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Debates over the sources and direction of technical change have long been at the heart of the

theory and empirics of economic growth. Uzawa’s (1961) celebrated steady state growth theorem

says that balanced growth requires that technical change be labour augmenting. Given that it

concerns balanced growth, this does not preclude any capital bias to technological progress, only

that it disappear in the long run. For a textbook treatment see Acemoglu (2009, Sec. 7.2.3), who

summarizes (p. 64) the implications of Uzawa’s theorem as, “... balanced growth can only be

generated by an aggregate production function that features Harrod-neutral technological change.

... Suppose the production function takes the special form F (AK(t)K(t), AL(t)L(t)). ... balanced

growth is only possible if AK(t) is constant after date T .”

The empirical study of the factor biases of technical change, potentially directed at testing this

implication of Uzawa’s theorem, is hampered by the “non-identification” or “impossibility” theorem

of Diamond, McFadden, and Rodriguez (1978) (henceforth DMR). They established that, in the

absence of some assumed structure for the aggregate production technology, it is not possible to

separately identify distinct factor biases of technical change and the elasticity of substitution σ

between factors. In their words (pp. 125–6), there is

. . . a non-identifiability of the elasticity and bias in the absence of a priori hypotheses on

the structure of technical change. More precisely, given the time series of all observable

market phenomena for a single economy with a classical aggregate production function,

one finds that the same time series could have been generated by an alternative pro-

duction function having an arbitrary elasticity or bias at the observed points . . . The

identifiability of the elasticity and bias will depend on what is in fact true about the

economy and on what the economist assumes a priori to be true (i.e., his maintained

hypothesis, or model).

In an intriguing series of articles, Klump, McAdam, and Willman (KMW) and collaborators

have proposed and implemented a model of the aggregate production sector that shows promise

for providing such a structure: a constant elasticity of substitution (CES) production function

estimated jointly with its marginal productivity conditions (factor demands). It is well known that

in the special case σ = 1 the CES production function reduces to the Cobb-Douglas and distinct

factor biases of technology are not separately identifiable. But under more general substitution

possibilities σ 6= 1 the KMW model allows the estimation of factor-specific technological progress.

And indeed perhaps the only point on which empirical research agrees is that σ is unlikely to

be well approximated by unity, vitiating Cobb-Douglas production specifications. The elasticity of

substitution between aggregate capital and labour is, of course, of longstanding interest in macroeco-

nomics and has been intensively studied for many years. This is at least as true today as in the past,

σ being relevant to issues ranging from the effects of monetary and fiscal policies to contemporary
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debates over income distribution, inequality, and factor shares. Yet, despite numerous empirical

studies, “The size of the elasticity of substitution between capital and labor is much debated and

still controversial.” (Grossman, Helpman, Oberfield, and Sampson, 2016, p. 2.)

How much it differs from unity—and even in what direction—is less clear. In prominent work,

Piketty and collaborators have argued that the decline in labour’s factor share of recent decades is

associated with an elasticity of substitution greater than one. By contrast, in an analysis specifically

focused on extending Uzawa’s theorem, Grossman et al. (2016) document that, at least for U.S. data,

“. . . a preponderance of the evidence suggests an elasticity well below one.” One such recent study

is Lawrence (2015), who reconciles labour’s declining share with “. . . estimates that corroborate the

consensus in the literature that σ is less than 1.” Another is the careful and novel methodology of

Chirinko, Fazzari, and Meyer (2011), who find “. . . a precisely estimated elasticity of 0.40” for U.S.

data. In an earlier survey, Chirinko (2008) concluded that “. . . while the estimates range widely,

the weight of the evidence suggests a value of σ in the range 0.40–0.60.” The lone Canadian study

among those surveyed by Chirinko is Schaller (2006), who reports an estimate of 1.20.

In any case, a non-unitary elasticity of substitution offers the possibility that distinct factor

biases of technology can be estimated, if the DMR impossibility theorem can be overcome by a

suitable modelling structure. The seminal empirical article in the KMW literature is KMW (2007a),

which uses annual US data 1953–1998. Other important empirical papers include KMW (2007b),

which updates their US data to 2002 and compares the results with quarterly euro-area data 1970–

2003; KMW (2008), which updates the euro-area data to 2005; and León-Ledesma, McAdam, and

Willman (2015), which uses annual US data 1952–2009. However the latter articles calibrate a key

parameter instead of allowing it to be freely estimated. We found no advantage to this estimation

strategy, as is discussed further in Section 3, and so will mainly cite KMW (2007a) as a comparator

to our findings.

Our contribution in the present article is to apply the KMW methodology to a Canadian data set

that, as recently revised, seems to be ideal for this purpose. Whereas the US and euro-area data sets

created by KMW were, of necessity, somewhat improvised in their construction, the Canadian data

are the unified and coherent culmination of many years of work by the professional staff of Statistics

Canada (StatCan). One purpose of these productivity accounts is to enable StatCan to estimate

total factor productivity, estimates that provide a useful comparison with the TFP implications of

our estimated CES system. To our knowledge this is the first estimation of the KMW model using a

unified single-agency data set.1 As well, we plot the loglikelihood values explicitly in order to study

issues of multiple maxima that, for reasons that will become evident, are endemic to the model.

How successful is the KMW system in providing a structure to overcome the DMR impossibility

theorem, permitting estimation of the elasticity of substitution jointly with distinct factor biases

of technical change? León-Ledesma, McAdam, and Willman (2010) present Monte Carlo evidence
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supporting the ability of the model to identify these distinct elements. When it comes to empirical

implementation with real-world data, on the other hand, the answer to this question will inevitably

be data-specific. KMW (2007a) and the other empirical papers cited above report estimation results

for global maxima of the likelihood of their system that are encouraging in this respect. In contrast,

we have had less success with the Canadian data. We find multiple maxima of the loglikelihood

that, although yielding estimates having some sensible implications, nevertheless have difficulty

distinguishing the separate effects so as to yield a compelling story about the patterns of technological

progress or factor substitution.

Given that exploiting this data set is at the centre of the analysis, Section 1 begins by describing

it. Section 2 summarizes the essentials of the KMW methodology as it pertains to our application.

Section 3 reports our estimations results, and Section 4 consolidates the findings.

1 Data

Our data source is Table 383-0021 of the Canadian socioeconomic database (CANSIM) as released

in Spring 2016, which is complete for the years 1961–2012. It defines the aggregate business sector as

the whole economy less public administration, non-profit institutions, and the rental value of owner-

occupied dwellings. This definition of the private sector economy appears to be broadly comparable

to that used by KMW in constructing their US and euro-area data.

This edition of the data incorporates a treatment of capital cost that is improved over pre-

2014 editions and, conveniently, brings it into line with the KMW construction. Previously capital

cost was obtained simply as GDP less labour compensation,2 so that national income was entirely

attributed as payments to labour and capital. Now an external rate of return is instead used to

calculate capital cost for service industries, with the result that capital income and cost differ.

This difference could be the result of imperfect competition. It could also arise because

the list of inputs included in the MFP estimates is incomplete (for example, intangibles

are excluded). Or it could arise because of economies of scale, so that input costs do not

completely exhaust total product. (Baldwin, Gu, Macdonald, Wang, and Yan, 2014, p.

11)

This difference is referred to variously as a “residual” by Baldwin et al. (not to be confused with the

Solow residual) and as a “markup” by KMW, which presumes the imperfect competition interpre-

tation. In order to avoid both possible misinterpretations we call it supernormal profits.3 Beginning

with the 2015 edition of Table 383-0021, this implied supernormal profits series is positive on average

but can be negative in some years, consistent with KMW’s markup series.

Insert Figure 1 around here
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Figure 1 portrays some time series features of these aggregates. Panel (a) shows the levels

of business sector real GDP and its three components: labour compensation, capital cost, and

supernormal profits, all in 2007 dollars. Panels (b)–(d) plot log-differences of these variables (with

the exception of supernormal profits, since it is negative in some years). These do not trend markedly,

suggesting that—at least at a descriptive level—these business sector aggregates are reasonably

approximated by constant long run growth processes, consistent with the neoclassical growth model.

This is confirmed by the Dickey-Fuller tests in the upper portion of Table 1, which strongly reject

the unit root hypothesis for these log-differences, suggesting that the annual growth rates can be

treated as stationary.

Insert Table 1 around here

Consider next the factor shares: Figure 2 plots the ratios to GDP of each of labour compensation,

capital cost, and supernormal profits. These average 60.9%, 36.8%, and 2.3% respectively, consistent

with what growth economists commonly regard as plausible factor shares and a rate of profit in

developed countries. There is some indication of a downward trend in the labour share and upward

trend in the capital share, confirmed by the unit root tests in the lower portion of Table 1 that fail to

reject the null of a unit root. Although modest by comparison, these trends are consistent with what

KMW (2007a, 2007b) found of their US and euro-area factor shares. They are also consistent with

recent international evidence. For a focus on labour’s factor share see Karabarbounis and Neiman

(2014); for capital’s share see Piketty and Zucman (2014) who find (p. 1302) that “. . . capital shares

have increased in all rich countries” between 1970 and 2010.

Insert Figure 2 around here

In a deterministic model balanced growth requires “great ratios” such as factor shares and the

capital-output ratio to be constant in the long run. The apparent nonstationarity of factor shares

over the sample period is one motivation for modelling the production sector so as to permit the

short run to depart from the long run, and to allow factor shares to vary systematically with other

influences in a way that is not permitted by a Cobb-Douglas specification.

Turning to a detailed consideration of the factor payments wN and qK that are the numerators

of these factor shares, each of labour compensation and capital cost is the product of price and

quantity. In measuring the quantity of labour N , Jorgenson has long argued the importance of

accounting for changing labour force composition. We therefore use StatCan’s quality-adjusted

Labour Input series, consistent with KMW (2007a). Figure 3(a) plots this Labour Input series and

panel (b) plots the implied real wage calculated as the ratio of real labour compensation to Labour

Input. Both trend upward, as should be the case in data for a growing economy. (For this purpose

labour compensation is deflated using the business sector GDP deflator, defined implicitly as the
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ratio of our nominal and real business sector GDP series. So defined, it turns out that this business

sector GDP deflator tracks the economy-wide GDP deflator very closely. Because Labour Input is

an index, the units of the implied real wage on the vertical axis of Figure 3(b) have no economic

interpretation, and so it is also expressed as an index.)

Insert Figure 3 around here

In the case of capital K, we use the Capital Stock series of Table 383-0021 instead of StatCan’s

alternative quality-adjusted Capital Input series. Capital Stock is constructed from investment and

investment price indexes that are benchmarked to 2007, following a geometric depreciation pattern.

As a check on this choice, Figure 3(c) plots the ratios of each of Capital Stock and Capital

Input to real GDP. (Because all these variables are indexes with 2007 = 100, the ratios are unity in

2007.) Figure 3(d) shows the implied real prices of capital services, calculated as the ratios of real

capital cost (obtained by deflating with our business sector GDP deflator) to each of the Capital

Input/Stock series. The quality-adjusted Capital Input ratio trends upward over time while its

implied factor price trends downward. In contrast, the non-quality adjusted Capital Stock ratio and

its implied price are more stable. Trending behaviour is not necessarily inconsistent with long run

balanced growth—conceivably, the Capital Input variables could be converging toward their steady

state values during this half-century. Nevertheless, between the two measures of capital, it happens

that our favoured Capital Stock series and its implied factor price are more consistent with balanced

growth behaviour.4

2 The KMW Framework

Estimating a production function jointly with its implied marginal productivity conditions is a

well established empirical methodology with a long history, going back at least to Bodkin and

Klein (1967). The approach is especially valuable for a constant elasticity of substitution (CES)

production function, where the marginal productivity conditions imply factor shares that vary with

other influences, in contrast to the constant factor shares implied by a Cobb-Douglas function.

However CES functional forms require nonlinear estimation. As well, there is now a sizable literature

suggesting that the empirical implementation of CES models benefits from normalization around,

in the terminology of KMW, “fixed” or “baseline” points.

The many issues surrounding the specification and estimation of CES supply-side systems, in-

cluding normalization, have been thoroughly exposited in this literature; see in particular the KMW

(2012) survey article. Here we merely summarize the essentials needed to understand our analysis.
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2.1 Growth Specifications of the Factor Efficiencies

One expression for a constant returns to scale CES production function is

Yt =
[

(EN
t Nt)

−ρ + (EK
t Kt)

−ρ
]−1/ρ

. (1)

Notation is conventional—N and K are labour and capital, ρ the substitution parameter—except

for the labour- and capital-augmenting efficiency levels EN
t and EK

t , each of which is specified as

Ei
t = Ei

0 exp(gi(t)), i ∈ {N,K}.

The associated technology growth rates are

dlnEi
t

dt
=

dgi(t)

dt
, i ∈ {N,K}. (2)

The textbook case of constant growth sets gi(t) = g(γi, t) = γit, in which case growth proceeds

at constant instantaneous rate dgi(t)/ dt = γi. But even if this provides a good approximation

to growth in the long run—and this is an open question—in the shorter run it may be unduly

restrictive. Rather than impose constant growth as a maintained hypothesis, KMW permit more

general growth trajectories by using the Box-Cox transformation b(t, λ) = (tλ− 1)/λ to specify gi(t)

as

gi(t) = g(γi, t, λi) = γi b(t, λi) = γi

(

tλi − 1

λi

)

, i ∈ {N,K}. (3)

Recall the special cases of the Box-Cox transformation:

b(t, λ) =

{

t− 1 when λ = 1;

ln t when λ = 0.

Its time-derivatives are:

db(t, λ)

dt
=











1 when λ = 1;

tλ−1 in general;

1/t when λ = 0.

The rates of technological progress (2) therefore depend on the curvature parameters λi as follows.

dgi(t)

dt
= γit

λi−1 =











→ ∞ as t → ∞ if λi > 1 (accelerating growth);

γi if λi = 1 (constant growth);

→ 0 as t → ∞ if λi < 1 (decelerating growth).

Although this Box-Cox specification permits accelerating growth in either or both of the efficiency

levels Ei
t , accelerating growth is implausible empirically in the long run, as we (and KMW) find.

Within the general patterns of technological progress permitted by this specification, several

special cases have long been of interest to growth economists.

Hicks neutrality The efficiencies of all factors improve at a common rate: γN = γK > 0, λN = λK .

Harrod neutrality Technological progress is solely labour-augmenting,
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• in both the short and long run: γK = 0, γN > 0, λN ≥ 1;

• only in the long run: λK < 1, γN > 0, λN ≥ 1.

• If accelerating growth is ruled out a priori in these restrictions, then the constraint λN ≥ 1

would specialize to λN = 1.

Solow neutrality Technological progress is solely capital-augmenting,

• in both the short and long run: γN = 0, γK > 0, λK ≥ 1;

• only in the long run: λN < 1, γK > 0, λK ≥ 1.

• If accelerating growth is ruled out a priori in these restrictions, then the constraint λK ≥ 1

would specialize to λK = 1.

The ability to distinguish empirically between short-term versus long-term biases in technical

change is important. As the opening passage of this article noted, short-run capital-augmenting

technical change is not inconsistent with Uzawa’s (1961) steady state growth theorem, as long as it

disappears in the long run.

Of course, the CES parameterization that is the maintained hypothesis of the KMWmethodology

reduces to Cobb-Douglas under a unitary elasticity of substitution, in which case distinct factor

efficiencies are not separately identifiable and all technological progress can be formulated as labour

augmenting. Thus in the KMW framework where the elasticity of substitution is σ = 1/(1+ ρ), the

restriction ρ = 0 or σ = 1 is also a sufficient condition for the steady state growth theorem to hold.

However we find this special case to be definitively rejected, even when the technology growth rate

is allowed to vary through time (that is, the Box-Cox parameter λ is unrestricted).

2.2 The Normalized System

Although the CES production function (1) is in a form similar to its typical textbook presentation,

it is not suitable for empirical implementation because the substitution parameter ρ (or σ) and

the parameters governing technical change are not separately identified. For this, two things are

introduced: the production function is estimated jointly with the implied factor demands, and the

resulting three-equation system is estimated in normalized form.

So expressed, the KMW (2007a, equs. (6), (7), (8)) normalized system is as follows.5

log

(

wtNt

ptYt

)

= log

(

1− π

1 + µ

)

+
1− σ

σ

[

log

(

Yt/Ȳ

Nt/N̄

)

− log ζ − gN (t, t̄)

]

(4a)

log

(

qtKt

ptYt

)

= log

(

π

1 + µ

)

+
1− σ

σ

[

log

(

Yt/Ȳ

Kt/K̄

)

− log ζ − gK(t, t̄)

]

(4b)

log

(

Yt

Nt

)

= log

(

ζȲ

N̄

)

+ gN (t, t̄)

−
σ

1− σ
log

{

π exp

[

1− σ

σ
(gN (t, t̄)− gK(t, t̄))

](

Kt/K̄

Nt/N̄

)(σ−1)/σ

+ (1 − π)

}

(4c)
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The first two equations are the marginal productivity conditions in factor share form while, in

the third equation, the maintained hypothesis of constant returns to scale permits the production

function to be expressed in labour intensive form. The expressions gi(t, t̄) are the normalized versions

of the Box-Cox growth terms (3), defined as

gi(t, t̄) =
t̄γi
λi

[

(

t

t̄

)λi

− 1

]

i ∈ {N,K},

where t̄ is the arithmetic mean of the time trend series. This normalization does not alter the

economic interpretations we have given for the growth parameters γi, λi. Notice, for example, that

λi = 1 still yields constant growth, gi(t, t̄) = γi(t− t̄), just with a redefined time index.

In addition to being parameterized in terms of the elasticity of substitution σ instead of ρ,

several parameters appear in the system (4) that do not appear in the original production function

(1). The “distribution parameter” π governs the distribution of factor incomes. Although it does

not literally equate to any simple expression for relative factor payments, in the KMW framework

π is typically well approximated by the sample mean of qtKt/(wtNt + qtKt), which is 0.377 in our

sample. The parameter µ corresponds to the rate of supernormal profits and so should roughly

equal the average of (ptYt −wtNt− qtKt)/ptYt which, from Table 1, is 0.0226. And the parameter ζ

captures the difference between observed output and its geometric mean, at the baseline input levels

(the geometric means). Because this difference should be small, ζ should be close to unity.

The Cobb-Douglas Special Case

The imposition on the maintained model (4) of restricted values for the parameters γN , λN , γK , and

λK corresponding to the various growth hypotheses is, for the most part, straightforward and yields

the nested testing structure shown in Figure 5. Less straightforward is the limiting Cobb-Douglas

case of a unitary elasticity of substitution, σ → 1, which cannot be obtained simply by setting σ = 1

in the system (4) (because 1 − σ appears in a denominator in (4c)). In normalized form, allowing

for general Box-Cox growth g(t, t̄) in technology, the Cobb-Douglas version of the system is

log

(

wtNt

ptYt

)

= log

(

1− π

1 + µ

)

(5a)

log

(

qtKt

ptYt

)

= log

(

π

1 + µ

)

(5b)

log

(

Yt

Nt

)

= log

(

ζȲ

N̄

)

+ π log

(

Kt/K̄

Nt/N̄

)

+
t̄γ

λ

[

(

t

t̄

)λ

− 1

]

(5c)

The further special case of constant growth at rate γ sets λ = 1 in the production function, so the

Box-Cox term in the third equation reduces to the normalized constant-growth expression g(t, t̄) =

γ(t− t̄).

These Cobb-Douglas special cases of the KMW system appear in Figure 5 as the most restricted

models of the nested testing structure. Both are strongly rejected, as we are about to discuss,
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consistent with KMW’s findings for their US and euro-area data. This rejection motivates interest

in the CES model, to which we now turn.

3 Estimation Results

Like previous researchers in this literature, we estimated the CES system (4) as a nonlinear system

of seemingly unrelated regressions.6 The results are presented in Table 2, which is constructed for

ready comparability with the US estimates in Table 1 of KMW (2007a).

Insert Table 2 around here

3.1 The Maintained Model

An important feature of the model is that the singularity at σ = 1 induces multiple maxima in the

likelihood function. This would not be particularly important were these maxima clearly dominated

by a unique global maximum, so that the data plainly favour one set of estimates. But for the

Canadian data this turns out not to be the case.

This is illustrated in Figure 4, which provides a scatter plot of the loglikelihood values against the

σ estimates yielded by alternative starting values.7 Interspersed with these local and global maxima

are the loglikelihood values yielded by estimations across a grid of σ values. The local maxima at

σ̂ = 0.919, 1.033, and 1.179 are in the neighborhood of the point of singularity at σ = 1, while the

global maximum is at the much larger σ̂ = 2.215. However the scatter plot makes it easy to see

that this global maximum is not well determined relative to alternative estimations over a broad

range of σ estimates. As well, its loglikelihood value is only slightly above those for the two local

maxima in the range σ > 1; in fact even the local maximum at σ = 0.919 is little below the others.

Consequently, for these data the maintained model does not clearly yield a favoured estimate of σ.

Insert Figure 4 around here

Although the local maxima are in the neighborhood of, and so evidently to some extent induced

by, the singularity at σ = 1, the special case of the model associated with that point of singularity—

the Cobb-Douglas system (5)—is strongly rejected. Figure 5 shows its position within the larger

nested testing structure that we will consider shortly. Likelihood ratio tests rejecting this special

case are presented in Table 3.

Insert Figure 5 around here

In addition to their similar loglikelihood values, other criteria provide little basis for selecting

among the alternative maxima of the maintained model, which share the following features.
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All four maxima yield estimates of π, 1 + µ, and ζ that are consistent with the values dis-

cussed in Section 2.2. The distribution parameter π is estimated to be close to the sample

mean of 0.377. The estimate of 1 + µ implies a value for µ that is close to the mean rate of

supernormal profits of 0.0226. And the normalization constant ζ is close to unity, indicating

that the geometric means used for normalization are suitable baseline values.

All four maxima imply an average TFP growth rate of about 1%. This value is, of course,

entirely plausible, although it is higher than the 0.44% average growth rate over this period of

StatCan’s TFP series in Table 383-0021.

Our estimate of around 1% TFP growth makes an interesting comparison with previous es-

timates that arose from earlier versions of the data set and alternative methodologies for

constructing the series related to capital services. Specifically, StatCan conforms with the

internationally-accepted “bottom up” methodology for treating capital services which, based

on earlier versions of Table 383-0021, yielded an estimate of 0.28% for TFP growth 1961–2011.

Diewert and Yu (2012) contrasted this with an estimate of 1.03% yielded by their “top down”

approach. (For a comparison of the two methodologies, see the exchange between Gu (2012)

and Diewert (2012).) By taking Table 383-0021 as published, our analysis accepts the StatCan

construction of the capital services series; nevertheless we obtain TFP growth rates closer to

that of Diewert and Yu.

Turning to comparisons with other countries, KMW (2007a, Table 1; 2007b, Tables 3, 4) find

rates of TFP growth of 1.2-1.4% for the US and 0.28–0.31% for the euro area. In relation to

these US estimates, our Canadian estimates are consistent with the broader empirical TFP

literature, which typically finds lower rates for Canada than for the US.

The goodness of fit of the model, as measured by the equation R2’s, is similar across the max-

ima.

The equations have stationary residuals, as judged by augmented Dickey-Fuller (ADF) tests.

Hence, regardless of the maximum, the equations of the model capture the relationships among

the nonstationarity growth trajectories of the variables.

These similarities across the maxima do not, however, extend to the growth parameters γN , λN ,

γK , and λK , the first three of which vary widely in their point estimates and significance. The main

respect in which the estimates are uniformly sensible is that, in the few instances where the Box-Cox

parameters λN and λK exceed unity, their standard error does not reject λi = 1. Hence none of the

estimates yield the implausible implication of accelerating growth.

Considering the growth parameters individually, the most uniform results emerge for λ̂K which,

although varying in the range 0.356–1.078 across the alternative maxima, is always significantly
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positive. As well, for three of the four maxima λ̂K is well within one standard error of unity,

implying constant growth in capital-augmenting technology at rate γK .

The overarching conclusion is that, although the maintained model yields estimation results that

are in many respects sensible, for these data it has difficulty estimating the elasticity of substitution

joint with factor-specific technology biases. That is, the DMR non-identification theorem appears

to be revealed in these estimation results, not overcome by them.

Variations on the Analysis

Is there any alternative version of the model or approach to estimation that might shed light on

these ambiguities?

Calibrating the parameter π. In some of their work, KMW (2007b, 2008) and León-Ledesma,

McAdam, and Willman (2015) find that the nonlinear estimation of the model can sometimes be

aided by setting the parameter π to its approximate sample value, which in our data is 0.377.

We tried this, but the results were qualitatively much the same. There were five maxima yielding

estimates of σ in the range 0.632–1.744. Although the global maximum was at the highly plausible

σ̂ = 1.033, its loglikeihood function value was only slightly above those for quite different estimates

of σ. Estimates of the growth parameters γN , λN , γK , and λK varied widely. And—despite the

global maximum at σ̂ = 1.033—the Cobb-Douglas special case was strongly rejected.

Hence this variation on the analysis resolves nothing. In fact, the strong sensitivity of the

location of the global maximum to what should be an innocuous change—setting π = 0.377 when

its freely-estimated value is essentially that—bears out the weak identification of the substitution

elasticity.

The Kmenta linearization Another possibility is to make use of the fact that implied TFP

growth rates like those reported in Table 2 are calculated using a linearization of the production

function due to Kmenta (1967). This linearization can be used, not just for the behind-the-scenes

TFP calculation, but as an alternative parameterization of the production function equation in the

supply-side system. KMW call this the Kmenta approximation of the model.

Unfortunately, applied to our data the Kmenta approximation manifests much the same ambi-

guities as the regular version. Its loglikelihood is qualitatively similar to that for the regular model

in Figure 4. There are three maxima at σ = 1.03296, 1.18702, and 1.79664. As before, the largest

of these is on a very flat portion of the loglikelihood. Although it is now the intermediate estimate

σ = 1.18702 that is the global maximum, as before this loglikelihood value is only marginally above

those of the local maxima. It also turns out the estimates of the growth parameters γN , λN , γK ,

and λK display wide variation over the three maxima, similar to the regular model of Table 2.
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In short, the Kmenta approximation does not resolve any of the ambiguities arising from the

regular model, and so we do not report detailed estimation results for it.

3.2 Restricted Models

Another route to progress is if additional information in the form of parameter restrictions can be

introduced.

Figure 5 shows the nested testing structure that arises from successive imposition on the main-

tained model of parameter restrictions having economic interpretations. Based on the likelihood

ratio tests of Table 3, only a few of the restricted models are supported by the data, namely M3

(γN = γK), M4 (λN = 1), M5 (λK = 1), and M35 (γN = γK , λK = 1). These supported re-

strictions are broadly consistent with the evidence in the individual coefficient estimates across the

alternative maxima of the maintained model reported in Table 2. However only one of these sup-

ported special cases has a global maximum with a plausible elasticity of substitution: M4 (λN = 1)

yields σ = 1.03483. The others (models M3, M5, and M35) yield estimates of σ in the range of

2.12302–3.45771.

Insert Table 3 around here

Other restrictions are rejected at conventional significance levels, including combinations of the

supported restrictions. For example, although the restrictions λN = 1 and λK = 1 (models M4

and M5) are not individually rejected, combining them as λN = λK = 1 (model M45) or even just

λN = λK (model M6) is rejected. Similarly, whereas the restrictions γN = γK (model M3) and

λN = 1 (model M4) are not individually rejected, combining them (model M34) is rejected.

The only special case model that is both not rejected and has a global maximum with a plausible

elasticity of substitution (σ̂ = 1.03483) is M4, which imposes λN = 1 (sustained growth in labour-

augmenting technology at a constant rate). The estimation results are shown in the final column of

Table 2. However neither γN nor γK is significantly different from zero; in fact the point estimate of

γN is negative. As well, λK is more than two standard errors less than 1, so any capital-augmenting

technical change is not sustained. Hence this model does not point to either labour or capital-

augmenting technical change as sources of sustained growth. In fact this implication is similar to

the original findings of KMW (2007a) based on their US data set. As shown in that column of Table

2, their estimates of λN = 0.439 and λK = −0.118 are both significantly less than unity.

4 Conclusions

We have estimated a supply side system for the Canadian business sector—essentially, the aggregate

private sector economy—for the half-century 1961–2012. There are reasons to believe that the
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Canadian data that have recently become available are, for this purpose, superior to the US and

euro-area data that have been available to previous researchers.

By using a CES production function, the elasticity of substitution is not constrained to unity and

factor shares can vary with other influences, in contrast to a Cobb-Douglas system. The more general

substitution possibilities and factor share behaviour that this permits are supported empirically, both

by the estimated model and, in the case of factor shares, by the univariate nonstationarity that is

evident over the sample period.

In principle this framework permits distinct rates of factor-augmenting technical change to be

identified joint with the substitution parameter. Consequently hypotheses of classic interest con-

cerning the direction of technical change, such as Harrod neutrality, are potentially testable. As

well, the use of Box-Cox specifications for growth rates makes it possible to distinguish between

short-term versus long-term biases in technical change. The empirical model is supported by, among

other things, plausible implied rates of TFP growth.

Nevertheless, applied to the Canadian data the model exhibits endemic multiple maxima of the

loglikelihood that fail to yield a compelling portrayal of factor biases or substitution. The alternative

maxima of the maintained model are little different in their loglikelihood values, yet encompass a

broad range of estimates of the growth parameters and the elasticity of substitution. Another

indication that the elasticity of substitution is not well determined is that the global maximum is

highly sensitive to the imposition of supported parameter restrictions and other variations on the

analysis. Instead of providing a structure that overcomes the Diamond-McFadden-Rodriguez (1978)

non-identification theorem, the KMW model applied to the Canadian data yields results that seem

to manifest that impossibility result.

Conjectures as to why, in this respect, our Canadian data differ from the US and euro-area

data studied by KMW are inevitably speculative. One possibility that could be investigated is the

distinction between gross output and value added production functions. When, as here, the domestic

macroeconomy is modeled as a single sector, the two production functions are the same in a closed

economy but differ in an open economy. In estimating the supply side in gross-output form, the

KMW model treats domestic value-added and imported intermediate goods as a single aggregate.

This abstraction may not be important for the U.S., but may be for Canada.8 Future research on

the Canadian supply side may wish to recast it in value-added form, distinguishing between the

domestic and international sectors.

13



Notes

1Herrendorf, Herrington, and Valentinyi (2015) estimate a model very similar to the KMW

system using published US data in order to study sectoral transformations between agriculture,

manufacturing, and services 1947–2010. They are able to use conventional economy-wide data by

including government in the service sector. However, among other variations, their model imposes

constant growth in factor-augmenting technology (the special case of λN = λK = 1 in the Box-Cox

expression (3)) instead of permitting time-varying growth rates.

2Given the internal consistency of the StatCan methodology, we accept its treatment of self-

employment income rather than attempting any adjustment of the kind suggested by Gollin (2002)

and performed by KMW (2007a, equ. (10)).

3We thank an anonymous referee for suggesting this as the best choice of terminology. Because,

in the StatCan terminology, capital cost excludes supernormal profits, it is analogous to the “capital

income” of KMW (2007a) as they use the term in, for example, their Figure 1.

4This divergent behaviour between the two implied real capital price series is not sensitive to the

use of the GDP deflator to obtain the real series. We experimented with the alternative of using

a capital deflator constructed from CANSIM Table 031-0002. The behaviour of the resulting real

capital prices differs little from Figure 3(d). In any case, the implied real factor prices (of both

labour and capital) are not used in the model estimation, only as descriptive evidence justifying our

use of the associated factor quantity series.

5This corrects a few typesetting errors in the third equation as it appears in KMW (2007a) where,

most importantly, the closing brace is misplaced. The system appears correctly in the working paper

version (KMW 2004, equs. (9), (10), (11)) and in KMW (2007b, equs. (3), (4), (5)).

6Past experience with nonlinear systems estimation leads us to favour TSP, the numerical proper-

ties of which have been favourably evaluated by McCullough (1999). However we began by verifying

that our TSP routines successfully replicate the estimation results of KMW (2007a). We thank Alpo

Willman for providing the data and RATS code that made this possible.

An obvious limitation of estimating this model as a seemingly unrelated system is that it ignores

possible endogeneity of some explanatory variables. The motivation for doing so is presumably the

lack of any natural instrumental variables in this context. As is now well understood, when weak

instruments are used to treat endogeneity the cure may be worse than the disease. The only attempt

of which we are aware to tackle this issue in the specific context of aggregate supply-side systems is

the working paper by Luoma and Luoto (2011), who consider a Bayesian approach to estimation.
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Herrendorf et al. (2015) use three stage least squares to estimate their disaggregated sectoral model.

7Figure 4 is similar in spirit to the scatter plots of local and global optima in the bottom right

panel of Graphs 1.1–4.4 of the KMW (2004) working paper.

8For a more explicit discussion of gross output vs. value added production functions in closed vs.

open economies, see Herrendorf et al. (2015, p. 108) who remark:

In a closed economy, GDP equals value added by definition. . . . In an open economy,

GDP is in general not equal to domestic value added because some intermediate inputs

are not produced domestically but are imported from other countries. . . .While imported

intermediate inputs are often abstracted from, they can be quantitatively important, in

particular in small open economies that import most of the resources and many of the

agricultural and manufactured intermediate goods that they use.
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Table 1: Univariate Statistics

ADF tests (p -values)a

Variable Mean constant constant+trend

Log-difference of:
real GDP 0.0347 0.0017 0.0012
real labour compensation 0.0328 0.0030 0.0013
real capital cost 0.0356 0.0003 0.0010

Share in GDP of:
labour compensation 0.6090 0.3611 0.1274
capital cost 0.3684 0.1040 0.0141
supernormal profits 0.0226 0.0000 0.0000

a Schwarz’s Bayesian information criterion generally suggested either 0 or 1
augmenting lags in the ADF regressions and so, in addition to the indicated
specifications of the deterministic component, we used a single lag in all re-
gressions.
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Table 2: Supply-side System, Canadian Business Sector, 1961–2012a

Maintained model M0 KMW Restricted
US model

First local Second local Third local Global resultsb M4
Parameter maximum maximum maximum maximum 1953–1998 λN = 1

σ 0.919 1.033 1.179 2.215 0.556 1.035
(0.061) (0.027) (0.024) (0.439) (0.018) (0.027)

γN 0.033 −0.053 −0.000 0.006 0.015 −0.048
(0.018) (0.051) (0.000) (0.001) (0.000) (0.044)

λN 0.773 1.166 13.8215 0.136 0.439 1
(0.129) (0.198) (8.684) (0.072) (0.076)

γK −0.034 0.107 0.020 0.009 0.004 0.097
(0.029) (0.083) (0.001) (0.001) (0.001) (0.072)

λK 0.935 0.877 0.356 1.078 −0.118 0.747
(0.268) (0.235) (0.061) (0.295) (0.336) (0.108)

π 0.377 0.377 0.379 0.372 0.221 0.377
(0.003) (0.003) (0.003) (0.003) (0.009) (0.002)

1 + µ 1.024 1.024 1.024 1.024 1.042 1.024
(0.003) (0.003) (0.003) (0.003) (0.011) (0.003)

ζ 1.028 1.027 1.029 1.020 1.029 1.026
(0.005) (0.005) (0.004) (0.005) (0.006) (0.005)

Loglikelihood
L 326.351 328.695 328.638 329.134 328.289

Average TFP
growth rate 0.009 0.010 0.009 0.010 0.013 0.008

R2
N 0.578 0.635 0.626 0.726 0.625

R2
K 0.401 0.373 0.244 0.224 0.355

R2
Y 0.977 0.978 0.978 0.979 0.978

ADFN
c −2.932 −3.093 −2.960 −4.323 −4.310 −3.036

[0.042] [0.027] [0.039] [0.000] [0.032]
ADFK

c −4.330 −4.099 −3.729 −3.192 −3.580 −4.068
[0.000] [0.001] [0.004] [0.020] [0.001]

ADFY
c −2.845 −2.853 −2.943 −2.905 −3.960 −2.879

[0.052] [0.051] [0.041] [0.045] [0.048]

a Standard errors in parentheses.
b Reproduces column 1.4 of KMW (2007a) Table 1.
c p -values in brackets. ADF regressions include an intercept, no trend, and (in view of the data being annual)
one augmenting lag. For 50 observations the associated ADF critical values are −2.93 (5%) and −2.60 (10%).
The null of a unit root is rejected at conventional significance levels, indicating that the equations of the model
are generally successful in yielding stationary residuals.
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Table 3: Likelihood Ratio Tests of Selected Restricted Modelsa

Restricted Restrictions L at LR Number of
model under test global max statistic restrictions p -valueb

M3 γN = γK 328.179 1.910 1 0.167
M4 λN = 1 328.289 1.690 1 0.194
M5 λK = 1 329.105 0.058 1 0.810
M6 λN = λK 325.550 7.168 1 0.007
M34 γN = γK , λN = 1 311.541 35.186 2 0.000
M35 γN = γK , λK = 1 327.964 2.340 2 0.310
M45 λN = λK = 1 322.438 13.392 2 0.001
Cobb-Douglas (λ 6= 1) σ = 1 305.618 47.032 3 0.000
Cobb-Douglas λ = 1, σ = 1 277.746 102.776 4 0.000

a Relative to the global maximum of the maintained model at L = 329.134.
b Right tail area of a χ2 distribution with degrees of freedom equal to the number of restrictions.
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Figure 5: The KMW nested testing structure (unique or global maxima are bolded) [In hardcopy, the readability of this Figure can be improved by setting
Orientation to Auto portrait/landscape when printing the paper, which will print this page in landscape format.]
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