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substitution and factor-augmenting technical progress in the United States: A normalized
supply-side system approach. Review of Economics and Statistics 2007; 89(1): 183–192)
can be seen to be an iconic empirical implementation that has helped resurrect interest in
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likelihood serve to emphasize that maxima in the neighborhood of a unitary elasticity of
substitution are often a spurious artifact of the singularity of the model at this point, of
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In the absence of additional a priori structure on a production technology, it is not possible to

separately identify the elasticity of substitution and distinct factor biases of technical change. This is

the “non-identification” or “impossibility” theorem of Diamond, McFadden, and Rodriguez (1978),

who establish

. . . a non-identifiability of the elasticity and bias in the absence of a priori hypotheses on

the structure of technical change. More precisely, given the time series of all observable

market phenomena for a single economy with a classical aggregate production function,

one finds that the same time series could have been generated by an alternative pro-

duction function having an arbitrary elasticity or bias at the observed points . . . The

identifiability of the elasticity and bias will depend on what is in fact true about the

economy and on what the economist assumes a priori to be true (i.e., his maintained

hypothesis, or model).

As such a model to overcome this non-identifiability, Klump, McAdam, and Willman (KMW)

have studied the estimation of a constant elasticity of substitution (CES) production function joint

with its implied factor demands. KMW (2007a) applied their model to annual US data 1953–98,

while KMW (2007b) compared the results from annual US data 1953–2002 and quarterly euro-area

data 1970–2003. KMW (2008) uses quarterly euro-area data 1970–2005, although calibrating one

key parameter instead of estimating it.

Of course, the strategy of estimating a production function and its factor demands as a sys-

tem is not original to KMW, dating at least to (empirically) Bodkin and Klein (1967) and even

(conceptually) Marshak and Andrews (1944). However KMW introduced two innovations to their

CES system that, they demonstrate convincingly, are critical to disentangling factor substitution

and biases of technical change. First, they draw on earlier theoretical contributions—notably La

Grandville (1989), Klump and La Grandville (2000), and Klump and Preissler (2000)—to formulate

their empirical CES supply-side system in normalized form. Second, they use Box-Cox transforma-

tions of the factor-specific technology parameters to distinguish long-term from short-term biases of

technical change. This is important because of Uzawa’s (1961) famous result that balanced growth

requires technical change to be labor augmenting. Given that it concerns balanced growth, Uzawa’s

steady state growth theorem does not preclude any capital bias to technological progress, only that

it disappear in the long run, leaving labor-augmenting technical change as the sole long-run driver

of growth in living standards. Remarkably, this key prediction of growth theory is testable in the

KMW framework.

Subsequent work includes León-Ledesma, McAdam, and Willman (2010), who provide important
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simulation evidence demonstrating the ability of the model to identify these distinct elements, and

the survey paper by KMW (2012). Applications of the framework to study broader macroeconomic

and growth issues include McAdam and Willman (2013) and León-Ledesma, McAdam, and Willman

(2015).

In view of this accumulated literature, the original KMW (2007a) estimation can now be seen to

be an iconic empirical implementation. It is therefore useful to revisit it, investigating the sensitivity

of the estimation results to alternative software. Whereas KMW used RATS, I use TSP, the numerics

of which have been favorably evaluated by McCullough (1999). Henceforth I cite the principal article

simply as KMW, referencing others by date.

As part of the replication, I lay out the model’s complete nested testing structure more explicitly

than has been done previously and use it to explore the incidence of multiple maxima of the likelihood

function. As well, I clarify some nuances in the estimation of these systems that may be helpful

to future researchers, such as the proper imposition and testing of the special case of logarithmic

growth in technology. I also plot the loglikelihood of the system, something that does not appear to

have been done in the published literature.1 This allows me to conclude more strongly than KMW

did that the multiple maxima that seem endemic to their model are of less practical importance

than might appear, because they are typically an artifact of the singularity of the system at σ = 1.

1 The Klump-McAdam-Willman Model

The many issues surrounding the specification and estimation of CES supply-side systems, including

normalization, are thoroughly treated in the articles cited above, of which KMW (2012) provides

the best comprehensive overview. Here I merely summarize the essentials needed to understand my

replication.

1.1 Growth Specifications of the Factor Efficiencies

The starting point is a constant returns to scale CES production function, one expression for which

is

Yt =
[

(EN
t Nt)

−ρ + (EK
t Kt)

−ρ
]−1/ρ

. (1)

Notation is for the most part standard, with N denoting labour, K capital, and ρ the substitu-

tion parameter. The labor- and capital-augmenting technology factors EN
t and EK

t grow along

trajectories given by

Ei
t = Ei

0e
gi(t) (i = N,K),

1In their working paper KMW (2004) provide scatter plots of the local minima of the log determinant of the models
they estimate. Their Graph 4.3 shows the two minima of the maintained model corresponding to the two maxima of
the loglikelihood in my Figure 2.
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with associated growth rates

dlogEi
t

dt
=

dgi(t)

dt
(i = N,K).

The textbook case of constant growth at rate γi is gi(t) = γit. But even if this provides a good

approximation to long run growth—itself an open question—it may be unwarranted in the short

run. KMW use the Box-Cox transformation to allow more general growth trajectories, specifying

gi(t) as

gi(t) = γi

(

tλi − 1

λi

)

(i = N,K) (2)

so that the rates of technical change depend on the curvature parameters λi:

dgi(t)

dt
= γit

λi−1 =











→ ∞ as t → ∞ if λi > 1 (accelerating growth);

γi if λi = 1 (constant growth);

→ 0 as t → ∞ if λi < 1 (decelerating growth).

Although this admits accelerating growth (λi > 1) in technology as a possibility, this is implausible

empirically in the long run, as KMW find and I replicate.

Within the range λi < 1 lies the special case λi = 0. As λi → 0 the Box-Cox function yields the

logarithmic transformation

gi(t) = γi

(

tλi − 1

λi

)

→ γi log t as λi → 0

so that
dgi(t)

dt
= γi

log t

dt
= γi

1

t
→ 0 as t → ∞.

Thus the rate of factor-i-augmenting technological progress decelerates to zero if λi < 1. If 0 < λi < 1

this deceleration is slower than when gi(t) = γi log t, while if λi < 0 it is faster. Hence, although

λi = 0 might be regarded as a benchmark rate of deceleration, in terms of the qualitative properties

of the growth trajectory it is of no special interest. If appropriate it does, however, simplify the

numerics of nonlinear estimation by replacing the Box-Cox function with the log function, something

that turns out to be relevant for capital K in this replication.

Within this KMW framework, notions of neutral technological progress that are prominent in the

growth literature are well defined as restricted versions of the model. Consider a generic production

function F̃ (Nt,Kt, At) where At is technology.

Technological progress is Hicks neutral if the function factors as F̃ (Nt,Kt, At) = AtF (Nt,Kt). In

the production function (1) with growth exponents (2) this implies the restrictions γN = γK >

0, λN = λK .

Technological progress is Harrod neutral if technology is solely labor-augmenting: F̃ (Nt,Kt, At) =

F (AtNt,Kt). Harrod neutrality holds

• in both the short and long run if γK = 0, γN > 0, λN ≥ 1;
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• only in the long run if λK < 1, γN > 0, λN ≥ 1.

• If Harrod neutrality is defined to preclude accelerating labor-augmenting technical change,

then the restriction λN ≥ 1 would specialize to λN = 1.

Technological progress is Solow neutral if technology is solely capital-augmenting: F̃ (Nt,Kt, At) =

F (Nt, AtKt). Solow neutrality holds

• in both the short and long run if γN = 0, γK > 0, λK ≥ 1;

• only in the long run if λN < 1, γK > 0, λK ≥ 1.

• If Solow neutrality is defined to preclude accelerating capital-augmenting technical change,

then the restriction λK ≥ 1 would specialize to λK = 1.

The ability to distinguish empirically between short-term versus long-term biases in technical

change is important. As the introduction noted, short-run capital-augmenting technical change does

not violate Uzawa’s (1961) steady state growth theorem as long as it disappears in the long run.

Of course, the CES specification that is the maintained hypothesis of the KMW model reduces

to Cobb-Douglas under a unitary elasticity of substitution, in which case distinct factor efficiencies

are not separately identified and all technological progress can be formulated as labor augmenting.

Given that the elasticity of substitution is σ = 1/(1 + ρ), the restriction ρ = 0 or σ = 1 is also a

sufficient condition for the steady state growth theorem to hold.

1.2 The Normalized System Specification

Whereas most of the economic issues embodied in the KMW model can be understood in terms

of the single-equation CES function (1), identification issues complicate estimation of the model.

The literature that bears on this goes back at least to La Grandville (1989) and is best surveyed

by Klump, McAdam, and Willman (2012). Identification of the elasticity of substitution and the

growth parameters is aided by two things: first, joint estimation of the production function with its

implied factor demands; second, parameterization of this system in normalized form. The resulting

three-equation system is:2

log

(

wtNt

ptYt

)

= log

(

1− π

1 + µ

)

+
1− σ

σ

[

log

(

Yt/Ȳ

Nt/N̄

)

− log ζ − gN (t, t̄)

]

(3a)

log

(

qtKt

ptYt

)

= log

(

π

1 + µ

)

+
1− σ

σ

[

log

(

Yt/Ȳ

Kt/K̄

)

− log ζ − gK(t, t̄)

]

(3b)

log

(

Yt

Nt

)

= log

(

ζȲ

N̄

)

+ gN (t, t̄)

−
σ

1− σ
log

{

π exp

[

1− σ

σ
(gN (t, t̄)− gK(t, t̄))

](

Kt/K̄

Nt/N̄

)(σ−1)/σ

+ (1 − π)

}

(3c)

2These are equations (6), (7), and (8) of KMW (2007a) with typesetting errors in the third equation corrected.
The system appears correctly in KMW (2007b, equs. (3), (4), (5)).
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The first two equations are the marginal productivity conditions while, under the maintained hy-

pothesis of constant returns to scale, the third equation expresses the production function in labor

intensive form. The expressions gi(t, t̄) are the normalized versions of the Box-Cox growth terms

(2), defined as

gi(t, t̄) =
t̄γi
λi

[

(

t

t̄

)λi

− 1

]

(i = N,K), (4)

where t̄ is the arithmetic mean of the time trend series. This normalization does not alter the

economic interpretations of the growth parameters γi, λi. Notice, for example, that λi = 1 still yields

constant growth, gi(t, t̄) = γi(t− t̄), just with a redefined (i.e. normalized) time index. Similarly, in

the special case of logarithmic growth (λi = 0)3

gi(t, t̄) =
t̄γi
λi

[

(

t

t̄

)λi

− 1

]

→ t̄γi log(t/t̄) as λi → 0. (5)

In the Cobb-Douglas special case of σ = 1 the marginal productivity conditions (3a) and (3b)

reduce to constant factor shares, as they should. This special case of the production function (3c)

as σ → 1 (or, equivalently, ρ → 0) involves the usual application of L’Hôpital’s rule. As a result, the

system as a whole has a singularity at σ = 1: the likelihood function behaves anomalously as σ → 1

and the third term of (3c) becomes explosive, contributing to the multiple maxima that KMW found

and I verify.

In addition to being parameterized in terms of the elasticity of substitution σ instead of ρ, several

parameters appear in the system (3) that do not appear in the original production function (1). The

distribution parameter π is the share of capital in total factor payments and so should roughly

correspond to the sample mean of qtKt/(wtNt+ qtKt), which is 0.224 in the KMW sample. Indeed,

for data sets for which nonlinear estimation proves problematic, convergence can be aided by setting

π to this sample mean. Like KMW I did not find this necessary, and allow π to be freely estimated.4

The parameter µ is a markup that provides for a wedge between GDP and factor payments,

allowing for imperfect competition, and should roughly correspond to the mean profit share of

(ptYt − wtNt − qtKt)/ptYt, which is 0.032 in the KMW sample.

Finally, in principle the point of normalization should be a “fixed point” at which baseline values

of the factorsN andK yield a baseline value of production Y . In practice the geometric means N̄ , K̄,

Ȳ are used as these baseline values, but the nonlinearity of the system means that N̄ , K̄ will yield Ȳ

only approximately, not exactly. The “normalization constant” ζ treats this discrepancy. Although

it has no particular economic interpretation, ζ will be closer to unity the better the approximation

that the sample means provide to a true fixed point of the estimated model.

3Footnote a of Table 1 in KMW (2007a) appears to be in error in indicating that this limit is γK log(t− t̄), which
would not be defined for the half of the sample in which t − t̄ < 0. In the same footnote they indicate that, in
estimation, they imposed the restriction λi = 0 by the approximation of setting λi = −0.001 in the Box-Cox function
(4). In my replication I instead replace the general expression (4) with its logarithmic special case t̄γi log(t/t̄).

4KMW (2008) and León-Ledesma, McAdam, and Willman (2015) are examples of analyses that experiment with
estimating the other parameters using a calibrated π. The latter paper finds that this makes “minimal difference” to
the estimates.
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2 Results

Figure 1 shows the nested testing structure that arises from successive imposition on the maintained

KMW system (3) of restrictions having an economic motivation. Comparing with the KMW esti-

mation results, the maintained model M0 corresponds to column 1.4 of their Table 1, model M45

to their columns 1.1 and 1.2, and the case of Cobb-Douglas constant growth to column 1.3.5 For

each model in the structure, Figure 1 reports my estimate of the elasticity of substitution σ and the

associated loglikelihood function value L . Both local and global maxima are reported for models in

which they were revealed by my searches over alternative starting values. As well, I report Schwarz’s

Bayesian information criterion (BIC) for the global maximum, which may be useful in comparing

nonnested specifications. Nested specifications are most naturally compared with likelihood ratio

tests.

2.1 Overview of the Nested Testing Structure

For the most part I was successful in replicating KMW’s results, at least in substance. For example,

for M45 (the special case of constant rates of technical change for both factors, λN = λK = 1) KMW

report local and global maxima at σ estimates of 0.509 and 0.998, as do I (although I found another

local maximum at 1.044, which they may not have reported given that its loglikelihood value is well

below the others.)

Even before considering the full estimation results for any one model, several broad conclusions

emerge. First, M45 is not the only model having multiple maxima; so do M0, M4, and M5. Further-

more, for each of the multiple maxima models M0, M4, M5, and M45, all but one of the maxima

are in the immediate neighborhood of σ = 1. This suggests that the multiple maxima arise from the

singularity of the model at that point, something I study in more detail below. Setting aside the

maxima in the neighborhood of σ = 1, models M0, M4, M5, and M45 yield estimates in the fairly

narrow range of 0.50938–0.585358. The estimates of σ yielded by the unique maximum models fall

in a considerably broader range, although always below unity.

Second, more complicated models (i.e. the ones embodying the fewest restrictions and therefore

having the most parameters to be estimated, beginning with the maintained model M0) tend to be

the ones with multiple maxima. The simpler models (i.e. the ones embodying the most restrictions

and therefore having the fewest parameters to be estimated, such as the Cobb-Douglas special cases)

tend to be the ones having a unique maximum. Nevertheless there are exceptions to this tendency:

M45 imposes the strong restrictions of λN = λK = 1, yet has three maxima.

Third, likelihood ratio tests reject almost all the restricted models. For example, a Cobb-Douglas

5Given the evidence in León-Ledesma, McAdam, and Willman (2010) that the system based on the Kmenta
approximation is unsuccessful in identifying key parameters, replication results for the Kmenta parameterization are
of little interest and so are not reported. Following KMW, I do use the Kmenta approximation to replicate the average
TFP growth rates reported in my Tables 1 and 2.
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system (σ = 1, although leaving the unique growth parameters γ and λ unconstrained) eliminates

distinct γN , γK and λN , λK from the model as well as setting σ = 1, and so reduces the dimension

of the parameter space by three. Relative to the global maximum of the maintained model M0 the

likelihood ratio statistic is LR = 2(253.270 − 235.872) = 34.8, very strongly rejecting this special

case (χ2
0.01(3) = 11.34).

The exception to these rejections is M6, which imposes the single restriction λN = λK (a common

Box-Cox parameter in the growth functions (4), although still permitting distinct growth parameters

γN , γK). Relative to M0 this yields LR = 2(253.270 − 252.135) = 2.27, which does not reject at

conventional significance levels (χ2
0.10(1) = 2.71). Given this result, I report my estimation results

for M6 in Table 2 and discuss them further below.

Based on a comparison of their global maxima, it might also seem that M45 (λN = λK=1) is

not strongly rejected relative to M0: LR = 2(253.270 − 250.575) = 5.39 rejects at a 10% level of

significance but not 5%. However I conclude below that maxima in the neighborhood of the point

of singularity σ = 1 should be discounted. Using instead the local maximum of L = 226.574 at

σ̂ = 0.509, M45 is decisively rejected—a rejection I comment further on below in considering the

estimation results for M6.

Finally, it sometimes doesn’t take much in the way of additional restrictions to change the

estimate of σ associated with the global maximum quite dramatically. For example, M5 (λK = 1)

and M6 (λN = λK) yield estimates of σ in the range 0.55–0.56, yet imposing these restrictions

jointly (model M45) yields σ̂ = 0.998 at the global maximum. This sensitivity seems to reflect the

multiple maxima that tend to arise from the singularity of the model at σ = 1, a conjecture that

can be pursued by examining the detailed results for particular models.

2.2 The Maintained Model

Table 1 compares the KMW estimation results for the maintained model M0 (column 1.4 of their

Table 1) with those for the two maxima I found. Focusing initially on my global maximum, for the

most part I replicate their results, substantively if not identically. I obtain an elasticity of substitution

of 0.5458 in comparison with their 0.556, and both are significantly less than unity according to the

respective standard errors. The only notable difference is for the Box-Cox parameter λK that governs

the growth rate of capital-augmenting technology: my estimate is 0.2038 in comparison with their

−0.118. However neither of these estimates is remotely statistically significant, and so both sets of

results are consistent with logarithmic growth λK = 0. All other coefficients are easily statistically

significant at conventional levels in both my and their results.

Few macroeconomists would find believable an aggregate elasticity of substitution between capital

and labor much less than about 0.5, so our estimates of around 0.55 are at the low end of the plausi-

ble range. For Uzawa’s steady state growth theorem to hold in this circumstance, labor-augmenting
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technology must dominate in the long run. Is this true? Both labor- and capital-augmenting tech-

nology grow at positive rates (my estimates of the growth parameters are γ̂N = 0.0154, γ̂K = 0.0036)

that are statistically significant and intuitively plausible. However my estimated Box-Cox param-

eters of λ̂N = 0.5736 and λ̂K = 0.2038 are both significantly below unity, indicating decelerating

rather than sustained growth in each of the technology factors. Although there are minor differ-

ences in these estimates from those of KMW, the qualitative results are the same. Whereas growth

in labor-augmenting technology dominates that of capital-augmenting technology (γ̂N > γ̂K and

λ̂N > λ̂K), and to this extent is consistent with Uzawa’s theorem, neither is sustained in the long

run.

How seriously should we take this conclusion? In addition to its global maximum of L = 253.270

at σ̂ = 0.546, the maintained model has a local maximum of L = 253.031 at the very different

σ̂ = 0.987. It would therefore seem that the data do not strongly favor one set of estimates over the

other, and we should consider whether those of the local maximum alter our conclusions.

2.3 The Local Maximum of the Maintained Model

To investigate the multiple maxima of the maintained model in more detail, Figure 2 plots the

loglikelihood over the range 0.5 < σ < 1.5. It reveals something that the point estimates do not:

the local maximum at σ̂ = 0.987—essentially the Cobb-Douglas special case—is associated with an

almost-discrete jump in the loglikelihood as σ → 1 from below. This anomalous behavior in the

neighborhood of σ = 1 clearly arises from the singularity of the model at this point.

Consistent with the absence of separately identifiable factor-augmenting technologies that is in-

trinsic to the Cobb-Douglas functional form, the parameters γN , λN , γK , and λK are not well

estimated at this local maximum: the estimates reported in Table 1 are all well within one standard

error of zero. Furthermore a literal imposition of the Cobb-Douglas special case (but with unre-

stricted values for the unique growth parameters γ and λ) is plainly rejected by the data: it yields

L = 235.872, far below L for the maintained model.

Given this rejection of σ = 1, the conclusion is clear that there is no point dwelling on maxima—

local or global—in the immediate neighborhood of σ = 1. Instead they should be seen to be artifacts

of the singularity of the CES function at σ = 1 and the lack of identification of distinct γN , γK and

λN , λK that accompanies it. Of course this conclusion is specific to this data set, but it serves as

a general lesson in other applications of the model: researchers should be wary of maxima in the

neighborhood of the point of singularity. This lesson is reinforced by the special case of logarithmic

growth in capital-augmenting technology, considered shortly.

In other applications, how should a researcher differentiate between such an artifact of singularity

and a case where an elasticity of substitution close to unity is indeed the superior model? In

such a case the Cobb-Douglas version of the system should yield a loglikelihood value that is not
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dramatically different from that of the general model, in contrast to what Figure 2 shows for the

KMW data set. Of course, in this instance the general model is unlikely to yield precise estimates

of the distinct growth parameters γN , γK , λN , λK , as illustrated by the KMW local maximum.

2.4 The Restricted Model M6: λN = λK

Are any of our substantive findings altered by adding information to the estimation? We found in

the discussion of Figure 1 that, for the most part, the economic special cases delineated in that

nested testing structure are not particularly supported by the data. The exception is M6, λN = λK .

My estimation results for M6 are reported in the final column of Table 2, and show that the

substantive economic implications of the model are unaltered. (KMW did not estimate this model,

and so there are no results of theirs to provide for comparison.) As in the maintained model, the

estimates γ̂N = 0.0152 and γ̂K = 0.0042 are both statistically significant and attach the larger role

to labor-augmenting technical change. Nevertheless the joint estimate λ̂N = λ̂K = 0.5292 continues

to imply decelerating growth in both technology factors, so that growth is not sustained in the long

run. The elasticity of substitution of σ̂ = 0.5542 is essentially that of the maintained model.

The joint estimate λ̂N = λ̂K = 0.5292 has a standard error of 0.0421, and so neither λN =

λK = 0 (logarithmic growth in both technology factors) nor λN = λK = 1 (constant growth in both

technology factors) is supported. The latter constitutes a more definitive rejection of the special

case M45 than may have been evident from a likelihood ratio test, given the multiple maxima that

I found for that model.

2.5 Logarithmic Growth in Capital-Augmenting Technology

Although logarithmic growth in both technology factors (λN = λK = 0) is rejected, the hypothesis

is not rejected individually for capital in either my or the original KMW results of Table 1. As

discussed in connection with the Box-Cox growth expression (2), the special case λK = 0 has no

particular economic motivation, and so does not appear in Figure 1. Nevertheless it offers the useful

numerical simplification of replacing the Box-Cox function (4) with the simpler log expression (5).

The first three columns of Table 2 compare the KMW results for this special case with the

global and local maxima that I found. Figure 3 graphs the loglikelihood, which is similar to that

of the maintained model (Figure 2) in that there are two maxima, one at σ̂ = 0.5458 and the

other at σ̂ = 0.9887. However now it is the latter that is the global maximum, although only very

marginally: L = 253.026 versus L = 252.727. Nevertheless, for the same reasons that we dismissed

the estimation results for the maintained model M0 in the neighborhood of σ = 1, it seems sensible

to do so again here. The maximum in the neighborhood of σ = 1 appears to be an artifact of

the poor identification of the growth parameters γN , λN , and γK at this point of singularity: only

the estimate of γK is more than twice its standard error. As well, imposing σ = 1 yields the
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Cobb-Douglas special case that, even for unrestricted γ and λ, has L = 235.872, indicating a clear

rejection of this special case.

Focusing then on the local maximum at σ̂ = 0.5458, the coefficient estimates for this model come

very close to replicating those reported by KMW. All estimates are statistically significant, so there

is no basis for eliminating additional parameters that would simplify the model further. As well,

my estimates γ̂N = 0.0156 and γ̂K = 0.0032 imply sensible rates for each factor-augmenting growth

in technology, with that for labor being larger than that for capital. This is particularly so given

that growth in capital-augmenting technology decelerates more rapidly (λK = 0) than does labor

(λN = 0.5923), and so labor-augmenting technical change is the principal driver of economic growth.

Nevertheless that growth is not sustained: λN = 0.5923 is well below two standard errors of unity.

3 Conclusions

For the most part I have found the results of KMW (2007a) to be robust to replication using

alternative software, both numerically and substantively. Their key economic finding that labor-

augmenting technical change dominates capital-augmenting change, but that neither is sustained in

the long run, stands up to variations in the analysis such as the imposition of restrictions supported

by the data (λN = λK or λK = 0). So does their estimate of the elasticity of substitution of around

σ = 0.56.

Also replicated is their finding that there is not much support for restricted versions of the model.

Most of the economic special cases delineated in my Figure 1 are rejected. This confirms that the

KMW generalization of CES supply-side systems to permit factor-specific technical change, in a way

that distinguishes between short- and long-term effects, is indeed called for by the data and hence

a valuable addition to the literature.

One contribution of this replication has been to investigate in some detail the behavior of the

likelihood as σ varies over its plausible range. Researchers employing the model should be aware

that maxima in the neighborhood of the point of singularity σ = 1 are often suspect: they tend to

be an artifact of the lack of identification of the growth parameters γN , γK , λN , and λK . This is

easily revealed in empirical application by estimating the Cobb-Douglas special case that imposes

σ = 1, a model that is typically strongly rejected.
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Table 1: Maintained Model M0

Replication

KMW Table 1 Global Local
Parameter Column 1.4 maximum maximum

ζ 1.029 1.0269 1.0359
(0.006) (0.0041) (0.0037)

π 0.221 0.2219 0.2182
(0.009) (0.0068) (0.0068)

γN 0.015 0.0154 −0.0161
(0.000) (0.0004) (0.0863)

λN 0.439 0.5736 −0.3361
(0.076) (0.0539) (0.6994)

γK 0.004 0.0036 0.1170
(0.001) (0.0006) (0.3107)

λK −0.118 0.2038 0.0274
(0.336) (0.2335) (0.5043)

σ 0.556 0.5458 0.9866
(0.018) (0.0210) (0.0400)

1 + µ 1.042 1.0414 1.0412
(0.011) (0.0095) (0.0097)

Average TFP
growth rate 0.013 0.0151 0.0135

Loglikelihood 255.400a 253.270 253.031

ADFN
b −4.310 −3.447 −2.922

ADFK
b −3.580 −3.525 −3.454

ADFY
b −3.960 −3.171 −3.916

a Calculated from the log determinant of −19.618 reported by
KMW. For T = 46 observations and n = 3 equations the rela-
tionship is L = −T [n(1 + log 2π) + (−19.618)]/2 = 255.400.

b ADF regressions include an intercept, no trend, and (in view of the
data being annual) one augmenting lag. For 50 observations the
associated ADF critical values are −2.93 (5%) and −2.60 (10%),
so the equations of the KMW model are generally successful in
yielding stationary residuals.



Table 2: Restricted Models Supported by the Data

Logarithmic growth in capital-augmenting
technical change: λK = 0

Replication

KMW Table 1 Local Global M6
Parameter Column 1.5 maximum maximum λN = λK

ζ 1.029 1.0265 1.0359 1.0279
(0.006) (0.0041) (0.0037) (0.0040)

π 0.222 0.2213 0.2182 0.2230
(0.009) (0.0067) (0.0068) (0.0068)

γN 0.015 0.0156 −0.0213 0.0152
(0.000) (0.0004) (0.0163) (0.0004)

λN 0.427 0.5923 −0.3059 0.5292
(0.083) (0.0493) (0.1874) (0.0421)

γK 0.004 0.0032 0.1356 0.0042
(0.000) (0.0003) (0.0592) (0.0005)

λK 0a 0b 0b 0.5292
(0.0421)

σ 0.557 0.5458 0.9887 0.5542
(0.018) (0.0208) (0.0052) (0.0223)

1 + µ 1.042 1.0414 1.0412 1.0414
(0.012) (0.0095) (0.0097) (0.0095)

Average TFP
growth rate 0.013 0.0151 0.0135 0.0151

Loglikelihood 255.308c 252.727 253.026 252.135

ADFN
d −4.360 −3.430 −2.925 −3.485

ADFK
d −3.580 −3.515 −3.453 −3.531

ADFY
d −3.970 −3.150 −3.921 −3.219

a Imposed approximately by setting λK = −0.001.
b Imposed by replacing the general Box-Cox function with t̄γK log(t/t̄), as in equation
(5) of the text.

c Calculated from the log determinant of −19.614 reported by KMW. For T = 46
observations and n = 3 equations the relationship is L = −T [n(1 + log 2π) +
(−19.614)]/2 = 255.308.

d ADF regressions include an intercept, no trend, and (in view of the data being
annual) one augmenting lag. For 50 observations the associated ADF critical values
are −2.93 (5%) and −2.60 (10%), so the equations of the KMW model are generally
successful in yielding stationary residuals.



 
 
 

                                                                                                                                                  
                                                                                                                  
                                                                                 
 
 
 
 
 
 
                                                                                                                                                  
 
 
 
 
 
 
                                                                                                                      

                   
                   
                   

                   
                   
                   
                  

                  
                   
                  

                  
                  
                  
                  

                   
                    
                   
                   

                   
                   
                   
                   

                   
                   
                   
                   

                   
                   
                    

                   
                   
                   
                  

                  
                   
                   
                   
                  

                   
                   
                   

                   
                   
                   

                      
                      
                     

                      
                      
                      
                      

M0: Maintained

σ̂ = 0.545760 L = 253.270

σ̂ = 0.986623 L = 253.031
BIC = −233.561

M1: γN = 0

σ̂ = 0.964184 L = 243.184

BIC = −228.402

M2: γK = 0

σ̂ = 0.885341 L = 236.197

BIC = −221.416

M3: γN = γK

σ̂ = 0.829818 L = 245.757

BIC = −228.511

M4: λN = 1

σ̂ = 0.585385 L = 233.799

σ̂ = 0.997308 L = 250.634

BIC = −233.388

M5: λK = 1

σ̂ = 0.564275 L = 248.511

σ̂ = 1.008780 L = 242.701

BIC = −231.265

M6: λN = λK

σ̂ = 0.554225 L = 252.135

BIC = −234.890

M36: γN = γK , λN = λK

σ̂ = 0.528014 L = 245.741

BIC = −230.960

M34: γN = γK , λN = 1

σ̂ = 0.870766 L = 236.051

BIC = −221.270

M35: γN = γK , λK = 1

σ̂ = 0.816274 L = 243.121

BIC = −228.339

M45: λN = λK = 1

σ̂ = 0.509358 L = 226.574

σ̂ = 0.997553 L = 250.575

σ̂ = 1.044460 L = 207.352

BIC = −235.794

Cobb-Douglas

σ = 1, λ 6= 1
L = 235.872

BIC = −223.554

M3456: γN = γK , λN = λK = 1

σ̂ = 0.825844 L = 215.014

BIC = −202.696

Cobb-Douglas with

constant growth: λ = 1

L = 205.073

BIC = −195.219

Figure 1: The KMW nested testing structure (unique or global maxima are bolded) [In hardcopy, the readability of this Figure can be improved by setting
Orientation to Auto portrait/landscape when printing the paper, which will print this page in landscape format.]
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Figure 2: Scatter plot of loglikelihood values for the maintained model M0
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Figure 3: Scatter plot of loglikelihood values for the restricted model: λK = 0


