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I. Introduction

Allocation models form an important class of models which have wide application in economics. Such

models comprise a system of regression equations which explain how some aggregate is "allocated"

among its component parts. The aggregate is taken as "given", and so is generally treated as an

exogenous variable. Allocation models, which were first discussed formally by Nicholson (1949), are

characterized by the fact that the data satisfy the constraint that the sum of the "dependent" variables

exactly equals a linear combination of the regressors, at every sample point. Examples of situations

where such models arise are consumer demand systems (including systems of Engel curves as a

special case when there is no price variation); asset demand models; and certain trade models. Bewley

(1986) provides a comprehensive discussion of the associated literature.

It is well known that the "adding up" feature of the data imposes exact restrictions on the coefficients

of an allocation model. In addition, the error covariance matrix will be singular, but the parameter

estimates will (generally) be invariant to the choice of equation to "drop" from the model prior to

joint systems estimation (e.g., Barten (1969), Powell (1969)). When each equation has identical

regressors, so that joint estimation of the system is identical to Ordinary Least Squares (OLS), it is

also well known that the latter estimator yields unrestricted coefficient estimates which automatically

satisfy these restrictions, and that the OLS predicted values for the dependent variables automatically

sum to the actual value of the aggregate variable at each sample point.1

The special features of an allocation model also have implications for other aspects of inference. For

example, Berndt and Savin (1975) showed that if the model's error structure follows a vector ARMA

process, then quite stringent restrictions must be imposed on the latter's parameters if the invariance

of the parameter estimates to the choice of deleted equation is to be assured. Giles (1988) extended

these results to other forms of autocorrelation in the errors. The appropriate construction of certain

diagnostic tests is also an issue in the context of allocation models, but is not one which appears to

have attracted specific discussion to date. In this paper we illustrate this point with respect to the well

known "RESET Test" (Ramsey (1969)) for mis-specification of the regressors and/or functional

form. Specifically, we argue that care has to be taken over the implementation of such tests in the

allocation model context, and we demonstrate this point with an empirical application.
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II. Background Theory

First, consider a static allocation model with k identical regressors in each equation. If there are m

"components" to be allocated and n observations, the m-equation model may be written 

Y = XB + U (1)

where Y and U are (n×m); X is (n×k) and non-stochastic, and B is (k×m). The contemporaneous

error covariance matrix is 

n   E(U'U) = S. (2)-1

In general, the adding-up characteristic of an allocation model implies that 

Y4 = X2, (3)

where 4 = (1, 1, ......,1)' is (m×1) and 2 is a (k×1) vector of known constants. For example, if the sum

of the n dependent variables equals the first regressor, then 2 = (1, 0, 0, ......,0)'. So, from (1) and (3),

B4 = 2 and U4 = 0.

The OLS estimator of B is B* = (X'X)  X'Y, so that B*4 = 2, from (3). The estimated coefficients-1

automatically satisfy the restrictions on the true parameters. Further, the predictions from the model

are given by Y* = XB*, so Y*4 = X2 = Y4. That is, the predicted components satisfy the adding-up

constraint at all sample points. Finally, S4 = n  E(U'U)4 = 0, so the error covariance matrix is-1

singular.

Now, consider the corresponding model with (at least some) different regressors in different

equations. Following Bewley (1986, pp.21-22), the model may then be written as:

vec(Y) = diag(X ) $ + vec(U) (4)i
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where diag(X ) is an (n × K) block-diagonal matrix whose i'th diagonal block is the (n × k ) matrix Xi i i

; and $ is a (K × 1) vector, where K = 3k . Let the number of distinct regressors appearing in thei

full system be d, and let X be the corresponding (n × d) matrix of observations. Defining S  to be ai

suitable (d × k ) "selection matrix", we can write X  = XS  , and the full system can be expressed as:i i i

vec(Y) = (I q X) B  ' + vec (U) (5)0

where B   = (S$  , S$  , ......, S$  ), and $' = ($  ', $  ', ......, $  '). Note that B   is (d × m), with a0 1 1 2 2  m m 1 2 m 0

number of zero elements, and each $  is (k  × 1). i i

For this model the adding-up constraint is as in (3), and this again implies that B4 = 2 and U4 = 0.0

For this more general model, the single-equation OLS estimates will not generally satisfy the adding-

up restrictions. Accordingly, the OLS results lack the uniqueness and invariance that they enjoy in

the context of model (1). In addition, it is essential that each regressor must appear in at least two

equations of the system, if the latter is to be logically consistent with the adding-up constraints. We

illustrate this point in the next section, where it has crucial implications for the construction of the

RESET test in such models.

III. Applying the RESET Test

The usual application of the RESET test to the i'th equation of (1), taken in isolation, would involve

obtaining Y *, the i'th column of Y*; then subsequently regressing Y  (the i'th column of Y) on thei i

columns of X and on p powers of Y *; and testing if the coefficients of the latter regressors are jointlyi

zero. It follows from the Milliken-Graybill (1970) Theorem that the usual test statistic will be exactly

F-distributed with p and (n-k-p) degrees of freedom under the null hypothesis, if the errors are

independent, homoskedastic, and normally distributed  .2

However, testing the specification of each equation of the system (1) separately is unsatisfactory in

several respects. First, notice that the powers of Y * differ from equation to equation, because eachi

equation has a different dependent variable. So, when we consider the full system of "augmented"
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equations for the application of the RESET test, we now have (some) different regressors in the

different equations, as in model (5) above. As noted already, this has adverse implications for a

single-equation/OLS approach. Second, if the original characteristic of the allocation model is to be

preserved, we cannot have powers of completely different Y * variables in the different equations.i

To see this, suppose we apply the RESET test with just the square of each Y * as the "extra"i

regressor in the i'th equation, and consider the case where m = 2. A simple illustrative augmented

model for the application of the RESET test would be of the form (say):

Y   = "   + $   x  + (   Y  *   + u1j 1 1 j 1 1j
2

1j

(6)

Y   = "   + $   x  +  (   Y  *   + u2j 2 2 j 2 2j
2

2j

with Y   + Y   = x  ; j = 1, 2, ......., n. As a result of the latter adding-up restriction, model (6) must1j 2j j

satisfy :  "   + "  =0 ; $   + $   = 1 ; (   = (  = 0 ; and  u   + u   = 0. 1 2 1 2 1 2 1j 2j

The RESET test would usually then involve testing if (   = 0 and (   = 0 (either separately or jointly),1 2

but we see that in fact these are not testable restrictions - they are restrictions which must hold exactly

in an allocation model. In the context of this example, the obvious "solution" is to include both Y  *1j
2

and Y  *   in both of the equations of (6), and then test for their joint significance, either in one2j
2

equation at a time, or jointly in both equations simultaneously.   3

With regard to this last point, it is generally the case that the functional form of each equation in an

allocation model is the same. For instance, this comes about if a system of demand equations or Engel

curves is derived from a constrained utility-maximization problem. Then, the functional form of the

equations to be estimated depends on the functional form of the underlying utility function.

If the model specification is at fault, it will need to be remedied across all of the equations in the

system if the underlying "economic sense" of the model is to be preserved.
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In short, in the case of an allocation model, the application of the RESET test needs to be viewed

within the context of the full system. Proper account must be taken of the cross-equation restrictions

associated with the coefficients of both the original regressors and also the "augmenting" powers of

the prediction vectors that form the basis for the RESET test. In practice, this means that all of the

latter augmentation terms should appear in all of the equations of the system.

IV. An Illustrative Application

To illustrate the importance of these points, we have undertaken a small empirical application. We

have used Australian alcohol expenditure data   reported by Goldschmidt (1990) to estimate systems4

of Engel curves for three expenditure categories: Beer, Wine and Spirits. There are 242 cross-section

observations, each relating to average expenditures over groups of households in 1975/76.

Information on the numbers of households per group is available, so the data can be "weighted" to

compensate for the heteroskedasticity that may be induced by the use of "grouped data" (e.g.,

Kakwani (1977), Giles and Hampton (1985)).

Let e   be expenditure on the i'th beverage by group j, and let E  be the corresponding totalij j

expenditure (on alcoholic beverages). The first functional form that we have considered is the basic

Linear model:

e   = "  + $  E  + u    ; i = 1, 2, 3 ; j = 1,2, ......, 242 (7)ij i i j ij

 

where  the restrictions 3"  = 0 ; 3 $  = 1 ensure "Engel aggregation". The second is the Working-5
 i i

Leser model:

w   = "  + $  ln (E ) + u    ; i = 1, 2, 3 ; j = 1, 2, ......, 242 (8)ij i i j ij

where w  = (e  / E ), and the aggregation restrictions   are 3"  = 1; 3 $  = 0. The third is the Addilogij ij j
6

 i i

model of   Bewley (1982):7
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ln(w   / w  ) =  "  + $  ln (E ) + u    ; i = 1, 2, 3 ; j = 1, 2, ......, 242 (9)ij j
+

i i j ij

where ln(w  ) = (3 ln(w  )) / m, and  3"  =  3 $  = 3  u   = 0. j
+

ij  i i ij

The first of these models is quite restrictive, but its functional form is consistent with the Linear

Expenditure System of demand equations (Stone (1954)) and with the Rotterdam demand model

(Theil (1965)). The second model, due to Working (1943) and Leser (1963), incorporates a more

flexible functional form which has performed well in several comparative empirical applications (e.g.,

Giles and Hampton (1995), Dissanayake and Giles (1988)). It may also be derived from the Almost

Ideal Demand System of Deaton and Muellbauer (1980), and was used   with this data set by8

Goldschmidt (1990). The third model generally performs well (e.g., Bewley (1982)) when some of

the goods have saturation levels at moderate levels of total expenditure.

Augmenting each equation of (7) to apply (a simple version of) the RESET test, we have  :9

e   = "  + $  E  + (   e  *   + (   e  *   + (   e  *   + u    , (10)ij i i j i1 1j
2

i2 2j
2

i3 3j
2

ij

i = 1, 2, 3 ; j = 1, 2, ......, 242; and the RESET tests involve testing H   : (   = (    = (   = 0 ; for each0i i1 i2 i3

of i =1, 2, 3. Similarly, augmenting each equation of (8) to apply the RESET test, we have: 

w   = "  + $  ln (E ) + (   e  *   + (   e  *   + (   e  *   + u    , (11)ij i i j i1 1j
2

i2 2j
2

i3 3j
2

ij

where i = 1, 2, 3 ; j = 1, 2, ......, 242; and the RESET tests involve the same null hypotheses as for

equation (10). Augmenting each equation of (9) to apply the RESET test, we have:

ln(w   / w  ) =  "  + $  ln (E ) + (   e  *   + (   e  *   + (   e  *   + u    , (12)ij j
+

i i j i1 1j
2

i2 2j
2

i3 3j
2

ij

i = 1, 2, 3 ; j = 1, 2, ......, 242; and the RESET tests are applied as above.
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Under the null of no mis-specification of the functional form, the usual RESET statistics are F-

distributed with 3 and 237 (or, more generally, pm and (n - pm - k)) degrees of freedom, as systems

estimation collapses to OLS in models (10) to (12). The corresponding Wald test statistics for these

restrictions are asymptotically Chi square with three (or, more generally, pm) degrees of freedom,

in each of the above cases if the restrictions associated with the RESET framework are tested

equation by equation. More generally, if all   of the restrictions in all (m-1) equations of the system10

were tested concurrently, the Wald version of the RESET test statistic would be asymptotically Chi

square with pm(m-1) degrees of freedom, bearing in mind that one of the m equations has to be

deleted in view of the singular error covariance matrix   . It is important to note that the augmented11

models (10) to (12) are constructed merely to provide an environment for the application of the

RESET tests. There is no suggestion that the e  * terms are part of the economic model - theij

parameter estimates that would actually be used would be based on (7), (8) or (9). 

Table 1 shows these estimates after weighting the data to allow for the differing numbers of

households per "group". Table 2 reports the results of applying the RESET tests (wrongly) on the

basis of single-equation estimation with different "augmentation" variables in each equation. The

results of applying the RESET tests (properly), in the manner discussed above, appear in Table 3. All

of the computations were undertaken with the SHAZAM (1993) package. White's (1980)

heteroskedasticity-consistent estimator of the error covariance matrix was used in the construction

of the RESET (Wald) tests, as there was evidence of remaining heteroskedasticity in the regression

residuals   .12

In Table 1, the Linear model exhibits the best R  values, but Akaike's Information Criterion    favours2 13

the Addilog model. The (inappropriate) results in Table 2 probably favour the Addilog model, on

balance, though if the results based on p = 3 are ignored the Linear model is also well supported. The

effect of applying the RESET test properly can be seen by comparing the p-values in Table 3 with

their counterparts in Table 2. There are many obvious differences. Now the Working-Leser model

is probably favoured, on balance, especially if the results based on p = 3 are ignored.
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V. Conclusions

We have shown that care must be taken when applying certain standard specification tests, such as

the RESET test, in the context of allocation models. It is important that these tests be implemented

properly if the fundamental economic properties of such models are not to be violated in the process.

As we have demonstrated, applying the RESET test properly, or inappropriately, can produce

markedly different results. The principles outlined in this paper have more general application than

to the RESET test. In particular, many other mis-specification tests in econometrics can be

interpreted and constructed as "variable addition tests" (e.g., Pagan and Hall (1983), Pagan (1984)).

In all such cases, care must be taken in their application to allocation models, for precisely the

reasons we have discussed. 
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Footnotes

1. See Worswick and Champerdowne (1954-55), and Bewley (1986). In fact, these results also

hold if any Instrumental Variables estimator is applied to each equation of the system (e.g.,

Denton (1978) and Giles and Hampton (1985)).

2. Under more general conditions, p times the RESET F-statistic coincides with the usual Wald

statistic for testing the p zero restrictions on the augmentation variables, and this is

asymptotically P   with p degrees of freedom. 2

3. Of course, the parameter estimates for joint systems estimation would be identical to those

from single-equation OLS estimation in this case.

4. The data are from Australian Bureau of Statistics (1976).

5. The various summations which follow are all over  i = 1, 2, ......, m.

6. As was noted in section 2 above, the disturbances in each model satisfy 3 u   = 0, but this isij

not a restriction that needs to be imposed in the context of estimation, of course.

7. It is based on earlier work by  Leser (1941) and Houtthakker (1960).

8. Goldschmidt also allows for differences in household composition and occupations.

9. For illustrative purposes here we have taken p = 1, so the squared prediction vector forms

the single augmenting variable. Note that e  * itself cannot be included as an "augmenting"ij

regressor as this would lead to perfect multicollinearity. In Tables 2 and 3 we allow for p =

1, 2, 3.

10. If (m-1) >2 there are various subsets of restrictions that could be tested jointly.

11. Recall, though, that our formulation of the RESET specification testing problem ensures that

the results are invariant to the choice of equation to be deleted.

12. The Wald version of the RESET test is asymptotically valid with heteroskedastic errors as

long as the error covariance matrix is consistently estimated, but the RESET F-tests are

invalid in this case. With homoskedastic errors the Likelihood Ratio test would be a natural

(asymptotically equivalent) alternative to the Wald test. However, it cannot be made robust

to heteroskedasticity in the way that the latter test can.

13. The AIC values have been corrected for the different forms of the dependent variables, as in

Giles and Hampton (1985, p.455).
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Table 1. Parameter estimates a, b

                                                                                                                                                      

     

Linear Working-Leser  Addilog

                                                                                    

i " $ R " $ R " $ Ri i
2

i i
2

i i
2

(s.e.) (s.e.) [AIC] (s.e.) (s.e.) [AIC] (s.e.) (s.e.) [AIC]

                                                                                                                                                      

     

1 -0.407 0.734 0.882 0.542 0.062 0.641 0.651 0.244 0.357

(0.260) (0.043) [-1072.4] (0.053) (0.026) [-1330.6] (0.157) (0.079) [-1603.8]

2 0.305 0.116 0.255 0.199 -0.019 0.176 -0.427 -0.110 0.146

(0.258) (0.045) (0.034) (0.019) (0.175) (0.100)

3 0.102 0.150 0.462 0.258 -0.043 0.307 -0.224 -0.134 0.038

(0.200) (0.030) (0.049) (0.022) (0.193) (0.100)

                                                                                                                                                                                          

  The "beer", "wine" and "spirits" expenditure categories  correspond to i = 1, 2, 3.a

  White's (1980) "heteroskedasticity-consistent" standard errors appear in parentheses and Akaike's Informationb

Criterion (AIC) appears in brackets. R   is the usual (single-equation) coefficient of determination. 2
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Table 2. Single-equation RESET Wald - tests a, b

                                                                                                                                                      

     

Linear Working-Leser Addilog

                                                                                                                   

i p Wald p-value Wald p-value Wald p-value

                                                                                                                                                      

     

1 1 0.626 (0.43) 1.840 (0.18) 0.416 (0.52)

2 1.184 (0.55) 4.960 (0.09) 5.277 (0.17)

3 9.828 (0.02) 12.333 (0.01) 4.398 (0.22)

2 1 0.003 (0.96) 0.009 (0.92) 0.506 (0.48)

2 1.540 (0.46) 0.242 (0.89) 3.228 (0.20)

3 6.225 (0.10) 0.345 (0.95) 3.525 (0.32)

3 1 2.406 (0.12) 3.129 (0.08) 2.141 (0.14)

2 2.088 (0.35) 3.186 (0.20) 2.206 (0.33)

3 4.176 (0.17) 5.142 (0.16) 3.831 (0.28)

                                                                                                                                                      

     

  When p = 1, the squared prediction vector is tested and the RESET statistic is asymptotically P   . When p = 2,a 2
1

the squared and cubed prediction vectors are tested, and the RESET statistic is asymptotically P   . When p =2
2

3, t h e  s e c o n d ,  t h i r d  a n d  f o

asymptotically P   .2
3
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  The tests are constructed using White's (1980) heteroskedasticity-consistent estimator of the error covarianceb

matrix.
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Table 3. Full-system RESET Wald-tests a, b

                                                                                                                                                      

                                                                                                                                                      

                                                                                  

Linear Working-Leser Addilog

                                                                                              

           

i p Wald p-value Wald p-value Wald p-value

                                                                                                                                                      

     

1 1 1.800 (0.61) 1.851 (0.60) 0.535 (0.91)

2 10.346 (0.11) 6.169 (0.40) 11.146(0.08)

3 58.211 (0.00) 24.015 (0.00) 26.362

(0.00)

2 1 6.455 (0.09) 4.609 (0.20) 3.046 (0.38)

2 15.951 (0.01) 9.464 (0.15) 6.958 (0.32)

3 37.394 (0.00) 17.576 (0.04) 14.668

(0.10)

3 1 4.550 (0.21) 3.560 (0.31) 4.256 (0.24)

2 9.372 (0.15) 9.012 (0.17) 12.579 (0.05)

3 33.343 (0.00) 13.708 (0.13) 36.268

(0.00)
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   When p = 1, 2, 3 the RESET statistic is asymptotically P   ,P   , P   .a
3
2

 6
2

9
2

  The tests are constructed using White's (1980) heteroskedasticity-consistent estimator of the error covarianceb

matrix.


