦� + 'h�P�(ΠΨ) (13) 

   

   

and T��(N, f) = ,�(q(�)(���) + ��)(q(�)(���) + ��)′$ 



 

 

= ,�(q(�)(���) − ��)(q(�)(���) − ��)′$ +,(�� + ��)(�� + ��)′) 

 = ��,((q(�)�� − �)(q(�)�� − �)′)$�� + 'h�Ψ. (14) 

   

   

These outcomes give rise to Theorem 1. 

 

Theorem 1:  Under the framework of this section, the asymptotic bias, variance and risk 

functions of the WALS estimator are: TJ(N, f) = ��TJ(q(�)��, �)�, TU(N, f) = ��TU(q(�)��)��� + 'h�Ψ, T��(N, f) = ,‖q(�)�� − �‖¦§¢¦� + 'h�P�(ΠΨ), 
and T��(N, f) = ��T��(q(�)��, �)��� + 'h�Ψ 

where the (� × 1) vector �� is distributed as ��~�(�, 'h�B�×�). 

 

Theorem 1 indicates, consistent with the cited related research, that the asymptotic properties of 

the intricate WALS estimator N is governed by the asymptotic properties of the more 

straightforward weighted estimator �{ = q��x$�x of �, the mean vector of a normally distributed 

random vector with scale parameter 'h�.  That is, the optimal solution for estimating �, using the 

weighted estimator �{ is also best for estimating f, employing the weighted estimator N, in any 

classic linear regression in the face of uncertain exact linear restrictions.  Particularly, the 

preferred weight function for the WALS estimator N is determined by the “best” weight function 

for forming �{ = q��x$�x.  Note that as 'h� can be consistently estimated using the OLS residuals, 

Theorem 1 holds when the error variance is unknown and estimated using the usual OLS 

estimator. 

The findings of Theorem 1 explicitly require that the regressors are such that 34�5T =34�5(R′g 
⁄ ) = 0k×�, as has the research before us.  We now extend Theorem 1 to allow for 

regressors that may be correlated with the error term.  Explicitly, we assume 34�5T =34�5(R′g 
⁄ ) = ¨, and for reasons that will be clear in the next section, we also assume that ¨ =¨* √
⁄ , with ¨* fixed; i.e., that ¨ is in a √
 −shrinking neighbourhood of zero. This is a 

commonly adopted assumption when exploring the asymptotic distribution of a test of whether 34�5(R′g 
⁄ ) = 0k×� (e.g., see Hausman, 1978; Morey, 1984) and our use of this assumption 



 

 

here means we are considering values of ¨ close to this belief.  In this sense, our results are 

restrictive, but we hope they still provide guidance for a wider range of ¨ values14. 

Under this framework, it follows that: 

�x = S�Q∗?���V?�/��� + S�Q∗?���V?�/��Q∗?�¨* + S�Q∗?���V?�/��Q∗?�U�∗, 
√
(N� − f) = Q∗?�¨* + Q∗?�U�∗, 

√
(N� − f) = −Q∗?���S�Q∗?���V?��� + }Bk×k − Q∗?���S�Q∗?���V?��~ Q∗?�¨*  + }Bk×k − Q∗?���S�Q∗?���V?��~ Q∗?�U�∗, 
√
(N� − N�) = Q∗?���S�Q∗?���V?���Q∗?�U�∗ + � + Q∗?�¨*$ 

where U�∗ = √
T∗ with T∗ = (R�g 
⁄ − ¨), and Q∗ = Q 
⁄ .  As before, let y^^ = 34�5 Q∗, � =y^^?� ����y^^?� ���?0!, Ψ = y^^?� − ���, � = ��y^^?� ���?0!�� and, also, let  �∗ = � + ��¨*. Then, 

noting that U�∗  →�  ��∗~�(0, 'h�y^^), we have: 

 

��
� �x√
(N� − f)√
(N� − f)√
(N� − N�)��

�  →�  �∗ ~ �(�∗, Σ) 

 

(15) 

where �∗ = ��
��∗��∗��∗��∗�� =  

��
� �∗ + ����∗−��∗ + y^^?� ¨* + Ψ��∗y^^?� ¨* + y^^?� ��∗���∗ ��

�
 , �∗ = �

� �∗−��∗ + y^^?� ¨*y^^?� ¨*��∗ �
�  and 

Σ = 'h�
��
� B�×� 0�×k �� �′0k×� Ψ Ψ 0k×k� Ψ y^^?� ���� 0k×k ��� ��� ��

�. 
The asymptotic bias function for N is then: TJ(N, f) = ,(q(�∗)(���∗) + ��∗) = �,(q(�∗)��∗ − �∗) + y^^?� ¨*. 
As 7�(N, f) →�  ‖q(�∗)(���∗) + ��∗‖¢�  and 

7�(N, f) →�  (q(�∗)(���∗) + ��∗)(q(�∗)(���∗) + ��∗)�, 
                                                           
14 Whether exploring the properties of estimators under a local misspecification framework is reasonable has been 

questioned (see, e.g., Raftery and Zheng, 2003; Hjort and Claeskens, 2003b), but is regularly adopted to explore 

large sample properties.   



 

 

we have the following asymptotic risk functions: T��(N, f) = ,‖q(�∗)(���∗) + ��∗‖¢�  

= ,¡�(q(�∗)��∗ − �∗) + ���∗ − ,(��∗)$ + y^^?� ¨*¡¢�  

= ,‖q(�∗)(���∗) − ��∗‖¢� + ,‖��∗ − ,(��∗)‖¢� + ¨*� y^^?� Πy^^?� ¨* +2¨*� y^^?� Π�,(q(�∗)��∗ − �∗) 

 = ,‖q(�∗)��∗ − �∗‖¦§¢¦� + 'h�P�(ΠΨ) + ¨*� y^^?� Πy^^?� ¨* 

 +2¨*� y^^?� Π��,(q(�∗)��∗ − �∗)$ 

 

   

   

and T��(N, f) = ,�(q(�∗)(���∗) + ��∗)(q(�∗)(���∗) + ��∗)′$ 

= , �(q(�∗)(���∗) − ��∗ + ��∗ − ,(��∗) + y^^?� ¨*)(q(�∗)(���∗) − ��∗ + ��∗ − ,(��∗) + y^^?� ¨*)′ � 

= ,�(q(�∗)(���∗) − ��∗)(q(�∗)(���∗) − ��∗)′$ +,(��∗ − ,(��∗))(��∗ − ,(��∗))′) + y^^?� ¨*¨*� y^^?�  +y^^?� ¨*,(q(�∗)��∗ − �∗)��� + ��,(q(�∗)��∗ − �∗)$¨*� y^^?�  

 = ��,((q(�∗)��∗ − �∗)(q(�∗)��∗ − �∗)′)$�� + 'h�Ψ + y^^?� ¨*¨*� y^^?�   

   +y^^?� ¨*(,(q(�∗)��∗ − �∗)�)�� + ��,(q(�∗)��∗ − �∗)$¨*� y^^?� . 
 

Theorem 2, given below, follows from utilizing these results. 

Theorem 2:  Under the framework of this section, with 34�5(R′g 
⁄ ) = ¨ = ¨* √
⁄ , fixed, the 

asymptotic bias, variance and risk functions of the WALS estimator are: TJ(N, f) = ��TJ(q(�∗)��∗, �∗)� + y^^?� ρ*, TU(N, f) = ��TU(q(�∗)��∗)��� + 'h�Ψ, T��(N, f) = ,‖q(�∗)��∗ − �∗‖¦§¢¦� + 'h�P�(ΠΨ) + ¨*� y^^?� Πy^^?� ¨*  +2¨*� y^^?� Π��,(q(�∗)��∗ − �∗)$, 
and T��(N, f) = ��T��(q(�∗)��∗, �∗)��� + 'h�Ψ + y^^?� ¨*¨*� y^^?�  +y^^?� ¨*�TJ(q(�∗)��∗, �∗)�′�� + ��TJ(q(�∗)��∗, �∗)�¨*� y^^?� , 



 

 

where the (� × 1) vector ��∗ is distributed as ��∗~�(�∗, 'h�B�×�), with  �∗ = � + ��¨*. 
 

Theorem 2 shows that the asymptotic risk of the WALS estimator N, even when the 

regressors are potentially correlated with the error term, is determined by the asymptotic 

properties of the weighted estimator �{ = q��x$�x of  �∗ = � + ��¨*, the mean vector of a normally 

distributed random vector with scale parameter 'h�.  That is, for a given situation for the 

regression model and correlation between the regressors and the disturbance term, the asymptotic 

risk function of the WALS estimator N is only determined by the properties of the weighted 

estimator �{ = q��x$�x as an estimator of �∗.  We note, however, that the asymptotic risk for the 

WALS estimator N does depend on both the asymptotic risk and bias of �{ when ¨* ≠ 0.    

Especially, the theorem implies that the “best” weight function for the WALS estimator N is 

given by the “best” weight function for deciding on �{ = q��x$�x.   In terms of our assumption that 'h� is known, it is straightforward to show that using OLS residuals to form an estimator of 'h� 

would not lead to a consistent estimator when ¨ ≠ 0, but rather the usual estimator would 

converge to, say, 'h∗� (= 'h� + ¨�y^^?� ¨ under our assumptions); this effect would not alter the 

qualitative form of the optimal weight function.   

In the next section we apply Theorem 2 to the case of weighting the OLS and 2SLS 

estimators for the setup we outlined at the beginning of this paper. 

 

4. Applying Theorem 2 to Form a Weighted OLS and 2SLS Estimator 

Returning to the setup outlined in Section 1, recall that the structural equation being 

estimated is � = ���� + ���� + � = �� + �,   �� = � + �, where there are �� exogenous regressors 

in �� and potentially �� endogenous explanatory variables. The OLS and 2SLS estimators of �,  �=(�) and �=(�) respectively, are defined in equation (2).  We are interested in the asymptotic bias 

and asymptotic risk functions of the WALS estimator �=^, which is a weighted combination of  �=(�) and �=(�).  We show that this question can be addressed by applying Theorem 2 from the 

previous section, implying the same choice of the asymptotically optimal weight function.   

We proceed by examining an auxiliary regression of �� on 8.  Let �x� be the matrix of fitted 

values from this regression and ª be the associated matrix of residuals; i.e., �x� = 8(8�8)?�8��� 

and ª = (B.×. − 8(8�8)?�8�)��.  Consider the model 

 � = ���� + �x��� + ªZ + �,   (16) 

which we write as  

 � = �∗�∗ + �,   (17) 

 

with �∗ = ��� �x� ª� = ��« ª� and �∗ = ���� ��� Z��� = ��«� Z′�′; there are �∗ = �� + 2�� 

coefficients to be estimated.  Let ��∗ = ��«,�� Z�� �′ be the OLS estimator of �∗.  As ª is orthogonal 

to both �� and �x�, it can be readily shown that the OLS estimator of �«∗, �«,�, is identical to the 



 

 

2SLS estimator, �=(�), for the structural model (1); e.g., see Hausman (1978), Nakamura and 

Nakamura (1981), Morey (1984).  Further, Z� = (ª�ª)?�ª��.   That is, OLS applied to (16) results 

in 

��∗ = &�«,�Z� + = &�=(�)Z� + = ¬�=(�,�)�=(�,�)Z�
­ = ¬(��� v���)?����v��(��� v���)?���� v��(ª�ª)?�ª�� ­ 

where v� = B.×. − ��(��� >���)?���� >�, v� = >� − >� and >� = ��(�����)?���′.  Given that 

34�5��∗§� 
⁄ $ = ¬34�5(��� � 
⁄ )34�5��x�� � 
⁄ $34�5(ª′� 
⁄ ) ­ = ¬0 0×�0 !×�( ­ = ® 

it follows that 

34�5(��∗) = &�«,�Z� + = &�=(�)Z� + = ¬34�5��=(�,�)$34�5��=(�,�)$34�5(Z�) ­ = ¬ ������ + J�?�(­ 

where J� = 12!2! − 12!:1::?�1:2!.  Note, in particular, that 34�5(Z�) = �� when ( = 0.   

Now consider the �� restrictions �� = Z on model (16), which can be written in the form ��∗ = �, with the (�� × �∗) matrix � = �0 !× 0 B !× ! −B !× !� and the ��-dimensional vector � = 0 !×�; obviously, this is also equivalent to the restrictions ( = 0 !×�.  Imposing that �� = Z 

on model (16), the resulting RLS estimator of �∗, say ��∗ = ��«,�� Z�� �′ , is the OLS estimator of � 

for the structural equation (1), 

��∗ = &�«,�Z� + = ¯ �=(�)�=(�,�)° = ±�=(�,�)�=(�,�)�=(�,�)
² = ¬(��� v���)?����v��(��� v���)?���� v��(��� v���)?���� v��­ 

where, with >� = ��(��� ��)?���′,  v� =  B.×. − >� and v� = B.×. − >�.  As a consequence,  

34�5(��∗) = ±34�5��=(�,�)$34�5��=(�,�)$34�5��=(�,�)$² = ¬�� − J�?�J�(�� + J�?�(�� + J�?�( ­ 

where J� = 12020 − 1202!12!2!?� 12!20 , J� = 1202!12!2!?�  and J� = 12!2! − 12!2012020?� 1202!.  That 

is, whereas both ��∗ and ��∗ are inconsistent estimators of �∗,  �«,� = �=(�), the 2SLS estimator, is 

consistent for �.   

In summary, the OLS and 2SLS estimators of � for the structural model (1) are, 

respectively, RLS and OLS estimators of �« for the linear regression model (16) with 

restrictions �� = Z, which is identical to imposing that ( = 0.  The weighted estimator of �∗ for 

model (16) or (17) is:  



 

 

 �∗̂ = e��x$��∗ + �1 − e��x$� ��∗ 

 

(18) 

where e(. ) is a continuous, random function, dependent on �x = }���∗��∗$?���~?0! (���∗ − �),  a 

measure of how close the �� restrictions �� = Z hold in the sample.  Note that �∗̂ = ��= �̂ Zr �̂ ��, 
where �=^ is the estimator of interest that weights the OLS and 2SLS estimators of �.  The weight 

function, e��x$, likely also depends on an estimator of '�; we assume that '� is known but, 

unlike the general case considered for Theorem 2, here a consistent estimator of '� is available.   

Clearly, we have a particular application of the framework covered by Theorem 2.  

 Specifically, for the problem at hand, with √
(�∗̂ − �∗) = e��x$ �√
(��∗ − ��∗)� +√
(��∗ − �∗), some algebraic manipulations show that: 

(i) �x = }��x�� v��x�$?� + (ª�ª)?�~?0! ��=(�,�) − Z�$; 
(ii) y2∗2∗ = 34�5��∗��∗ 
⁄ $ = ¬ 12020 1202! 0 0× !12!20 12!2! − J� 0 !× !0 !× 0 0 !× ! J� ­ = & 1« 0 × !0 !× J� +  

where the (� × �) matrix 1« = &12020 1202!12!20 12!2! − J�+ ;  
(iii)S�y2∗2∗?� ��V = (J� − J�)?� + J�?�; 

(iv)  �y2∗2∗?� ® = −J�?�(; 

(v) (�∗ − �*∗) = S0 0×� 0 !×� Z − ��V, where �*∗ is a solution to �� = Z.    

Given the equivalence of imposing the restrictions �� = Z or ( = 0 on model (16), we suppose 

that �� − Z = ³(, where ³ is a nonstochastic matrix; e.g., one possibility is ³ = −J�?�.  Then, 

with �∗ = y2∗2∗?� ��S�y2∗2∗?� ��V?0! and assuming, as before, that it is reasonable to let ( = (* √
⁄  to 

give ® = ®* √
⁄ , further algebra reveals that: 

(vi) �∗�®* = −�(J� − J�)?� + J�?��?0!J�?�(*;  

(vii) � = S�y2∗2∗?� ��V?0!³(* = �(J� − J�)?� + J�?��?0!³(*;  

(viii) �∗ = �(J� − J�)?� + J�?��?0!(³ − J�?�)(*.   

To apply Theorem 2, let TJ(�∗̂ , �∗), TU(�∗̂ , �∗), T��(�∗̂ , �∗) and T��(�∗̂ , �∗) denote the 

asymptotic bias, variance and risk functions of �∗̂  as an estimator of �∗.  The loss functions for 

the risk functions are, respectively, 7�(�∗̂ , �∗) = ¡√
(�∗̂ − �∗)¡¢£∗
�

 and the matrix loss function 7�(�∗̂ , �∗) = (
(�∗̂ − �∗)(�∗̂ − �∗)�) , where, here, Π.∗  is a random, positive semi-definite (�∗ × �∗) matrix.  We shortly discuss possible forms of Π.∗ .  Then, with Ψ∗ = y2∗2∗?� − �∗�∗§
 and 

assuming that 
�. Π.∗ →¤ Π∗, applying Theorem 2 leads to Corollary 1 below. 

 



 

 

Corollary 1:  Under the framework of this section, the asymptotic bias, variance and risk 

functions of the WALS estimator, �∗̂ , are: TJ(�∗̂ , �∗) = �∗�TJ(e(�∗)��∗, �∗)� + y2∗2∗?� ω*, TU(�∗̂ , �∗) = �∗�TU(e(�∗)��∗)��∗� + '�Ψ∗, T��(�∗̂ , �∗) = ,‖e(�∗)��∗ − �∗‖¦∗§¢∗¦∗� + '�P�(Π∗Ψ∗) + ®*� y2∗2∗?� Π∗y2∗2∗?� ®* +2®*� y2∗2∗?� Π∗�∗�,(e(�∗)��∗ − �∗)$, 
and T��(�∗̂ , �∗) = �∗�T��(e(�∗)��∗, �∗)��∗� + '�Ψ∗ + y2∗2∗?� ®*®*� y2∗2∗?�  +y2∗2∗?� ®*�TJ(e(�∗)��∗, �∗)���∗� + �∗�TJ(e(�∗)��∗, �∗)�®*� y2∗2∗?� , 
where the (�� × 1) vector ��∗ is distributed as ��∗~�(�∗, '�B !× !).  

 

These outcomes show that the asymptotic properties of the complex weighted estimator �∗̂  of �∗, which includes as a subset the coefficient vector of fundamental interest �, are determined by 

the asymptotic features of the far simpler weighted estimator �{ = e��x$�x as an estimator of �∗, 

the mean vector of a normally distributed random vector.   

In practice, our fundamental interest lies in weighting �=(�) = �«,� and �=(�) = �«,� using e��x$, to form the weighted estimator �=^, the sub-vector of �∗̂  consisting of its first � elements: 

 �=^ = e��x$�«,� + �1 − e��x$� �«,� = e��x$�=(�) + �1 − e��x$� �=(�). 
 

(19) 

To apply Corollary 1 to obtain the asymptotic properties of �=^, we employ the following: 

(i) z is a (� × �∗) selector matrix with z = �B × 0 × !�; 
(ii) �=^ = z�∗̂ ; 

(iii) TJ��=^, �$ = z�TJ(�∗̂ , �∗)$; 
(iv) y2∗2∗?� ®* = �0�× (*� J�?���; 
(v) zy2∗2∗?� ®* = 0 ×�; 

(vi) TU��=^, �$ = z�TU(�∗̂ , �∗)$z�. 
Then, let Π.∗  be appropriately partitioned as Π.∗ = &Π��.∗ Π��.∗Π��.∗ Π��.∗ +.  As traditional choices of this 

weight matrix are B. and �∗��∗, both of which lead to Π��.∗ = 0 × ! and Π��.∗ = 0 !× , for our 

case, we adopt the assumption that Π.∗ = ¯ Π��.∗ 0 × !0 !× Π��.∗ °.  Applying this additional assumption 

with the provided results, gives rise to: 

(vii) z�zΠ.∗ z�z = Π��.∗∗ , with Π��.∗∗ = ¯ Π��.∗ 0 × !0 !× 0 !× !° and 
�. Π��.∗∗ →¤ Π��∗∗ ; 



 

 

(viii) Π��∗∗ y2∗2∗?� ®* = 0( " !)×�; 
(ix) 7�(�∗̂ , �∗) = ¡�=^ − �¡¢00£∗� + ‖Zr^ − Z‖¢!!£∗� = 7���=^, �$ + 7�(Zr^, Z); 
(x) 7���=^, �$ = ‖�∗̂ − �∗‖¢00£∗∗� ; 

(xi) T��(�∗̂ , �∗) = T����=^, �$ + T��(Zr^, Z); 
(xii) T����=^, �$ = ,‖e(�∗)(���∗) + ��∗‖¢00∗∗� ; 

(xiii) 7���=^, �$ = zµ7�(�∗̂ , �∗)¶z′; 
(xiv) T����=^, �$ = zµT��(�∗̂ , �∗)¶z′. 

Employing Corollary 1, with (i) to (xiv), generates Corollary 2, which gives the asymptotic 

properties of the weighted estimator �=^: 

 

Corollary 2:  Under the framework of this section, the asymptotic bias, variance and risk 

functions of the WALS estimator, �=^, are: TJ��=^, �$ = zµ�∗�TJ(e(�∗)��∗, �∗)�¶, 
TU��=^, �$ = zµ�∗�TU(e(�∗)��∗)��∗�¶z′ + '�SΨ∗S′, 

T����=^, �$ = ,‖e(�∗)��∗ − �∗‖¦∗§¢00∗∗ ¦∗� + '�P�(Π��∗∗ Ψ∗), 
and T����=^, �$ = zµ�∗�T��(e(�∗)��∗, �∗)��∗�¶z� + '�SΨ∗S�, 
where the (�� × 1) vector ��∗ is distributed as ��∗~�(�∗, '�B !× !).  

These asymptotic properties, provided in Corollary 2, are of identical form to those given under 

Theorem 1, despite the potential endogeneity of some of the explanatory factors.  How best to 

compose the WALS estimator of �, �=^, which combines the OLS and 2SLS estimators of �, is 

governed solely by determining the preferred method of constructing the estimator �{ =e��x$�x for �∗, the mean vector of a normally distributed variate.  Obviously, approaches 

concluded to be favoured in the original WALS literature might also be useful when applying 

Corollary 2.  We now turn to this question for our empirical applications, drawing from some of 

the existing literature on this issue. 

 

5. Weight Functions and Empirical Examples 

Magnus, along with his many co-authors, advocate a Bayesian type weighting scheme to form 

the WALS estimator in their analyses of combining “focus” and “auxillary” variables, giving rise 

to a WALS estimator that is a mixture of frequentist and Bayesian concepts; the estimator 

averages estimates from frequentist restricted and ordinary least squares with weights formed 

using Bayesian ideas.  Philosophically, it might be viewed as contentious to form such hybrid 

estimators, an issue that we do not pursue here.  Our focus is on combining information from two 



 

 

regressions in a manner suggested in other contexts to provide reasonable weights.  To proceed, 

we note that these methods form “preferred” (in some sense) estimators, �{, of �∗. We then 

calculate an estimate of the weight e, using that �{ = e�x; in the vector case we have e= = � ¹̧ § ¹̧º̧ § º̧��/�
.  

The model averaging estimator �=^ can then be easily formed.  Here we provide only salient 

details of the approach advocated by this WALS body of research, referring the reader to, for 

instance, Magnus et al. (2010), Kumar and Magnus (2013), and Magnus and De Luca (2016) for 

details and discussions.   

 As we are estimating the mean vector, �∗, of i.i.d. normally distributed random variates, 

the focus of this aforementioned research is on how to estimate one element of the vector, �C∗, D =1, … , ��.  Let » be a univariate random variate with »|¼~ �(¼, 1), with prior density ½(¼) and 

subsequent posterior density 3(¼|»).  The mean and variance of this posterior density, say ¼̂ and �M�(¼̂) are used as desired estimators.  For various reasons (as detailed by the authors), Magnus 

et al. advocate that the prior be chosen from the three-parameter reflected generalized gamma 

distribution with density: 

½(¼) = ¿YÀ2Γ(Λ) |¼|?Ãª?a|Ä|Å
 

where −∞ < ¼ < ∞, ¿ > 0, 0 ≤ È < 1, Y > 0 and Λ = (1 − È)/¿.  Particular examples are the Laplace 

(¿ = 1, È = 0, Λ = 1), the reflected Weibull (Λ = 1, È = 1 − ¿) and the Subbotin (È = 0, Λ = 1 ¿⁄ , with 0 < ¿ < 1) densities.  Aside from other features, these choices of prior can be chosen to be 

neutral, in the sense that there is ignorance about whether or not ¼ is positive or negative, and 

whether |¼| is larger or smaller than one15.  This latter notion of ignorance, adopted by this body 

of work, is framed in terms of a classical regression model with one possible auxiliary regressor 

(say R�, in terms of the notation in section 2) whose coefficient, f�, may or may not be zero.  The 

adjusted �� (�É�) increases with the inclusion of the auxiliary variable R� iff the relevant t-ratio 

exceeds one in absolute value, providing one motivation for defining ignorance in terms of |¼| ><1.  In addition, a mean squared error (yz,) comparison of the RLS and OLS estimators (with and 

without the auxiliary variable) shows that the yz, of the RLS estimator is lower than that of the 

OLS estimator when (twice) the non-centrality parameter (say �>), associated with the t- or F-

test of �� = 0, is less than 1, and the yz,s are equal when 2�> = 1.  This is a well-noted result in 

the literature; see, e.g., Magnus and Durbin (1999, Theorem 1), who mention this in terms of the 

t-ratio and cite earlier research.  Toro-Vizcarrondo and Wallace (1968) generalize this outcome 

to � exact linear restrictions (of the from �f = � in terms of Section 3) within the classical linear 

regression framework.  Specifically, Toro-Vizcarrondo and Wallace show that the difference 

between the yz, matrices of the RLS and OLS estimators is positive semi-definite when (twice) 

the non-centrality parameter (�>) associated with the classical F-test of the validity of the � exact 

linear restrictions is less than 1.  This implies, in terms of � as given in Section 3, that the 

difference in MSE matrices is positive semi-definite when �′� 'h�⁄  ≤ 1.  That is, for our research, 

it remains likely reasonable to continue to think about ignorance in terms of whether |¼| is larger 

or smaller than one. 

                                                           
15 That is, ignorance about the correlation between the regressor and the error term and the sign of any such 

correlation should it exist. 



 

 

Turning to the question of prior distributions, in their study of mixing “focus” and 

“auxiliary” variables, Magnus et al. (2010) explore use of a Laplace prior with Y = 4ÊN2 (for 

neutrality) based on recommendations from Magnus (2002), who shows that ¼̂ is admissible with 

bounded risk and desirable properties around |¼| = 1.  The Subbotin prior is the focus of Kumar 

and Magnus’ (2013) research, with their work showing that the Laplace prior is not (Bayesian) 

robust whereas the Subbotin prior satisfies this property, as well as having lower minimax regret.  

Calculating Y to achieve neutrality with a search of ¿ over the range 0 and 1, the authors find that 

maximum regret is lowest for the Subbotin prior when ¿ = 0.7995 and Y = 0.9377. Accordingly, 

we use this prior with these ¿ and Y values in our empirical applications.   As an earlier working 

paper version of Kumar and Magnus’ paper (Einmahl et al., 2011) recommends the Subbotin 

prior with ¿ = 0.5 in practical applications (with Y = 1.6783 for neutrality), we additionally 

consider this prior.  The minimax regret results of Kumar and Magnus observe that the reflected 

Weibull prior (with ¿ = 0.8876, Y = 4ÊN2) leads to a marginally smaller minimax regret than the 

other examined priors (including the Laplace and Subbotin priors).  As Magnus and De Luca 

(2016) also advocate use of the reflected Weibull prior, we also use this prior in our applications.  

Employing a range of priors allows us to provide some indication of how outcomes differ across 

them (at least for our examples). 

Analytic formulae for the mean and variance of the posterior distribution from using the 

Laplace prior are provided by Magnus et al. (2010, p145).  Numerical integration routines are 

required when employing the reflected Weibull and Subbotin priors, with Magnus and De Luca 

(2016), for instance, giving details on calculating the mean and variance of the posterior 

distribution.  We undertook our empirical work using Stata /SE version 14.2 (StataCorp, 2015) 

utilizing the Stata module “integrate”, provided by Mander (2012), to undertake the needed 

integrations.  We now present results from our two illustrations. 

 

5.1.  Example 1: Returns to Schooling 

Our first application of weighting OLS and 2SLS uses Example 15.4 from the popular 

undergraduate textbook Wooldridge (2016, pp 473-474), which is based on a subsample of data 

and one model from Card (1995)16.   Card uses data from the National Longitudinal Survey of 

Young Men (NLSYM), which began in 1966 with 5525 men aged 14-24 and continued with 

follow-up surveys through 1981, with the subsample of interest consisting of 3010 men who 

provide valid responses regarding education and wages from the 1976 interview.  Although 

compared with a nationally representative sample, as noted by Card, the NLSYM oversamples 

men from the Southern region and those who are classified as Black, following Card and 

Wooldridge we ignore any implications of this sampling design.   

 

                                                           
16 We obtained the data from Cengage Learning’s website for Wooldridge’s textbook; see 

http://www.cengage.com/cgi-wadsworth/course_products_wp.pl?fid=M20bI&product_isbn_issn=9781305270107, 

last accessed 10 March 2017.  



 

 

The focus of the analysis is to ascertain the link between education and earnings, taking 

account of the fact that to explore for such a relationship perhaps needs an exogenous 

determinant of schooling options.  One reason suggested in the literature as to why education 

may be correlated with the unobserved component of earnings is so-called “ability bias”, 

whereby an individual may have an innate trait of being able to earn higher wages for any 

education level.  If education is correlated with the error term, then a suitable instrumental 

variable is needed.  Card suggests that accessibility of a college, near to where the man resided, 

is a reasonable instrumental variable.  Table 1 reports some descriptive statistics for the data we 

consider, with definitions for the variables given in Appendix 1. Our results accord with those 

reported by Card (1995). 

 

Table 1: Descriptive statistics for some key variables used in Example 1 

Wage in 1976: hourly earnings in cents  

Minimum 100 

Maximum 2404 

Mean 577 

Std. Dev. 263 

Age in 1976: years  

Minimum 24 

Maximum 34 

Mean 28.1 

Std. Dev. 3.1 

Experience in 1976: years  

Minimum 0 

Maximum 23 

Mean 8.9 

Std. Dev. 4.1 

Education in 1976: years  

Minimum 1 

Maximum 18 

Mean 13.3 

Std. Dev. 2.7 

Percent Black 23.4 

Percent lived in SMSA 1966 65.0 

Percent lived in SMSA 1976 71.3 

Percent raised near a 4-year college 68.2 

 

As stated, Card’s hypothesis is that the presence of a 4-year (in particular) college near 

where the man resided is a valid instrumental variable for education.  The men in the sample, 

ceteris paribus, who have ready access to such a college, achieve significantly higher levels of 

education and earnings.  Perhaps, Card suggests, having a college locally available reduces the 

expense of undertaking post secondary education and/or increases beliefs about the benefits of 

higher education.   



 

 

 One of Card’s models (Card, 1995, p32, column (2) in Table 2), which forms the basis of 

Example 15.4 in Wooldridge (2016), is: 

 4ÑMNª� = ��� + ���ª»3ª�� + ���ª»3ª��� + ���Ò4MYi� + ���O5OM� 
 

+��ÓO5OM66� + ��ÔOÊ�Pℎ� + p ��(Ó"C)�ªN66D� +Ö
Ct� ���ª��Y� + ��,

� = 1, … , 3010. 

(20) 

 

The analysis is interested in the estimated education coefficient, ���, which is loosely referred to 

as the “rate of return to schooling”, an interpretation fraught with issues, as well acknowledged 

by Card.  After exploring conceivable reasons for the possible endogeneity of ª��Y, as well as 

motivating why 
ªM�Y4 might be a valid instrumental variable for completed education, Card 

reports a number of reduced form IV/2SLS equations, including for the model provided in 

equation (20)17.  This example gives �� = 15, �� = 1, � = 16, �∗ = 17, 
 = 3010, 7� = 1.  The 

OLS and 2SLS estimates, along with standard errors, are reported in columns (2) and (3) of 

Table 218, whereas the outcomes for the WALS cases are reported in columns (4) through (7).  

Although not reported here, the estimated coefficient of nearc4 in the regression of educ 

on nearc4 and the other explanatory variables from equation (20), suggests that, on average, 

proximity to a college in 1966 did indeed lead to more education of approximately one third of a 

year, holding other factors constant.  The effect is statistically significant.  For space reasons, we 

do not report the appropriate auxiliary regression (16) for this example, with the results being 

available on request.  However, we note, before examining the estimation results, that the DWH 

statistic for this sample is 1.168 with an �(1,2993) p-value of 0.280, which would suggest that 

educ is not correlated with the error term.  

The OLS estimate of the education effect implies a 7.5% benefit in wages for each 

additional year of education, holding other factors constant.  The estimate from using 2SLS is 

approximately 43% higher, indicating that an additional year of education leads to a 13.2% 

increase in expected wages, ceteris paribus.  The WALS estimates are similar across the four 

priors, leading to an estimated 10.5% to 11% increase in estimated wages with an additional year 

of schooling, with the weight factor ranging from 0.541 and 0.622, each choice of prior slightly 

weighing the 2SLS estimates more than the OLS estimates.  Using college proximity as an 

instrument, either with 2SLS or WALS, increases the estimated gain from education by over 40%.  

The impact of education on wages varies little across the four WALS estimates.  The standard 

errors associated with the 2SLS and WALS education estimates are relatively large compared with 

those from using OLS, but the WALS standard errors are at least 16% smaller than those from 

using 2SLS. 

                                                           
17 We note that Card explores whether other explanatory variables, in addition to educ, might be correlated with the 

error term.  In particular, when educ is correlated with the error term then so too is exper, given the construction of 

this variable.  We do not pursue this in our illustration. 
18 The reported 2SLS standard errors incorporate the common degrees-of-freedom adjustment. 



 

 

 

Table 2: Estimated hourly earnings equation 

Explanatory 

Variable  

OLS 

 

2SLS 

 

WALS 

Laplace Subbotin Subbotin Weibull 

   ¿ = 1  Y = 4ÊN2 

¿ = 0.5  Y = 1.6783 

¿ = 0.7995  Y = 0.9377 

¿ = 0.8876  Y = 4ÊN2 

(1) (2) (3) (4) (5) (6) (7) 

Constant 4.621∗(*.*Ô�)  3.666(*.Ö��)∗ 4.027∗(*.ÔÓÓ)  4.105∗(*.Ô��)  4.051∗(*.ÔÓ�)  4.052∗(*.ÔÓ�)  

Exper 0.085(*.**Ô)∗ 0.108(*.*��)∗ 0.099∗(*.*�*)  0.098∗(*.*�Ö)  0.099∗(*.*�*)  0.099∗(*.*�*)  

exper2 −0.0023∗(*.***�)  −0.0023∗(*.***�)  −0.0023∗(*.***�)  −0.0023∗(*.***�)  −0.0023∗(*.***�)  −0.0023∗(*.***�)  

Black −0.199(*.*�Ø) ∗ −0.147(*.*��) ∗ −0.167∗(*.*�Ó)  −0.171∗(*.*��)  −0.168∗(*.*�Ó)  −0.168∗(*.*�Ó)  

Smsa 0.136∗(*.*�*)  0.112(*.*��)∗ 0.121∗(*.*�Ö)  0.123∗(*.*�Ø)  0.122∗(*.*�Ö)  0.122∗(*.*�Ö)  

South −0.148∗(*.*�Ó)  −0.145∗(*.*�Ô)  −0.146(*.*�Ô) ∗ −0.146(*.*�Ô) ∗ −0.146(*.*�Ô) ∗ −0.146(*.*�Ô) ∗ 

smsa66 0.026(*.*�Ö)∗ 0.019∗(*.*��)  0.021(*.*��) 0.022(*.*��) 0.022(*.*��) 0.022(*.*��) 
reg662 0.096(*.*�Ó)∗ 0.101(*.*�Ø)∗ 0.099(*.*�Ø)∗ 0.099(*.*�Ø)∗ 0.099(*.*�Ø)∗ 0.099(*.*�Ø)∗ 

reg663 0.145(*.*��)∗ 0.148(*.*�Ô)∗ 0.147∗(*.*�Ô)  0.147∗(*.*�Ô)  0.147∗(*.*�Ô)  0.147∗(*.*�Ô)  

reg664 0.055(*.*��) 0.050(*.*��) 0.052(*.*��) 0.052(*.*��) 0.052(*.*��) 0.052(*.*��) 
reg665 0.128∗(*.*��)  0.146(*.*�Ô)∗ 0.139∗(*.*�Ó)  0.138∗(*.*�Ó)  0.139∗(*.*�Ó)  0.139∗(*.*�Ó)  

reg666 0.141∗(*.*��)  0.163∗(*.*��)  0.154∗(*.*�*)  0.153∗(*.*�*)  0.154∗(*.*�*)  0.154∗(*.*�Ö)  

reg667 0.118(*.*��)∗ 0.135(*.*�Ö)∗ 0.128(*.*�Ö)∗ 0.127(*.*�Ö)∗ 0.128(*.*�Ö)∗ 0.128(*.*�Ö)∗ 

reg668 −0.056(*.*��)  −0.083(*.*�Ö)  −0.073(*.*�Ø)  −0.071(*.*�Ô)  −0.072(*.*�Ø)  −0.072(*.*�Ø)  

reg669 0.119∗(*.*�Ö)  0.108∗(*.*��)  0.112∗(*.*��)  0.113∗(*.*��)  0.112∗(*.*��)  0.112∗(*.*��)  

Educ 0.075(*.**�)∗ 0.132(*.*��)∗ 0.110∗(*.*��)  0.105∗(*.*��)  0.109∗(*.*��)  0.109∗(*.*�Ó)  e= n.a. n.a. 0.622 0.541 0.597 0.596 

Notes: Standard errors are provided in parentheses.  A superscript * indicates statistical significance, against an 

appropriate one-sided alternative hypothesis (as relevant) with, at least, an approximate 10% significance level.   

  

 We have used a * alongside estimates in Table 2 to denote statistical significance at the 

nominal 10% significance level, using a standard normal critical value.  It remains to be explored 

whether a normality assumption reasonably approximates the distribution of the WAL estimator 

(even asymptotically), given that the estimator is a Bayesian combination of frequentist 

estimators.  Accordingly, care is needed when interpreting the *s for the WALS cases.  However, 

as previously discussed, we can consider whether the t-ratios are greater than one in magnitude 

as one way to ascertain whether a regressor is reasonably correlated with the dependent variable.  

Here, the absolute t-ratios are greater than one for all cases and variables, suggesting that 

inclusion of each explanatory variable is sensible, irrespective of estimation method. 

Comparing the outcomes for all regressors across the four WALS cases, we see that the 

coefficient estimates are similar, only differing by at most 5%.  The standard errors are 

comparable, with those obtained from the Subbotin prior with ¿ = 0.5 sometimes being 



 

 

marginally smaller.  At least for this illustration, the choice of prior does not lead to significantly 

different magnitudes of the estimated coefficients and standard errors.  Turning finally to the 

estimated weights, we observe that e= > 0.5, irrespective of prior, so that the WALS estimates are 

weighting 2SLS more than OLS, with the Laplace prior resulting in the highest e= and the 

Subbotin prior (¿ = 0.5) leading to the lowest e=, but the difference between the highest and 

lowest e= is only 15%.   

In summary, using WALS, at least for this illustration, offers a viable alternative when 

there is uncertainty regarding the possible endogeneity of one or more explanatory variables.  

The results demonstrate that the approach can be readily applied, often leading to significant 

gains in standard errors over just applying 2SLS. We now look at our second example. 

 

5.2. Example 2: Role of Religion in Economic Growth 

This demonstration of combining OLS and 2SLS using our results is based on the work of Barro 

and McCleary (2003) and Durlauf et al. (2012), amongst others, who explore the question of 

whether religion impacts aggregate economic growth.  Barro and McCleary (hereafter BM) use 

survey data on religiosity to estimate the effect of church attendance and religious beliefs, 

specifically belief in heaven and in hell, on economic growth for a cross-country panel of 41 

countries over three time periods (1965 to 1975, 1975 to 1985 and 1985 to 1995). Due to data 

limitations, some countries are only included in one or more of the periods leading to an 

unbalanced panel, and the determinants of growth, aside from those related to religion, are as 

advocated in the empirical framework of Barro and Sala-i-Martin (2004, Chapter 12).   

BM hypothesize that church attendance is an input to the religion sector whereas 

believing in hell and/or heaven is an output.  Their empirical results, based on instrumental 

variables estimation of their pooled data, suggest that economic growth correlates positively with 

religious beliefs, which BM interpret as consistent with a framework in which these beliefs lead 

to individual traits that result in increased productivity and hence economic growth.  In contrast, 

church attendance is estimated to negatively correlate with economic growth, a feature that the 

authors suggest arises because higher church attendance indicates that more resources are being 

devoted to the religion sector, holding the output from the sector (religious beliefs) constant.  In 

addition, BM postulate that church attendance might be representative of the impact that 

organized religion has on laws and regulations in the country, which may affect economic 

performance.   

 Durlauf et al. (2012) re-examine BM’s study with the goal being to explore replicability 

and robustness of the finding that religion matters for macroeconomic outcomes.  Durlauf et al. 

(hereafter DKT) report that BM’s empirical results are reasonably replicable, but are not robust 

to model uncertainty with regard to alternative possible growth determinants, a matter that has 

preoccupied this literature.  Extending the framework to a broader set of potential growth 

models, and allowing for uncertainty with regard to a preferred growth model, DKT find little 

support for BM’s empirical outcome that religion matters for growth.  DKT adopt a hybrid 

frequentist-Bayesian model averaging approach, which allows for over-identification as well as 



 

 

uncertainty with respect to the choice of instrument set and uncertainty with regard to relevant 

growth factors.  They also consider a so-called “kitchen sink” model, which is the largest model 

in their model space, in the sense of including every proposed explanatory variable.   

 For our illustration of allowing for possible endogeneity of some of the determinants of 

growth, we employ one of BM’s growth models, along with their instrument choices, using the 

data provided by DKT19; we refer the reader to BM for discussions on the suitability of 

instrument choices.  Specifically, we examine the following model: 

 N�l = p ��CQCl
�

Ct� + ���OYℎÊÊ4�l + ���4�nª�l + ��Ónª�P4�l + ��ÔPÊPÊ3ª
�l 

 

(21) 

+��Ø��4ª�l + ���ℎªM�ª
�l + ���ℎª44�l + ���Yℎ5Ê�l + ���ªMO�ª4�l + ���ℎ�
���l +��ÓDªÑO�l + ��Ô5�O4�5�l + ��ØÊ�PℎÊ�l + ��Ö3�ÊPM�l + ��,�*ÊPℎ�ª4�l + ��,���0�l +��,���
��l + ��,��Ê3�ªO�l + ��,��N��l + ��,���3�l + ��,�Ó3��NℎPO�l + ��,�Ô3��NℎPO�l� + ��l . 
Appendix 1 provides variable definitions, along with adopted instruments.  Our specific interest 

lies in the impacts of the religiosity variables, belief in heaven (ℎªM�ª
4N), belief in hell (ℎª444N) 

and monthly church attendance (Yℎ5Ê4N), as represented by the coefficients ���, ��� and ���, 

respectively.  The model also includes regressors that account for adherence to particular 

religious groups; those linked with the Catholic faith omitted so that ��� … ��,�* need to be 

interpreted relative to the Catholic share20.  The “�” subscript denotes the country, whereas the 

“P” subscript refers to the period; P = 1,2,3, with P = 1 corresponding to 1965-1975 and so on. 

Data issues severely limited the number of possible countries, with BM ultimately including only 

41 countries.  The dataset provided by DKT only permitted us to examine model (21) for 40 

countries (listed in Appendix 1) with some additional exclusions: Hungary, Poland, Bangladesh 

and Iceland were dropped for the first period; Hungary and Poland were excluded from the 

second period; and South Africa from the third period.  This resulted in 
� = 36, 
� = 38, 
� =39 & 
 = 113.  BM estimate model (21) using three stage least squares, whereas, given the nature 

of our theoretical work, we focus on 2SLS compared with pooled OLS.  We recognize the 

consequences of this on the error term assumptions and subsequent estimates of coefficients and 

standard errors21.  Despite these shortcomings, we believe this case provides readers with another 

illustration of a branch of research for which our theoretical results are likely useful.    

 

 

                                                           
19 DKT provide their data via the Journal of Applied Econometrics Data Archive; see, 

http://qed.econ.queensu.ca/jae/2012-v27.7/, last accessed 23 March 2017. 
20 BM use the 1980 share for the last period due to the available survey information, justifying this approach due to 

the persistence in religious faith. 
21 It would be useful to extend our theoretical results to allow for nonspherical errors.    

 



 

 

Table 3: Descriptive statistics for some key variables used in Example 2 (pooled sample) 

Variable Minimum  Maximum Mean Std. Dev. 

Economic Growth 

Average growth rates of real per 

capita GDP (%) 

-2.1 7.9 2.3 2.0 

Religiosity 

Belief in heaven (%) 19.2 97.0 61.0 20.3 

Belief in hell (%) 7.7 95.6 39.3 20.4 

Monthly church attendance (%) 9.4 91.3 41.9 22.8 

Religion Shares 

Eastern (%) 0.0 97.0 6.2 22.1 

Hindu (%) 0.0 82.7 2.5 13.3 

Jewish (%) 0.0 89.6 2.8 14.4 

Muslim (%) 0.0 99.3 6.0 19.5 

Orthodox (%) 0.0 78.0 2.6 12.5 

Protestant (%) 0.1 99.6 26.5 35.5 

Other (%) 0.0 46.9 3.4 9.2 

Catholic (%) 0.1 99.9 50.0 41.9 

Neoclassical Growth 

Initial income (logged) 6.6 9.7 8.5 0.8 

Schooling (years) 0.2 6.0 2.1 1.3 

Demography 

Life expectancy at age 1 (years) 50.8 76.9 69.7 6.3 

Fertility rate 1.6 7.4 3.6 1.7 

 

Proceeding, we have �� = 8, �� = 17, � = 25, �∗ = 42, 
 = 113, 7� = 17; BM classify a 

substantial number of the explanatory variables as endogenous – we list these in Appendix 1, 

along with the adopted instruments (which follow BM).  Table 3 reports some summary statistics 

for the relevant explanatory factors.    The countries in the sample vary widely in religious 

beliefs, church attendance and proportions that declare affinity with a particular religious group.  

Interestingly, the mean country percentage of the population who believe in heaven is over 1.5 

times the corresponding statistic for believing in hell.  For the countries in our sample, 

Catholicism and Protestantism are the dominant religions, but our sample also consists of 

countries whose foremost religion is of other faiths and observations with effectively zero 

percentage in every religion – identification with one or more of the specified religions differs 

extensively across the sample. 

We present OLS and 2SLS estimates, along with standard errors, in columns (2) and (3) of 

Table 4, with the other columns providing the estimates from using our weighted WALS 

estimator for the four considered priors.  As in Example 1, an asterisk denotes statistical 

significance at (at least) the nominal 10% significance level; recall our earlier comment that the 

assumption of normality for the WALS estimators (even asymptotically) may be unreasonable 

(even approximately).  We also report outcomes from joint tests of non-significance of the 

religiosity regressors and of the religion shares, providing asymptotic X� p-values, albeit these 



 

 

too may not be accurate.  A bold font indicates instances for which the absolute value of the t-

ratio is greater than one.  Prior to discussing the outcomes reported in the table, we note that the 

sample DWH statistic value, using the 2SLS estimate of the error variance, is 1.091, with an �(17,71) p-value of 0.380, suggesting that the suspected regressors are not correlated with the 

error term.  For this sample, the pretest estimates would be the OLS estimates. 

In discussing the results, we concentrate attention on the religion variables, first the 

religiosity factors (belief in heaven, belief in hell and monthly church attendance) and secondly 

the religion share regressors.  Comparing the OLS and 2SLS outcomes on the religiosity 

variables (see columns (2) and (3)), we note substantial variations in magnitudes of coefficient 

estimates, signs of estimates, standard errors and statistical significance.  For instance, the 

estimated 2SLS impact of monthly church attendance on average growth rate is more than twice 

that obtained using OLS, and OLS suggests that belief in hell (belief in heaven) is (not) 

statistically significant, whereas 2SLS detects the reverse outcome.  Standard errors using 2SLS 

are more than five times higher than those from OLS.  Perhaps not surprisingly given these 

disparities, the Wald test of joint non-significance of the relevance of the religiosity variables is 

rejected with OLS but not so with 2SLS.  The comparable outcomes from BM (using their 

sample and 3SLS) is column (6) in their Table 4 (p773) and from DKT (using a similar sample to 

ours) we refer the reader to column (6) of their Table II (p1064).  That we find some 

dissimilarities between our results from those reported by BM/DKT highlights the sensitivity of 

outcomes to the selected sample, estimation method, and that we do not report robust standard 

errors - the conclusions of BM are often not robust to such matters.   

The e= estimates are similar across the four examined priors, only varying by at most 8% 

with the Laplace e= being the highest estimate and the Subbotin (¿ = 0.5) the lowest; the weights 

for the Subbotin (¿ = 0.7995) and the Weibull methods are the same (at least to the reported 

number of decimal places).  The 2SLS estimates are weighted more than the OLS ones across the 

four WALS cases, and the resulting coefficient estimates for the religiosity factors are practically 

the same.  The standard errors obtained using WALS are significantly higher than those from 

OLS, but at least 16% lower than those from 2SLS.  As the standard errors for the Subbotin (¿ =0.5) prior method are slightly smaller than for the other priors, we observe that this is the one 

situation for which the three religiosity variables have a t-ratio greater than one in magnitude – 

this outcome occurs only for belief in heaven and monthly church attendance with the other 

priors.  Interpreting the scenario of an absolute t-ratio greater than one as indicating that a 

regressor is sufficiently correlated with average growth rates, these WALS estimates imply that 

economic growth responds positively to belief in heaven and negatively to monthly church 

attendance, qualitative conclusions that accord with those generally arrived at by BM.  Of the 

religiosity regressors, monthly church attendance seems to be the most important variable, 

followed by belief in heaven. 

While our results regarding monthly church attendance support the outcomes of BM, this is 

not the case regarding belief in hell.  BM report that economic growth and belief in hell is 

significantly positively correlated, whereas we only detect this relationship using OLS, with the 

WALS results hinting at a negative association, if there is any relevant connection.  DKT, on the 



 

 

other hand, detect little evidence of religiosity mattering for growth in their robustness study that 

changes the fundamental model specification and employs Bayesian model averaging to 

incorporate the variety of model specifications.  If religion demonstrates any effect on economic 

growth, DKT’s work alludes to monthly church attendance possibly leading to lower economic 

growth rather than higher growth as suggested by BM.   It remains for future work to ascertain 

whether our WALS method would lead to comparable conclusions should we extend our 

approach in the directions examined by DKT. 

Turning to the effects of the religion adherence shares, which should be interpreted as the 

impact relative to that for Catholicism, BM show (with their 3SLS estimator and sample) that the 

statistically significant, negative, factors are for Hindu, Muslim, Orthodox and Protestant.  Our 

OLS results only support this empirical conclusion for Muslim and Protestant, with Other 

Religions also indicating a significant, negative effect.  In contrast, the 2SLS outcomes detect 

that only Hindu is statistically significant with a positive impact (relative to Catholicism).  We 

see that the numerical estimates for these faith factors can markedly vary across OLS and 2SLS, 

along with standard errors that are much higher for 2SLS.  The hybrid approach of averaging 

2SLS and OLS using WALS results in similar numerical estimates and standard errors for the 

religion shares impacts on growth across the four examined priors, with the Subbotin (¿ =0.5) standard errors being marginally lower if at all.  The WALS standard errors are noticeably 

lower than those from 2SLS, but still considerably higher than from OLS.  Only Protestant and 

Other Religions have t-ratios larger than one in magnitude, the rough standard we are adopting 

with WALS, with Protestant resulting in the highest absolute t-ratio.  Given these outcomes, that 

the joint effect of the religion affiliation shares on economic growth is non-significant is as 

expected, although we note again that the reasonableness of the p-values reported for the WALS 

cases is unknown.  That the religion shares are jointly non-significant conflicts with BM’s 

conclusions but accord with those qualitatively reported by DKT, at least for their model 

averaging results. 

As with Example 1, this second example illustrates that the WALS model-averaging 

approach provides a strategy that readily produces estimates of the coefficients and standard 

errors that are not conditional on an assumption regarding endogeneity of a subset of regressors, 

taking account of any such uncertainty.   

 

 

 

 

 

 

 

 



 

 

Table 4: Estimated average growth rates equation 

Explanatory 

Variable 

OLS 2SLS WALS 

Laplace Subbotin Subbotin Weibull 

   ¿ = 1  Y = 4ÊN2 

¿ = 0.5  Y = 1.6783 

¿ = 0.7995  Y = 0.9377 

¿ = 0.8876  Y = 4ÊN2 

(1) (2) (3) (4) (5) (6) (7) Q� Ù. ÚÚÛ∗(Ù.ÙÜÛ)  Ù. ÝÞÝ∗(Ù.ßÛÜ)  Ù. àÝÜ∗(Ù.ßÜÜ)  Ù. ààá∗(Ù.ßÜÚ)  Ù. àÝß∗(Ù.ßÜÜ)  Ù. àÝß∗(Ù.ßÜÜ)  Q� Ù. ÚÞá∗(Ù.ÙÜÛ)  Ù. ÝßÝ∗(Ù.ßÛá)  Ù. ààÜ(Ù.ßÜá) ∗ Ù. àÚá(Ù.ßÜà) ∗ Ù. ààß(Ù.ßÜÜ) ∗ Ù. ààß(Ù.ßÜÜ) ∗ Q� Ù. ÚÞá∗(Ù.ÙÜá)  Ù. Ýßß∗(Ù.ßÛÚ)  Ù. ààÚ∗(Ù.ßÜÚ)  Ù. àÚà∗(Ù.ßÜÙ)  Ù. àÚâ∗(Ù.ßÜÚ)  Ù. àÚâ∗(Ù.ßÜÚ)  

school Ù. ÙÙàà∗(Ù.ÙÙßâ)  Ù. ÙÙÝâ∗(Ù.ÙÙÚÜ)  Ù. ÙÙÝÚ∗(Ù.ÙÙÚà)  Ù. ÙÙÝÚ∗(Ù.ÙÙÚà)  Ù. ÙÙÝÚ∗(Ù.ÙÙÚà)  Ù. ÙÙÝÚ∗(Ù.ÙÙÚà)  

life −Ù. ÙÝß∗(Ù.ÙÞá)  −0.029(*.*�Ö)  −0.037(*.*��)  −0.038(*.*��)  −0.038(*.*��)  −0.038(*.*��)  

fertl −Ù. Ùßß∗(Ù.ÙÙÛ)  −Ù. ÙÝÙ∗(Ù.ÙÞá)  −Ù. ÙÚÝ(Ù.ÙÞà) ∗ −Ù. ÙÚà(Ù.ÙÞà) ∗ −Ù. ÙÚÝ(Ù.ÙÞà) ∗ −Ù. ÙÚÝ(Ù.ÙÞà) ∗ 

totopen Ù. ßßÛ(Ù.ßÙÞ)  0.056(*.�ÖÓ) 0.079(*.�ØÓ) 0.082(*.�Ø�) 0.080(*.�ØÓ) 0.080(*.�Ø�) 
rule Ù. Ùßà∗(Ù.Ùßß)  0.006(*.*�Ó) 0.009(*.*��) 0.009(*.*��) 0.009(*.*��) 0.009(*.*��) 
heaven 0.0032(*.**�Ó)  Ù. ÙÝÜ(Ù.ÙÚá) ∗ Ù. ÙÚÜ(Ù.ÙÚß)  Ù. ÙÚà∗(Ù.ÙÚÙ)  Ù. ÙÚÝ(Ù.ÙÚß)  Ù. ÙÚÝ(Ù.ÙÚß)  

hell Ù. ÙÙáà∗(Ù.ÙÙÝß)  −0.025(*.*��)  −0.013(*.*��)  −Ù. ÙßÞ(Ù.ÙÞß)  −0.012(*.*��)  −0.012(*.*��)  

chmo −Ù. Ùßß(Ù.ÙÙà) ∗ −Ù. ÙÞÛ(Ù.ÙÞÙ) ∗ −Ù. ÙÞÞ∗(Ù.ÙßÜ)  −Ù. ÙÞß∗(Ù.ÙßÜ)  −Ù. ÙÞß∗(Ù.ÙßÜ)  −Ù. ÙÞß∗(Ù.ÙßÜ)  

easrel 0.0037(*.**ÖÓ)  0.0073(*.*�Ô)  0.0059(*.*�Ó)  0.0058(*.*��)  0.0059(*.*��)  0.0059(*.*��)  

hindu −0.0090(*.*��Ó)  Ù. ÙáÜ∗(Ù.ÙÝá)  0.045(*.*�*) 0.041(*.*�*) 0.043(*.*�*) 0.043(*.*�*) 
jews 0.0067(*.*��Ô)  Ù. ÙÚÞ(Ù.ÙÚß)  0.023(*.*�Ø) 0.021(*.*�Ô) 0.022(*.*�Ø) 0.022(*.*�Ø) 
muslim −Ù. ÙßÝ(Ù.ÙßÞ)  −0.0083(*.*��)  −0.011(*.*�Ó)  −0.011(*.*�Ö)  −0.011(*.*�Ó)  −0.011(*.*�Ó)  

ortho −0.144(*.*��)  −0.037(*.*�*)  −0.029(*.*��)  −0.028(*.*�Ö)  −0.028(*.*��)  −0.028(*.*��)  

prota −Ù. ÙßÞ(Ù.ÙÙá) ∗ −Ù. ÙÚÞ(Ù.ÙÞÛ)  −Ù. ÙÞÝ(Ù.ÙÞÚ)  −Ù. ÙÞà(Ù.ÙÞÞ)  −Ù. ÙÞà(Ù.ÙÞÚ)  −Ù. ÙÞà(Ù.ÙÞÚ)  

othrel −Ù. ÙÞÚ(Ù.ÙÞß)  −Ù. ÙáÜ(Ù.ÙÜÜ)  −Ù. ÙÝÜ(Ù.ÙÝÜ)  −Ù. ÙÝà(Ù.ÙÝà)  −Ù. ÙÝÝ(Ù.ÙÝÝ)  −Ù. ÙÝÝ(Ù.ÙÝÝ)  

y0 −Ù. ÙÞâ(Ù.ÙÙÝ) ∗ −Ù. Ùàâ(Ù.Ùßá) ∗ −Ù. ÙàÞ(Ù.ÙßÝ) ∗ −Ù. Ùàß(Ù.ÙßÝ) ∗ −Ù. Ùàß(Ù.ÙßÝ) ∗ −Ù. Ùàß(Ù.ÙßÝ) ∗ 

inv 0.021(*.*��) 0.014(*.*ØÔ) 0.017(*.*ÔÔ) 0.017(*.*Ô�) 0.017(*.*ÔÓ) 0.017(*.*ÔÓ) 
opres Ù. ÙÚÚ∗(Ù.ÙÙâ)  Ù. ÙÞÛ(Ù.ÙÞà)  Ù. ÙÚÙ(Ù.ÙÞß) ∗ Ù. ÙÚÙ(Ù.ÙÞÙ) ∗ Ù. ÙÚÙ(Ù.ÙÞß) ∗ Ù. ÙÚÙ(Ù.ÙÞß) ∗ 

gv 0.021(*.*�Ó) −0.176(*.�ØÔ)  −0.104(*.��Ö)  −0.095(*.���)  −0.100(*.��Ø)  −0.100(*.��Ø)  

dp −Ù. Ùßß(Ù.ÙÙÝ) ∗ −0.033(*.*��)  −0.025(*.*�Ø) −Ù. ÙÞà(Ù.ÙÞÜ)  −0.025(*.*�Ô) −0.025∗(*.*�Ô)  

prights 0.020(*.*�Ô) −0.054(*.���)  −0.026(*.���) −0.023(*.�*�) −0.025(*.�*Ö) −0.025(*.�*Ö)  

prights2 −0.015(*.*�*)  0.037(*.�*�) 0.018(*.*Ø�) 0.015(*.*Ø*) 0.017(*.*Ø�) 0.017(*.*Ø�) e= n.a. n.a. 0.630 0.585 0.608 0.608 

       K*� 10.223∗(*.*�Ô)  3.332(*.���) 2.211(*.��*) 2.209(*.��*) 2.124(*.��Ô) 2.111(*.��*) K*� 9.387(*.��Ó) 4.575(*.Ô��) 3.634(*.Ø��) 3.509(*.Ø��) 3.547(*.Ø�*) 3.532(*.Ø��) 
Notes: Standard errors are provided in parentheses. A superscript * indicates statistical significance, against an 

appropriate one-sided alternative hypothesis (as relevant) with, at least, an approximate 10% significance level.  The 

null hypotheses reported in the table relate to: K*� = ��� = ��� = ��� = 0 and K*� = ��� = ��� = ⋯ = ��,�* =0, where the presented numbers are sample Wald statistics with, respectively, X�(3) and X�(7) p-values in 

parentheses.  A bold font indicates a t-ratio greater than one in magnitude. 



 

 

6. Concluding Remarks 

This paper has three purposes.  First, it introduces a model averaging estimator, within the 

framework of weighted-average least squares, which combines the OLS and 2SLS estimators 

when there is ambiguity about whether one or more regressors are endogenous. Our approach 

allows for a proper treatment of such model uncertainty, rather than the common frequentist 

method of reporting either the OLS or 2SLS results (or both), or undertaking a preliminary test to 

ascertain which estimator might be preferred, moving the researcher into a pretest framework, 

which is more often than not ignored when conveying the empirical outcomes.  Accounting for 

the model selection is essential if we are genuinely concerned with reporting appropriate results.  

Our consideration of the issue focuses on obtaining the best possible estimates of the model 

parameters, allowing for the model uncertainty, rather than choosing between either OLS or 

2SLS, with the WALS structure providing for both the model that assumes no endogenous 

regressors and the model that allows endogeneity to provide knowledge.  Via a number of 

theorems and corollaries, we extend the current WALS theory to develop a mixed OLS/2SLS 

estimator that combines model selection and estimation, deriving the asymptotic bias, variance 

and risk functions of the estimator.   

Our second objective is to show that the qualitative findings from the existing WALS 

literature equally applies to the asymptotic properties of our considered estimator.  Specifically, 

ascertaining how best to estimate the mean of a normally distributed random vector, whose 

components are independently distributed, crucially determines the asymptotic properties of our 

mixed OLS/2SLS estimator.  That is, we only need establish a preferred way to estimate the 

mean of a standard normal random variable.  Having resolved this matter, according to some 

chosen criteria, the subsequently obtained weight is also optimal for averaging the OLS and 

2SLS estimators of the coefficient vector of our structural model.   

Our third intention is to illustrate our model averaging WALS estimator, utilizing previous 

WALS research.  We adopt a Bayesian approach to form the required estimator of the mean of a 

normally distributed random variate, so that the adopted estimator is a mixed Bayesian-

frequentist rule.  The priors we consider are “neutral”, in the sense of attempting to simulate 

ignorance about model preference, and have been shown elsewhere as having some other 

favourable properties.  We consider two empirical examples, re-examining the results reported in 

the original work.  Our first example, taken from a popular undergraduate econometrics textbook 

(Wooldridge, 2016) based on a model and data from Card (1995), investigates the link between 

education and earnings.  Our second demonstration re-examines a model considered by Barro 

and McCleary (2003), which explores the impact of religious beliefs (belief in heaven and belief 

in hell), involvement in religious activities (proxied by monthly church attendance) and 

observance of particular religions.  We consider four priors considered by the WALS research to 

date.  Both examples illustrate that WALS can be readily applied in practice, and is a viable 

model averaging estimator when model uncertainty exists regarding the exogeneity assumption 

concerning one or more explanatory variables. 

In terms of future work, simulation studies would be helpful to explore the finite-sample 

properties of the OLS-2SLS WALS model averaging estimator, especially compared with the 



 

 

usually adopted pretest estimator.  Another topic would be the question of prior choice.  We 

investigate priors proposed by WALS works focusing on the issue of estimating the parameters 

for a set of “focus” explanatory variables, deemed necessary for inclusion in the model, when 

there is another group of auxiliary factors that may or may not be relevant, whose parameters are 

not of fundamental interest.  In such an environment, using a prior that is “neutral” or “ignorant” 

with regard to whether or not to include one or more of the auxiliary variables (more specifically, 

is ignorant to the issue of whether the associated t-ratio is larger or smaller than one in absolute 

value) makes eminent sense.  However, as the researcher may wish to adopt an informative prior 

regarding the endogeneity question, it would be interesting to examine such a matter. 

Additionally, our setup assumes that the specification of the explanatory variables is 

reasonable, whereas uncertainty about this issue is more the norm.  Moreover, theoretical doubt 

may also exist regarding instrument choices, an assumption that we do not query.  Systematically 

extending our research to allow for both of these concerns would be worthy of attention.   
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Appendix 1:  Information for the Applications 

 

Example 1: Returns to Schooling 

We specify the sources of the data for this illustration in Section 5.1 and footnote 21.  Definitions 

of the variables used in model (20) are: 

lwage  = natural logarithm of wage. 

wage  = hourly wage in cents in 1976. 

educ  = years of schooling in 1976. 

age  = age in years in 1976. 

exper  = age – educ – 6. 

expersq = (exper)2. 

black  = 1 if classified as Black, 0 otherwise. 

smsa = 1 if resided in Standard Metropolitan Statistical Area (SMSA) in 1976, 0 

otherwise. 

smsa66 = 1 if resided in SMSA in 1966, 0 otherwise. 

south = 1 if lived in a classified Southern region in 1976, 0 otherwise. 

nearc4 = 1 if lived near a 4 year college in 1966, 0 otherwise. 

reg66j = 1 if resided in region j in 1966, 0 otherwise. 

  



 

 

Example 2: Role of Religion in Economic Growth 

We obtained the data for this case as detailed in Section 5.1 and footnote 18.  BM and DKT 

provide specific sources.  The variables, and instruments, used to estimate model (21) are as 

follows: 

g  = average growth rates for the periods 1965-75, 1975-85, 1985-95. QC  = period dummy variables for 1965-75, 1975-85, 1985-95. 

y0  = natural logarithm of per capita GDP at 1965, 1975, 1985.  The instrument is the 

value of y0 at 1960, 1970, 1980. 

gpop = natural logarithm of average population growth rates plus 0.05 for the periods 

1965-75, 1975-85, 1985-95.  The instrument is the average values of 1960-65, 

1970-75, 1980-85. 

inv = natural logarithm of average ratios over each period of investment for the 

periods 1965-75, 1975-85, 1985-95.  The instrument is the average values of 

1960-65, 1970-75, 1980-85. 

school  = years of male secondary and higher school attainment in 1965, 1975, 1985. 

life  = reciprocals of life expectancy at age 1 in 1960, 1970, 1980. 

fertl = natural logarithm of the total fertility rate in 1960, 1970, 1980. 

opres = average ratios for each period of exports plus imports to GDP, filtered for the 

usual relation of this ratio to the natural logarithm of population and area for the 

periods 1965-75, 1975-85, 1985-95.  The instrument is the average values of 

1960-65, 1970-75, 1980-85. 

gv = average ratios of government consumption (net of outlays on defense and 

education) to GDP for the periods 1965-75, 1975-85, 1985-95.  The instrument 

is the average values of 1960-65, 1970-75, 1980-85. 

dp = the consumer price inflation rate for the periods 1965-75, 1975-85, 1985-95.  

The instrument is spainpor. 

totopen = growth rate of the terms of trade over each period, interacted with the average 

ratio of exports plus imports to GDP. 

hell = fraction of the population who believe in hell expressed in the form of log � é�?é�.  
See the note below for instrument list. 

heaven = fraction of the population who believe in heaven expressed in the form of log � é�?é�.  See the note below for instrument list. 

 



 

 

chmo = population averages of monthly church attendance expressed in the form of log � é�?é� .  See the note below for instrument list. 

easrel = Eastern religion share in 1970, 1980, 1980, expressed as a fraction of the 

population who expressed this religious faith.  This category includes Buddhism, 

Chinese Universists, Confucians, Neoreligionists, Shintos, and Zoroastrians.  

The instrument is easrel in 1970, 1970, 1980. 

hindu = Hindu religion share in 1970, 1980, 1980, expressed as a fraction of the 

population who expressed this religious faith. The instrument is hindu in 1970, 

1970, 1980. 

jew = Jewish religion share in 1970, 1980, 1980, expressed as a fraction of the 

population who expressed this religious faith.  The instrument is jew in 1970, 

1970, 1980. 

muslim = Muslim religion share in 1970, 1980, 1980, expressed as a fraction of the 

population who expressed this religious faith.  The instrument is muslim in 1970, 

1970, 1980. 

ortho = Orthodox religion share in 1970, 1980, 1980, expressed as a fraction of the 

population who expressed this religious faith.  The instrument is ortho in 1970, 

1970, 1980. 

prota = Protestant religion share in 1970, 1980, 1980, expressed as a fraction of the 

population who expressed this religious faith.  The instrument is prota in 1970, 

1970, 1980. 

othrel = Other Religion share in 1970, 1980, 1980, expressed as a fraction of the 

population who expressed this religious faith.  The instrument is othrel in 1970, 

1970, 1980. 

prights = political rights.  The average for each period of the Freedom House measure of 

democracy (electoral rights).  The average of 1972-74 is used for the first period.  

The instrument is lagged prights. 

relplu = religious pluralism, defined as one minus the Herfindahl Index, with this index 

defined as the estimated probability that two randomly selected persons from the 

population belong to the same religion, in 1970, 1980, 1980 (1990 for some 

countries).  See BM’s footnote 11 (p764) for further details. 

state_rel70 = 1 if there existed a state religion in 1970, 0 otherwise. 

state_reg70 = 1 if there existed state regulation of religion in 1970, 0 otherwise. 

spainpor = 1 if the country was colonized by Spain or Portugal, 0 otherwise. 

 



 

 

Note: The explanatory variables hell, heaven and chmo are jointly instrumented by the variables 

state_rel70, state_reg70 and relplu.   

 

List of countries for Example 2: 

North America: Canada, United States 

Europe: Austria, Belgium, Cyprus, Switzerland, Denmark, Spain, Finland, France, United 

Kingdom, Hungary, Ireland, Iceland, Israel, Italy, Netherlands, Norway, Poland, 

Portugal, Sweden, Turkey 

Asia and Oceania: Australia, India, Bangladesh, Japan, Republic of Korea, New Zealand, 

Philippines, Taiwan 

Sub-Saharan Africa: Ghana, South Africa 

Latin America & Caribbean: Argentina, Brazil, Chile, Dominican Republic, Mexico, Peru, 

Uruguay, Venezuela 

 

 

  

 

 

 


