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1 Introduction 

This study endows computational agents with a learning model and uses these 

agents in computational experiments to make three contributions to knowledge about 

multiagent simulations of sealed-bid auctions.   

Several empirical studies have shown that impulse balance learning explains how 

human bidders in auction experiments adjust their bid price strategies (Selten and Buchta, 

1998; Selten et alia, 2005; Ockenfels and Selten, 2005; Neugebauer and Selten, 2006; 

Garvin and Kagel, 1994; Kagel and Levin, 1999).  This makes it a promising method to 

investigate as the learning model in a multiagent system.  The first contribution is to 

adapt Selten’s impulse balance learning method for use by agents in a multiagent system.    

In real-world auctions (such as those for timber sales, oil leases, spectrum, and 

services) the item value often has both a private value and a common value component 

(Goeree and Offerman, 2002).   Thus, the second contribution is to determine how profit, 

revenue, and efficiency change as the common value component increases.  There are no 

lab experiments to indicate whether this change is linear or non-linear.  The multiagent 

simulations show that as the common value percent increases, profit, revenue, and 

efficiency all decrease monotonically (and often nonlinearly), but they decrease at 

different rates.  Profit curves tend to decrease faster at higher common values, revenue 

curves tend to decrease more rapidly at low common value percents, and efficiency 

curves tend to stay high and then decrease rapidly for high percents of common value.   

The third contribution is to determine whether it may be worthwhile for a seller 

(such as a federal or state government) to enforce truthful revelation of the true common 

value by auction winners.   In lab experiments, Kagel and Levin (1999) show that 
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revealing information about the true common value in first-price auctions increased or 

decreased revenue depending upon the number of bidders and the degree of uncertainty 

about the common value.  The multiagent simulations show that forcing revelation of the 

true common value may have beneficial revenue effects when there is a higher degree of 

uncertainty about the common value. 

In Section 2, I describe the auction model.  Section 3 provides details of the 

learning model and its properties of convergence and sensitivity.  Section 4 compares the 

results of learning model with results from lab experiments in other studies.  Section 5 

demonstrates the nonlinear variation of revenue and efficiency with the common value 

percent.  Section 6 shows the results of requiring the auction winners to reveal the actual 

common value to the auction losers.  Section 7 presents conclusions. 

2 Auction Model 

The multiagent system platform is described in Mehlenbacher (2007).  In this 

section, I describe how the system implements values and the value signals for bidders 

(2.1), the levels of information feedback (2.2), and the number of periods and bidders 

(2.3).  

2.1 Values and Value Signals 

Before participating in a sealed-bid auction in period t, each bidder i determines 

its estimate for the value i

tv  of the item, and this estimate is called a value signal, denoted 

ˆi

tv .1   Most auction research has involved a single value signal ˆi

tv  that is either pure 

private ( ,

i

P tv ) or pure common ( ,
ˆi

C tv ), and these pure signals are called “one-dimensional” 

                                                 

1 The notation is summarized in Table 1. 
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value signals.  The bidders’ value signals are “pure private value” when they base their 

estimates on their own value for the item, without considering how other bidders might 

value the item.   The value signals are “pure common value” when bidders base their 

estimates on an estimated future actual value that is common to all bidders, for example a 

resale price.  In the case of pure private values, each bidder will have a different value 

signal and the estimated value for a bidder is the actual value of the item to that bidder.  

In the case of pure common values, the actual common value is unknown to the bidders 

before and during the auction, and is discovered in the markets after the auction only by 

the winning bidder.  

In most real-world situations, a value signal is a mixture of private and common 

value components.  A few researchers (Dasgupta and Maskin, 2000;  Jehiel and 

Moldovanu, 2001; Goeree and Offerman, 2002) have studied these mixed value signals 

and designated them “multi-dimensional” (or more precisely, “two-dimensional”) value 

signals.   For example timber sale auctions and oil leases have a common value 

component consisting of the volume and market price of the resource and a private value 

component consisting of firm-specific costs, capacities, and skills (Athey and Haile, 

2002; Hendricks et alia, 2003; Haile et alia, 2003).  Similarly, service procurement 

auctions have a common value component that is the scope of work and a private value 

component consisting of productivity, wage costs, and overhead costs.  Within the 

context of a unique mixture of private and common values, the seller establishes the 

auction rules, the most fundamental of which are the payment rule and the information to 

be released to the bidders after the auction.  In this case, the value signal ˆi

tv  is a function 

of both  types of value so that , ,
ˆ ˆ ˆ( , )i i i i

t t P t C tv v v v= .  Following  Goeree and Offerman (2002),  
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I use linear combinations of private values and common value signals to produce mixed 

value signals that range from pure private value to pure common value.  An agent’s value 

signal is , ,
ˆ ˆ(1 )i i i

t C P t C C tv v vθ θ= − + , where [ ]0,1Cθ ∈  is the fraction of common value.  The 

actual value, known by the winner, is therefore ,(1 )i i

t C P t C Cv v vθ θ= − + .  Two levels of two-

dimensional value signals ( Cθ = 0.14 and 0.25) have been investigated in experiments by 

Goeree and Offerman (2002), but my study is the first to look at the full spectrum of two-

dimensional signals and the variation in profit and revenue as well as efficiency.   

Values are distributed to the agent bidders in a different way than the distribution 

to human subjects in lab experiments (Kagel and Levin, 2002).  In this study, each bidder 

agent’s private and common value signals, as well as the actual common value, are fixed 

throughout the auctions.  This is an artificial situation, but it has the purpose of 

identifying the adaptively best bidding strategy for each possible value signal.  The 

alternative, which is used in lab experiments, is to provide each bidder with a random 

value signal for each auction.  This results in each bidder learning an average bidding 

strategy in response to the full range of value signals.  However, since bidding strategies 

may be different for different value signals, especially in first-price auctions, this average 

is not very informative.     

The experimenter specifies the support P P[ , ]S S  of a distribution of the private 

value signals ,

i

P tv  and a support C C[ , ]S S  for the common value 
Cv .  In most experimental 

studies and the simulations in this paper C PC P[ , ] [ , ]S S S S= .   There are two methods of 

providing the bidding agents with value signals from these supports:  random and 

deterministic.   In the first method, a bidder’s private value ,

i

P tv  is drawn from a 
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distribution (usually the uniform distribution) on the support.  Each bidder's common 

value signal ,
ˆi

C tv  is drawn from a distribution on the support centred on the common value 

[ , ]C Cv vε ε− + , where the common value is the centre of the support C C[ , ]S S .  There is 

uncertainty among the bidders about what this common value is, and a larger ε  

represents more uncertainty.  This method is satisfactory for investigating a single point 

in the two-dimensional value spectrum (i.e. 50% common value, pure common value, 

etc.)  However, for simulations performed across the full two-dimensional spectrum from 

pure common to pure private value, random draws lead to different value signal profiles 

at each common value percent.  This introduces some unnecessary noise into the results, 

but in fact does not change the overall results.  However, it is preferable to have the same 

profile across the simulations so that the results are perfectly comparable.  Therefore, the 

second method is a simple algorithm that sets the private and common value signals.  

Each agent is provided with a unique two-dimensional value signal so that the collection 

of signals spans the supports.  The first method is used for the fixed point simulations and 

the second is used for the simulations that span the two-dimensional value spectrum. 

When using the first method, I use the Uniform distribution of value signals over 

this support, since this is commonly used in the experiments in Kagel and Levin (2002) 

and others.  I experimented with different distributions (normal, beta(2,2), beta(4,2), and 

beta(2,4)2 ) and the results are as expected:  the bid price strategies for the symmetric 

distributions (uniform, normal, and beta(2,2)) were virtually identical and the bid price 

                                                 

2 These distributions are, respectively, more in the middle with tails, more in the middle without tails, more 

on the high end, and more on the low end. 
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strategies for the asymmetric distributions (beta(4,2) and beta(2,4)) shift right and left 

respectively.  

2.2 Information Levels  

The seller must decide how much information should be released to the bidders 

after the auction, with alternatives ranging from each bidder’s own information to 

information about all bids.  Dufwenberg and Gneezy (2002) compare the results from lab 

experiments for a two-person bargaining game with three incremental levels of 

information about auction results:  no information about others, the winning bid price 

(semi-full), and all bids (full).  Neugebauer and Selten (2006) report the results from lab 

experiments for first-price sealed-bid auction with three information levels provided in 

between auctions:  no information about others, the winning bid price, and the runner-up 

bid price.   Similarly, in this study I use three levels of information (own, winner, and 

winner and runner-up) and designate them I1, I2, and I3 respectively.3 

 Bidders do not know other bidders’ value signals, nor do they know the actual 

common value when they do not win.  The common value 
Cv  is unknown ex ante for all 

bidders, and only the winning bidders know 
Cv  ex post.  The actual value known to the 

winner in a two-dimensional value environment is ,(1 )i i

t C P t C Cv v vθ θ= − + .  In this study, I1 

consists entirely of own information:  own value signal ˆiv , own bid price i

tb , own 

ranking i

tr , actual common value upon winning, and own payment i

tp .  I2 consists of the 

                                                 

3 The notation is defined in Table 1 and the information feedback is summarized in Table 2. 
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own I1 information plus information about the winning bid price (1)

tb
4  and the payment 

tp .  I3 consists of the information from levels I1 and I2 plus information about the 

runner-up bid price (2)

tb .   The actual value is revealed only to the winner, and it is 

revealed before the next iteration so that the agent can use the information.  However, all 

bidders know the support C C[ , ]S S  so that the I1 and I2 agents have an estimate for the 

gap between bids (see Section 3.2 and 3.3).  Since this method is constructed so the 

agents seek for their optimal bidding strategy for the value signals they have been given, 

the winning agent does not carry forward its knowledge of the actual common value.  

One way to interpret this is that it does not know that the common value will stay the 

same.  I have experimented with moving the actual common value randomly from period 

to period within the ε  neighbourhood of the center of the support, but this has minimal 

effect on the results. 

2.3 Number of Bidders and Periods 

Four and seven bidders per auction were chosen to be compatible with lab 

experiments of  Kagel et alia (1987) and Levin et alia (1996).  Twenty-five simultaneous 

seller agents are used when there are four bidders per auction (for a total of 100 agents) 

and sixteen when there are seven bidders per auction (for a total of 112).  These numbers 

are chosen to provide a good mix of bidder agents and to keep the totals approximately 

equal.  Each auction has the same number of bidders and the bidder agents move 

randomly from seller to seller on a five-by-five or four-by-four torus.  This method 

                                                 

4 Superscript numbers in parentheses denote order statistics.  In a sealed-bid auction, 
(1)

tb  is the highest bid 

in the auction and 
( )n

tb  is the lowest bid in an auction with n bidders.   
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matches the bidder agents randomly so that each agent has the opportunity to optimize its 

bidding strategies by bidding against a wide range of values held by the other agents.   

Each agent participates in one auction per period.  I use 150 periods in order to 

accommodate learning, but on average the agents converge to a steady state bidding 

strategy within about 50 auctions (see Figures 6 and 7).    

3 Learning Model 

The first contribution of the study is to determine if Selten’s impulse balance 

learning method is suitable for multiagent simulations.  In this section, I describe the 

impulse balance learning method and then show that it results in an unacceptable amount 

of negative profit and sensitivity to initial values.  A few simple modifications solve both 

problems and produce a learning method that converges well, is insensitive to the 

learning rate, and produces results for value-multiplier, profit, revenue, and efficiency 

that agree closely with results from lab experiments.  This demonstrates that a multiagent 

system with this learning method can be used as a credible alternative to lab experiments, 

especially where bidding experience is desirable. 

There is considerable scope for choosing the learning model for the agents, 

including reinforcement learning, experience-weighted attraction, impulse balance, and 

machine learning methods.  These methods are reviewed and evaluated in Mehlenbacher 

(2007).  Modified impulse balance learning provides the best foundation for learning in 

auctions since it is a realistic representation of experienced human bidders, utilizes all 

information feedback, handles continuous bids, and is extendable.  The impulse balance 
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method uses foregone profit5 upon losing as an upward impulse on a continuous bidding 

strategy and money on the table6 and actual loss upon winning as downward impulses.   

Several empirical studies have shown that impulse balance learning fits the data for bid 

adjustments by lab experimental subjects (Selten and Buchta, 1998;  Selten et alia, 2005;  

Ockenfels and Selten, 2005;  Negebauer and Selten, 2006;  Garvin and Kagel, 1994;  

Kagel and Levin, 1999). 

Section 3.1 describes Selten’s impulse balance learning method.  The next two 

sections describe the adjustment rules for the downward impulses for winners (Section 

3.2) and the upward impulses for losers (Section 3.3) .  Section 3.4 presents results from 

using impulse balance learning and an improved learning method:  impulse learning with 

loss aversion (ILA).  Section 3.5 presents convergence and sensitivity analyses for the 

ILA method, and Section 3.6 compares simulation results to results from lab experiments.   

The common value signal supports in this section follow Kagel et alia (1989).  I 

use five bidders, C C[ , ] [10, 30]S S = , and 5ε = . 

3.1 Impulse Balance Learning 

Ockenfels and Selten (2005) apply impulse balance learning to first-price auctions 

with private values and Selten et alia (2005) apply impulse balance learning to first-price 

auctions with common values.  Bids are adjusted using downward ,

i

ta−  or upward ,

i

ta+  

                                                 

5 A losing bidder regrets its low bid to the extent that its value signal ˆi

tv  is above the winner’s payment.  

This amount is called foregone profit and is denoted ,
ˆi i

F t t tv pπ = − . 

6 The winning bidder in a first-price auction sacrifices profit unnecessarily to the extent that its bid exceeds 

the runner-up bid.  This is called leaving “money on the table” and is denoted 
(2)i i

t t tm b b= − . 
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adjustments or “impulses” that the agent calculates using profit 
i

tπ , foregone profit ,

i

F tπ ,  

and money on the table i

tm .   For profitable winners ,

i

ta−  is money on the table i

tm , and 

for unprofitable winners it is the loss 
i

tπ .  For losers,  ,

i

ta+  is the foregone profit.  A high-

value agent wins more frequently than it loses so that  typically i i

t tE a E a− +
� � � �>� � � �  for the 

high-value agent, and a low-value agent loses more frequently than it wins so that 

typically i i

t tE a E a+ −
� � � �>� � � �  for a low-value agent.  Thus, because the higher-value agent 

receives more downward impulses than upward impulses, it should put more weight on 

an upward impulse to compensate for its infrequency.  Similarly, a lower-value agent 

should put more weight on a downward impulse.  This is the motivation for the “balance” 

aspect of the impulse balance method.  Each agent i determines its balance weight i

tλ  as 

the ratio of  its expected value of the upward impulse to the expected value of the 

downward impulse:  
i

ti

t i

t

E a

E a
λ

+

−

� �� �=
� �� �

.  To determine its adjusted bid, the agent weights the 

impulses by a learning rate φ  and the downward impulse weight i

tλ .  The bid for period 

t+1 is then a revision of the previous bid 1 , ,( )i i i i i

t t t t tb b a aφ λ+ + −= + − .   This type of adjustment 

method does not require assuming that the bidding strategy is a linear function of the 

bidder’s value signal.  However, the bid at any time can be expressed as a ratio of the bid 

to the value estimate, 
ˆ

i
i t
t i

t

b

v
γ = , so that we can discuss the value multiplier i

tγ   that can be 

compared with theoretical and experimental results.   
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3.2 Downward Impulses  for Winners 

A winning agent is assigned a rank of 1, 1i

tr = , and its ordered bid price denoted 

(1)

tb .  Similarly, the runner-up has 2i

tr =  with ordered bid price (2)

tb , and so on.  In 

calculating its adjustments, the winner considers information (“impulses”) about its profit 

i

tπ  and, when the payment rule is first price,  its money on the table (1) (2)i

t t tm b b= − . 

Rule W1:  For all information levels, 1i

tr = , and 0.0i

tπ < :  ,

i i

t ta π− = . 

Demonstration:  If the agent wins but has a loss of 
i i

t t tv pπ = − , it lowers its bid 

in proportion to the loss in an effort to improve its expected profit.  Adjusting for actual 

loss was found to be a significant factor in bid adjustment by Garvin and Kagel (1994) 

and Selten et alia (2005). 

Rule W2(I3):  For I3, 1i

tr = , first-price payment, 0.0i

tπ > :  ,

i i

t ta m− = . 

Demonstration:  An agent with I3 can use information about the other bidders, 

specifically the runner-up, to make a more informed adjustment when it wins.  When 

winning is profitable in a first-price auction, the agent uses the value of the runner-up bid 

to determine how much it overbid.  This overbidding results when the payment rule uses 

the first-price since the winning bidder’s ideal situation is to have bid just slightly above 

the runner-up bidder.  Any amount that the winning bidder bids over the runner-up bidder 

is called “money on the table” and is denoted (2)i i

t t tm b b= − .  For a first-price payment 

rule, i

tm  is used to adjust the bid down.  Money on the table has been shown to be a 

significant factor in bid adjustment by Selten and Buchta (1998), Selten et alia (2005), 

Ockenfels and Selten (2005), and Negebauer and Selten (2006). 
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Rule W3(I1,I2):  For I1 and I2, 1i

tr = , first-price payment, 0.0i

tπ > :  ,
ˆi i

t ta m− = . 

Demonstration:  A profitable agent with I1 and I2 information must use an 

approximation for money on the table ˆ i

tm  to determine the adjustment for lowering its bid 

to improve its profit.  The alternative of making no adjustment is not consistent with the 

impulse balance method, since there would be no downward impulse.  Since the agent 

has information about the number of bidders n and the support C C[ , ]S S , it can use this to 

create an estimate for money on the table.  The gap between bids will decrease in 

proportion to n, and since the values are drawn uniformly, an upper bound on an estimate 

for money on the table is CCS S

n

− .  However, money on the table will be small with large 

i

tπ  so a simple estimate for money on the table is CCˆ i i

t t

S S
m

n
π

−
= − . 

3.3 Upward Impulses for Losers 

Rule L1(I2,I3):  For I2 and I3, 1i

tr > ,  when , 0i

F tπ ≥ , , ,

i i

t F ta π+ =  

Demonstration:  If an agent loses, it usually regrets its low bid to the extent that 

its value signal ˆi

tv  is above the winner’s payment.  This is the concept of foregone profit 

used by Camerer et alia (2002), Selten and Buchta (1998), Selten et alia (2005), 

Ockenfels and Selten (2005), and Negebauer and Selten (2006) with ,
ˆi i

F t t tv pπ = − .  An 

agent with I2 or I3 information knows the payment and so can calculate its foregone 

profit.   When foregone profit is positive the agent increases its bid in proportion to ,

i

F tπ  

since this will improve its probability of winning profitably.  If a bidder has a low value 

signal, the foregone profit will tend to be negative, and the bidder will not increase its 

bid.   
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Rule L2(I1):  For I1, 1i

tr > ,  when ,
ˆ 0i

F tπ ≥ , , ,
ˆi i

t F ta π+ =  

Demonstration:   With one exception, I1 agents do not know the payment and 

must estimate foregone profit ,
ˆ ˆˆ i i

F t t tv pπ = − .  The exception is the runner-up bidder, 

2i

tr = , in a second-price auction in which (2)i

t t tb b p= =  so bidder i’s  foregone profit is 

, ,
ˆˆ i i i i

F t F t t tv bπ π= = − .  For the other losing bidders, the foregone profit estimate 7is a fraction 

of  ˆi i

t tv b− , decreasing with the number of bidders and increasing with the rank.  In a 

second-price auction with 2i

tr > , ( ),

ˆ
ˆ 2

i i
i i t t
F t t

v b
r

n
π

−
= −  and in first-price auction with 

1i

tr >  ( ),

ˆ
ˆ 1

i i
i i t t
F t t

v b
r

n
π

−
= − .8 

3.4 Negative Profit and Sensitivity to Initial Values  

In this section, I analyze results of simulations and make changes to the impulse 

balance learning method.  The result is a learning method that uses impulses, excludes the 

balance principle, and includes loss aversion, so a reasonable name for the method is 

“impulse learning with loss aversion” (ILA). 

Result 1:   Using impulse balance learning in computational experiments results 

in a high degree of negative profit, i.e. loss, and sensitivity to initial values.  To achieve 

profitability and insensitivity to initial values, I make three changes to the impulse-

                                                 

7   I am using the term foregone profit for consistency with the other rules, but it is impossible for an I1 

agent to estimate the payment and hence the foregone profit.  Instead, the agent uses its value gap to 

calculate the upward adjustment. 

8   This rule is less of a foregone profit and more of a value gap adjustment.  With larger n, the gap between 

agents will be smaller, so the basic adjustment step is inversely proportional to n.  Agents with larger 
i

tr  

will need to adjust more than agents that are closer to the winner. 
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balance method.  First, the “balance” part of the method is removed.  Second, the loss 

adjustment in Rule W1 is weighted using a loss aversion factor | 0i i i

t t t tL E π π� �= <� �  that is 

the expected value of the magnitude of the losses.  Third, when a winning agent has an 

expected loss ( 0i

tL > ) and lowers its bid price to reduce its probability of winning, it is 

counter-productive for the agent to increase its bid price when it successfully reaches the 

losing state.   Thus, a losing agent uses foregone profit to raised its bid price only when 

0i

tL =  and the adjustment can be written using the indicator function
( 0)i

tL =
1 , i.e.,   

, ,( 0)
ˆi

t

i i

t F tL
a π+ =

= 1 .   In summary, the ILA method is to adjust bids using 

1 , ,( )i i i i

t t t tb b a aφ+ + −= + − , where the adjustment rules are: 

Rule W1: For all information levels, 1i

tr = , and 0.0i

tπ < :  ( ), 1i i i

t t ta L π− = + . 

Rule W2:  For I3, 1i

tr = , first-price payment, 0.0i

tπ > :  ,

i i

t ta m− = . 

Rule W3:  For I1 and I2, 1i

tr = , first-price payment, 0.0i

tπ > :  ,
ˆi i

t ta m− = . 

Rule L1:  For I2 and I3, 1i

tr > ,  when , 0i

F tπ ≥ , , ,( 0)i
t

i i

t F tL
a π+ =

= 1  

Rule L2:  For I1, 1i

tr > ,  when ,
ˆ 0i

F tπ ≥ , , ,( 0)
ˆi

t

i i

t F tL
a π+ =

= 1  

Discussion:  The results for impulse balance learning in Figure 1 show that a large 

proportion of the bidders (especially those with high value signals) experience losses.  

This is a much higher level of losses than shown in results from lab experiments and a 

level of sensitivity to starting values that is undesirable in a computational model.  For 

example, bankruptcies occur in about 6% of the auctions with experienced bidders (Kagel 

and Richard, 2001).  These bankruptcies occurred in two situations:  8% of bidders went 

bankrupt with a $10 cash balance with a support of [50, 380], 18ε = , and 7 bidders;  4% 
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of bidders went bankrupt with a $20 cash balance with support of [25, 225], 18ε = , and 

4 bidders.   Experienced bidders in real-world auctions would likely be skillful enough to 

avoid losses and bankruptcies altogether, so the goal of the learning model should be a 

minimal level losses or bankruptcies, at least below the 6% in Kagel and Richard’s 

experiments.   

The fact that the high-value bidders are experiencing losses indicates that there is 

a problem with the learning model for high-value bidders.  The balance factor i

tλ , which 

varies with the bidder value, could be expected to deal with this problem but it is not 

producing satisfactory results.  Figure 2 shows that  the values of i

tλ  do vary with the 

bidder value, and tend to be lower for high-value bidders than  for low-value bidders as 

expected from the discussion in Section 3.1   When i

tλ  is removed from the model, the 

results improve slightly as shown in Figure 3a.  It may still be reasonable to expect the 

agent to put more weight on a downward impulse than an upward impulse, even though 

the balance factor may not be the approach that should be used.  An agent may obtain 

improved profits if it weights the downward impulse from negative profit more than the 

corresponding increase from positive foregone profit.   Tversky and Kahneman (1992, 

Table 6) estimate loss aversion factors in the range [0.97, 2.44], but it makes sense in this 

case of bidders with different value signals to have endogenous loss aversion.  Figure  3b 

shows the results for an endogenous loss aversion where the loss aversion factor is 

| 0i i i

t t t tL E π π� �= <� � .  Now 35% of the bidders experience losses but the overall average 

profit is up to -0.15.   It also makes no sense for an optimizing bidder to raise its bid after 

losing, when it has been experiencing losses when it is winning.  Thus, I introduce a 
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profit switch 
( 0)i

tL =
1  that the agent uses for its upward impulses.  This final modification 

now raises all agents to non-negative profit as shown in Figure 3c, and an overall average 

profit level of  0.05.   

The overall model implementation is a nonlinear system with the potential of 

converging or not, or converging to a local optimum instead of a global optimum.  As 

such, it is preferable for the method to be insensitive to initial values (Judd, 1998) and 

other parameter values.  Figure 1 shows that the results from impulse balance learning 

vary significantly with the initial values 0.95 0.02± , 0.85 0.02± , and 0.75 0.02± .  

However, Figure 4 shows that the ILA method is quite insensitive to the initial values.  In 

Figure 1, the profit curve for an initial value 0.95 0.02±  is close to zero for low-value 

bidders and decreases rapidly to -1.7 for high-value bidders.  As the initial value is 

decreased to 0.85 0.02±  and then to 0.75 0.02± , the values for mid-value and high-value 

bidders increase considerably so that the curve becomes much flatter.  In Figure 4, the 

pattern of profit is much more similar across the initial values.  The low-value and high-

value bidders tend to have profit close to zero, with about twenty mid-value bidders with 

profits as high as 0.25 for all three initial values.  

One of the main methodological differences between the experiments with 

humans in the various studies cited in this paper and these computational experiments is 

that here each bidder’s private and common value signals are constant throughout the 

auctions (as explained in Section 2.2).  The alternative is to provide each agent with a 

random value signal for each auction.  This results in each agent learning an average bid 

strategy that is the adaptive best response to the full range of value signals.  Perhaps the 

impulse balance method is more suitable to learning an average bid strategy.  As shown 
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in Figure 5, this is not the case.  For varying common value signals, impulse-balance 

learning results in significant number of agents with high levels of negative profit.  

However, the ILA method results in most agents achieving positive profits, but with 

some achieving small negative profits.   

3.5 Convergence and Sensitivity to Learning Rate 

Result 2:   The ILA method results in value-multipliers that converge in less than 

100 periods, and this convergence is independent of the initial values and smoother than 

the convergence of the impulse-balance method.  

Discussion: Figure 6 shows value-multiplier convergence for the impulse balance 

and ILA methods.  The impulse-balance value multipliers converge to quite different 

values (0.94, 0.89, and 0.83) for the three initial values, whereas the ILA value 

multipliers converge to more similar values of (0.92, 0.90, and 0.89).  In addition, the 

pattern of the convergence is much smoother for the ILA method.  For the three initial 

values, convergence requires about 10, 60, and 90 periods.  These convergence results are 

important, since it is impossible to interpret auction results for profit, revenue, and 

efficiency when there is no convergence.  For example, without convergence the results 

in period 50 are different from the results in period 60, whereas if the results from period 

50 to infinity are the same, we can conclude that these are the results of the auction.  

Also, the fact that convergence occurs in less than 100 periods makes it reasonable to 

infer that the bid strategies of human agents could converge in a realistic number of real-

world auctions.  

Result 3:   The ILA method is insensitive to the learning rate φ .   
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Discussion: Why should we believe that a bidder’s downward impulse is all of its 

loss and not a fraction of the loss, or that a bidder’s upward impulse is all of its foregone 

profit and not a fraction of it?  Using different values for the learning rate φ  answers this 

question.  Figure 7 shows the value multiplier for first-price auctions using a sample of 

learning rates in the interval [ ]0.1, 1.0 .  First, the resulting value multiplier is very close 

across all of the learning rates (0.92).  Second, the pattern of variation is also very similar 

throughout the range.  The difference is that the smaller learning rates tend to produce 

smoother convergence, with the standard deviation ranging from about 0.0017 for φ =0.1 

to 0.0024 for φ =1.0.  These results are quite insensitive to initial value, and I use 0.5φ =  

and initial values of 0.85 0.02±  in the simulations as arbitrary choices. 

4 Comparing ILA Results with Lab Experiments 

Using simulations with the ILA learning method, I present results and compare 

them with lab experiment results in Kagel et alia (1989),  Kagel et alia (1995), Kagel and 

Richard (2001), and Goeree and Offerman (2002).  In the lab experiments, the 

information feedback is equal to or greater than the I3 information level.  Thus, in the 

figures related to this section, we are interested in only the I3 bidders, represented by the 

dashdot curves.   Also, the most frequently-used support for the common value signals is  

[25, 225] so that is what I use in the computational experiments.  For comparability with 

most of the lab experiment results, I vary the uncertainty using ε = 8, 12, 18, and 27 and 

use four and seven bidders for both first-price and second-price auctions.  The results that 

are illustrated in the figures are consistent across repeated simulations. 

In the following sub-sections I compare results for value multiplier, profit, and 

efficiency, and these results are summarized in Table   The value multiplier and profit are 
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straightforward and have been discussed in Sections 3.1 to 3.3, but efficiency requires 

some explanation.  Since efficiency refers to the auction being won by the bidder with the 

highest value ex post, all auctions are equally efficient when the value is 100% common.  

Thus, in the two-dimensional value environment, efficiency can be considered only when 

there is some component of private value, i.e., when the common value component is less 

than 100%.  When the common value is 100%,  Kagel et alia (1989) and Kagel et alia 

(1995) measure efficiency by the percent of auctions won by the bidder with the highest 

value signal (ex ante).   This is not really efficiency, but it is still interesting to look at 

this highest-value-signal winning percent.  When the common value percent is less than 

100%, private value efficiency as used by Goeree and Offerman (2002) compares the 

winner’s private value with the maximum private value among the bidders, i.e.,  

{ }
{ } { }
, ,

, ,

min

max min

winner i

P t P t

i i

P t P t

v v

v v

−
=

−
� .   1=�  when the winner has the highest private value, and 0=�  

when the winner is the bidder with the lowest private value.   As the common value 

component increases, the common value signal may undermine the private value 

efficiency.  Consider two bidders, one with a high private value (say corresponding to 

low costs of production) and one with a low private value.  If the low private value bidder 

has a higher estimate of the common value than the high private value bidder, it may 

submit a higher bid and win the auction.  This leads to private value inefficiency.   

4.1 First-Price Auctions 

Value Multiplier:  From intuition and theory, we expect that bidders will shade 

their bids in first-price auctions, i.e., the value multiplier is expected to be less than 1.0.  

For pure private values, experimental evidence from Kagel and Levin (1993) shows an 
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average value multiplier of 0.92 for first-price auctions, averaged over experiments with 

five and 10 bidders with I3 information.  The simulation results for seven I3 bidders in 

Figure 8 show value multipliers of about 0.90.  These pure private-value results are 

consistent with the data from lab experiments.  Kagel and Richard (2001) show value 

multipliers for first-price common values with 18ε =  of about 0.92 for four I3 bidders 

and 0.95 for seven I3 bidders in the middle region of the support.  Figure 8 shows 

common value multipliers for 18ε =  of about 0.92 for four bidders and of about 0.94 for 

seven bidders.  Thus, both the private-value and common-value results agree very closely 

with the experimental results. 

Profit:  Data in Kagel et alia (1989) for first-price pure common-value auctions 

averaging about seven bidders show that profit tends to increase with more uncertainty in 

the common value signal (higherε ).   Figure 9 shows results for four and seven bidders 

across the full spectrum of two-dimensional value signals from pure private value (0% 

common value) to pure common value (100%).  For pure common value, profit increases 

significantly with uncertainty for four bidders (from about 1 to 10), but increases less 

with uncertainty for seven bidders (from about 0 to about 3).  Goeree and Offerman 

(2002) show profit increasing slightly with more uncertainty in auctions with two-

dimensional value signals that are about 14% common value (with six bidders) and 25% 

common value (with three bidders).  At common value percents of 14% and 25%, Figure 

9 shows that the profit remains the same as the uncertainty increases.  Thus, the agent 

results for the variation of profit with uncertainty are only partially in agreement with the 

lab experiment results.    
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Kagel and Richard (2001) find average profit is higher with four bidders than with 

seven bidders in first-price common-value auctions.  Comparing the left column (four 

bidders) of Figure 9 with the right column (seven bidders) shows that profit tends to be 

higher for four bidders at all levels of uncertainty and all information levels across the 

full range of common-value percent.  Thus, the agent results for the variation of profit 

with number of bidders are in agreement with the results from the lab experiments.   

Figure 10 shows the profit results for 12, 25, 50, 100, 200, and 300 bidders for 

first-price auctions with high ( 27ε = ) uncertainty.  For I2 and I3 bidders, profit further 

decreases with the increasing number of bidders, resulting in near-zero profits when there 

are over 200 bidders.  The profit of I1 agents continues to decrease significantly below 

zero as the number of bidders increases.  This highlights the importance to bidder profit 

of being informed about the payment.  

  Efficiency:  The efficiency results for first-price auctions with less than pure 

common value are shown in Figure 11, and the results for highest-value-signal winning 

percent for pure common-value auctions are shown in Table 4. 

From theory, we expect that efficiency will decrease when there is a common 

value component (Dasgupta and Maskin, 2000;  Jehiel and Moldovanu, 2001).  

Experiment results from Kagel et alia (1989) for about seven bidders show that the 

highest-value-signal winning percent tends to decrease with more uncertainty in first-

price auctions.  Table 4 shows that for I3 agents the highest-value-signal winning percent 

in first-price auctions decreases with increased uncertainty for both four bidders (from 

94% to 28%) and seven bidders (from 95% to 22%), which is consistent with the results 

from the lab experiments.   
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Goeree and Offerman (2002) show that efficiency is lower with more uncertainty 

for common value percents of 14% (with six bidders) and 25% (with three bidders).  

Figure 11 shows that for I3 bidders, efficiency tends to stay the same or decrease slightly 

with increased uncertainty at both 14% and 25% common value for both four and seven 

bidders, which is consistent with the results from the lab experiments.   

4.2 Second-Price Auctions 

Value Multiplier:  From intuition and theory for second-price auctions, we 

expect that bidders will bid their values when the value is private and shade their bids 

when the value is common.   For private-value second-price auctions, experimental 

evidence from Kagel and Levin (1993) shows an average value multiplier of 1.02 for 

second-price auctions, averaged over experiments with five and ten bidders (assuming an 

average of about seven bidders).  The results in Figure 12 for seven bidders show value 

multipliers of about 0.99 for private-value second-price auctions.  For common-value 

second-price auctions, regressions in Kagel et alia (1995) show value multipliers of about 

0.97, 0.96, 0.94, and 0.92 for ε =8, 12, 18, and 27 respectively.  The results in Figure 12 

for seven bidders show a similar magnitude and pattern of value multipliers, namely 

about 0.98, 0.97, 0.96, and 0.95.     

Profit:  For second-price common-value auctions, Kagel et alia (1995) find that 

profit increases with ε  for four bidders, but decreases with ε  for seven bidders.  The 

results shown in Figure 13 are consistent with their results for four bidders (profit 

increases with ε ), but not for seven bidders (no change in profit with ε ).  Figure 13 also 

shows that profit decreases slightly with an increase in the number of bidders, for all 

information levels and across the full range of common value percent.  This is the same 
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computational result that was obtained for private values.  It is also consistent with the 

experimental results from Kagel et alia (1995) who found that profits were higher for 

four bidders than for seven.   

Efficiency:  The efficiency for second-price auctions with less than pure common 

value is shown in Figure 14, and the highest-value-signal winning percent for pure 

common-value auctions is shown in Table 4.  Kagel et alia (1995) found that the highest-

value-signal winning percent was lower in second-price auctions than in first-price 

auctions, when the level of uncertainty is 27ε = .  However,  Table 4 shows that the 

highest-value-signal winning percent is higher in second-price auctions.  Second-price 

auctions are more efficient than first-price auctions for the agents because they are 

bidding closer to their values.  Since this is what is expected from theory, the agents are 

bidding more like optimizing agents than like the inexperienced agents in the 

experiments.  The results of Kagel et alia (1995) also show that highest-value-signal 

winning percent in second-price auctions is slightly lower for seven bidders than for four 

bidders.  Table 4 shows that the agents produce similar results for levels of uncertainty 

above 8ε = .   

5 Variation of Profit, Revenue, and Efficiency with Common Value Percent 

The second contribution of this study is to determine how the auction results 

change as the common value component increases, and specifically whether the change is 

linear.  In the figures used in the previous section, it is obvious that the results across the 

two-dimensional value signal are usually not linear.  As the common value percent 

increases, profit, revenue, and efficiency all decrease monotonically, but they decrease in 

different ways.  The seller endeavors to choose the payment rule and information level 
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that maximizes its revenue, maximizes efficiency, or maximizes both.  Therefore, the 

seller is interested in whether the different payment rules and information levels produce 

different levels of revenue and efficiency, or whether they are equivalent.  In this section, 

I discuss the results for all three information levels. 

5.1 Profit 

Result 4:    Profit curves decrease nonlinearly for first-price auctions and linearly 

for second-price auctions.  In first-price auctions the nonlinearity usually involves 

decreasing faster at higher common value percents.   

Discussion:  See Figure 9 for first-price auctions and Figure 13 for second-price 

auctions.  The main difference between learning in first-price auctions and learning in 

second-price auctions is that the agents use money on the table in first-price auctions but 

not in second-price auctions.  When the value signal is dominated by private value (i.e., a 

low common value percent), the bid reduction from money on the table keeps the profit 

high.  As the common value component increases, the contributions from money on the 

table to profit become dominated by the effects of the common value signal.  

There is also some interesting variation with the level of information feedback.  

The curves tend to be the same for I1, I2, and I3 information levels at lower levels of 

uncertainty, but as uncertainty about the common value increases profit is higher for the 

more informed I3 bidders.  

5.2 Revenue 

See Figures 15 and 16 for revenue results for first-price and second-price 

auctions, respectively.   Revenue tends to decrease with increasing common value.   



  26 

 
 

Result 5:    Revenue curves decrease nonlinearly for first-price auctions and 

linearly for second-price auctions.  In first-price auctions the nonlinearity usually 

involves decreasing faster at lower common value percents.   

Result 6:    In most cases, the seller receives less revenue when it provides bidders 

with more information feedback. 

Discussion:  The figures show that in most cases the seller receives less revenue  

when the bidders have I3 information.  However, for first-price auctions (Figure 15) with 

lower levels of uncertainty ( 18ε ≤ ), I3 agents provide higher revenue at high common 

value percents (30% to 90%) than the I1 and I2 agents, although this effect diminishes 

with more bidders.  Once again, the major difference between I3 agents and the I1 and I2 

agents is that the former can calculate money on the table while the latter can only 

estimate it.  The estimate becomes less reliable as the uncertainty increases so that I3 

agents are better able to keep their bid strategies profitable, taking more of the surplus 

and yielding lower revenue for the seller. 

5.3 Efficiency 

See Figure 11 for first-price auctions and Figure 14 for second-price auctions. As 

the common value component increases, the common value signal disrupts the private 

value efficiency.  Second-price auctions tend to be more efficient than first-price auctions 

because the agents bid closer to their values. 

Result 7:    Private-value efficiency curves tend to stay high at low percent 

common value and then decrease rapidly for higher common value percents.  
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Discussion:  The nonlinearity is especially pronounced in second-price auctions  

(Figure 14) where efficiency remains close to 1.0 until relatively high levels of common 

value percent, and then decreases rapidly to efficiency as low as 0.8.   

6 Revelation of Common Value to Losers 

The third contribution of this study is to determine whether it may be worthwhile 

for a seller (such as a federal or state government) to enforce truthful revelation of the 

true common value by auction winners.  In the experiments studied so far, and in nearly 

all real-world auctions, losing bidders do not know the actual common value.  The winner 

discovers the true common values after the auction.  For example, in timber sale auctions 

the winners learn the true quantity and value of timber; in highway procurement auctions, 

the winner discovers the true scope of the project; in oil lease licences, the winner 

discovers the true quantity of oil; and so on.  These values are carefully guarded company 

secrets (Baldwin et alia, 1997) and are not intentionally revealed to other bidders.  

However, some experimental work has studied the effects on bidding of revealing some 

information about the common value to all bidders (Kagel and Levin (1999) for first-

price auctions and Kagel et alia (1995) for second-price auctions).  This raises the 

question of whether a buyer or seller, say the government operating procurement or asset-

sale auctions, should require the auction winners to reveal the common value that they 

discover after winning.  I know of some attempts to do this in Canadian federal 

government procurement auctions in which the government asks bidders to reveal their 

costs.  Of course the costs provided are not truthful!  If it were worthwhile, the 

government could rationally decide to invest in implementing regulations and 

enforcement of truthful revelation of the winner’s value.  Given this information, losing 



  28 

 
 

agents would use it in their calculation of the amount to increase their bid (in Rules L1 

and L2).  To obtain a computational answer to this question, I perform experiments with 

value revelation and observe the revenue.  Figure 17 shows for I3 bidders the differences 

between the revenue with revealed common value and the revenue without revelation.   

The results that are illustrated in the figures are consistent across repeated simulations. 

Result 8:    For first-price auctions, when the common value percent is high 

(>60%) and there is a high degree of uncertainty in the common value signal ( 12ε > , 

revealing information about the common value increases revenue for I3 information.   

Discussion:  Experiments by Kagel and Levin (1999) for first-price common-

value auctions with 27ε =  show that revealing information about the true common value 

increased revenue (+2.75) for four bidders but decreased revenue (-0.88) for seven 

bidders.   For the same conditions, the top row of Figure 17 shows that revenue increases 

(+7) for four bidders and increases less (+3) for seven bidders.9  These results are 

consistent with the experimental data in that revenue increases more for four bidders than 

for seven, but is inconsistent in the direction of change for the seven bidders.  Figure 17 

also shows that the revenue effects are smaller as uncertainty decreases.  For 100% 

common value, the benefits become negligible when 8ε = .  For values with less common 

value percent, common value revelation sometimes has a negative impact on revenue.  

Thus, for the auction designer the percent common value and the degree of uncertainty 

about the common value all affect the impact of value revelation on revenue.   

                                                 

9   Since total revenue is approximately 125, the revenue increase of 7 is approximately 5%. 
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Result 9:    For second-price auctions, revealing information about the common 

value significantly increases revenue for I3 bidders, especially when there is a high 

degree of uncertainty in the common value signal. 

Discussion:  Experiments by Kagel et alia (1995) show that revealing information 

about the common value in second-price auctions increased revenue  (+0.31) for four-five 

bidders but decreased revenue  (-2.5) for six-seven bidders.  The bottom row of Figure 17 

shows that revenue increases  (+4) for four bidders and increases less (+2) for seven 

bidders.  Again, the results are in partial agreement with the experimental results.   

7 Conclusion  

I find that Selten’s impulse balance method can be adapted for use in multiagent 

simulations of auctions with values that have some common value component (Result 1 

in Section 3.4).  The resulting ILA (impulse learning with loss aversion) method 

converges within 100 periods and is insensitive to the learning rate (Results 2 and 3 in 

Section 3.5).   

I use the ILA method in multiagent simulations for first-price and second-price 

payment rules, three different information levels, and two-dimensional value signals that 

vary from pure private value to pure common value.  The results are compared to data 

from lab experiments in other studies (summarized in Table 3), and the agent results for 

the value multiplier, profit, and efficiency are usually consistent with results from lab 

experiments.  These consistencies support the real-world validity in this context of using 

multiagent simulations with learning agents. 

For values in between pure private and pure common value, curves for profit, 

revenue, and efficiency are nonlinear especially when the payment rule is first price.  The 
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profit curves tend to decrease nonlinearly for first-price auctions and linearly for second-

price auctions (Result 4 in Section 5.1).  The nonlinear revenue curves tend to decrease 

more rapidly at low common value percents (Result 5 in Section 5.2).  The very nonlinear 

efficiency curves tend to stay high and then decrease rapidly for common value percents 

(Result 7 in Section 5.3).  In addition, revenue in most cases decrease with increasing 

information feedback to the bidders (Result 6 in Section 5.2).   

Simulations also show that forcing revelation of the true common value may have 

beneficial revenue effects when the common-value percent is high and there is a high 

degree of uncertainty about the common value (Results 8 and 9 in Section 6).   

Using multiagent simulations has provided some insights into single-unit sealed-

bid auction performance for different levels of information feedback across different 

levels of common value.  The next paper will expand the approach to analyze English 

auctions. 
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10 Tables  

 

Table 1.  Sealed-Bid Model Notation Summary 

Symbol Description 

i

tb  Bid price of bidder i in auction t. 

(1) ( ),...,t t

n
b b  Ordered bid prices in a sealed-bid auction where (1)

tb  is the highest bid. 

ε  Radius of the support for the common value signal.  . 

i

tγ  Value multiplier: ˆi i i

t t tb vγ= . 

i

tλ   The balance weight in the impulse balance learning method. 

i

tm  Money left on the table by a profitable winner for first-price payment: (1) (2)i

t t tm b b= − . 

tp  Payment by winner in auction t. 

φ  Learning rate of bidder i at period t. 

i

tp  Payment made by bidder i, given that it wins. 

i

tπ  Profit of bidder i in auction t. 

,

i

F tπ  Foregone profit of bidder i in auction t. 

i

tr  Ranking of bidder i in auction t.  The winner is 1i

tr = , the runner-up 2i

tr = , etc. 

P CP C, , ,S S S S  Upper and lower bounds of supports for the private value signal and common value. 

Cθ  Common value component of the value signal. 

ˆi

tv  Value signal of bidder i in auction t. 

i

tv  Actual value, revealed only to winner. 
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Table 2. Information Levels (incremental) 

Level Description Feedback 

Number of bidders n 

Value signal support 
C C[ , ]S S  

Value Signal:  Own ˆi

tv  

Bid Price:  Own i

tb  

Ranking:  Own i

tr  

Payment:  Own | 1i i

t tp r =  

 

 

 

 

I1 

Value: Own | 1i i

t tv r =  

Bid Price:  Winner (1)

tb   

I2 

Payment 
tp  

I3 Bid Price:  Runner-up (2)

tb  



  36 

 
 

 

 

Table 3.  Summary of Comparison with Lab Experiments (Section 3.6) 

  Private Value 14%, 25% Common Value 100% Common Value 

Payment Result Lab  Agent Lab Agent Lab Agent 

Value 
Multiplier 

0.92 
(1) 

0.90   0.92, 0.95 

(2) 

0.92, 0.94 

Profit   Increases 
with � 

 (4) 

Constant with 
� 

Increases with 
� and n 

(2,3) 

Increases with 
� and n 

 

First 
Price 

Efficiency   Decreases 
with �  

(4) 

Decreases 
slightly with � 

Decreases 
with � 

(3) 

Decreases 
with � 

Value 
Multiplier 

1.02 
(1) 

0.99   0.97, 0.96, 
0.94, 0.92 

(5) 

0.98, 0.97, 
0.96, 0.95 

Profit     Increases with 
� for n=4 

Decreases 
with � for n=7 

Decreases 
with n 

(5) 

Increases with 
� for n=4 

No change 
with � for n=7 

Decreases 
with n 

 

 

Second 
Price 

Efficiency     Decreases 
with n 

(5) 

Decreases 
with n 

1  Kagel and Levin (1993) 

2  Kagel and Richard (2001) 

3  Kagel et alia (1989) 

4  Goeree and Offerman (2002)  

5  Kagel et alia (1995) 
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Table 4.  Highest-Value-Signal Winning Percent for Pure Common Value 

Information Level I3 

Payment Uncertainty ε  Four Bidders Seven Bidders 

8 93% 95% 

12 88% 72% 

18 44% 30% 

 

 

First Price 

27 28% 22% 

8 94% 94% 

12 81% 92% 

18 61% 72% 

 

 

Second Price 

27 44% 46% 
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11 Figures  

Figure 1.  Impulse Balance Learning:  Profit by Common Value Signal 

Common Value, First Price, I3 

Initial value multiplier 0.95 0.02±  Initial value multiplier 0.85 0.02±  Initial value multiplier 0.75 0.02±  
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Figure 2.  Impulse Balance Learning:  
i

tλ  by Common Value Signal 

Common Value, First Price, I3 

Initial value multiplier 0.95 0.02±  Initial value multiplier 0.85 0.02±  Initial value multiplier 0.75 0.02±  
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Figure 3.  Learning Alternatives:  Profit by Common Value Signal 

Common Value, First Price, I3, Initial value multiplier 0.95 0.02±  

3a. No Balance 3b  No Balance, Loss Aversion 3c. No Balance, Loss Aversion,    
Profit Switch 
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Figure 4.  ILA learning: Profit by Common Value Signal 

Common Value, First Price, I3 

Initial value multiplier 0.95 0.02±  Initial value multiplier 0.85 0.02±  Initial value multiplier 0.75 0.02±  
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Figure 5.  Bidders with Varying Value Signals 

Profit by Common Value Signal 

Initial value multiplier 0.95 0.02±  

Common Value, First Price, I3 

Impulse Balance ILA  
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Figure 6.  Convergence of Value Multiplier 

Value Multiplier by Period 

Common Value, First Price, I3 Information 

Impulse Balance ILA 

Initial Value multiplier: 0.95 0.02±  Initial Value multiplier: 0.95 0.02±  
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Figure 7.  Sensitivity to Learning Rate  

Value Multiplier by Period 

Common Value, First Price, I3 Information  

(I1:  Solid, I2: Dot, I3:  DashDot) 

Learning Rate 0.1 Learning Rate 0.3 

0.9

0.91

0.92

0.93

0.94

0.95

0.96

1 12 23 34 45 56 67 78 89 100 111 122 133 144

 

0.9

0.91

0.92

0.93

0.94

0.95

0.96

1 12 23 34 45 56 67 78 89 100 111 122 133 144

 

Learning Rate 0.5 Learning Rate 0.7 

0.9

0.91

0.92

0.93

0.94

0.95

0.96

1 12 23 34 45 56 67 78 89 100 111 122 133 144

 

0.9

0.91

0.92

0.93

0.94

0.95

0.96

1 12 23 34 45 56 67 78 89 100 111 122 133 144

 

Learning Rate 0.9 Learning Rate 1.0 

0.9

0.91

0.92

0.93

0.94

0.95

0.96

1 12 23 34 45 56 67 78 89 100 111 122 133 144

 

0.9

0.91

0.92

0.93

0.94

0.95

0.96

1 12 23 34 45 56 67 78 89 100 111 122 133 144

 

 

 



  42 

 
 

 

Figure 8.  Value Multiplier:  First-price auctions  

Value Multiplier by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 9.  Profit:  First-price auctions 

Profit by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 10.  Profit with Many Bidders  

Profit by Common Value Percent 

First-price Auctions, 27ε =  

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 11. Efficiency:  First-price auctions  

Efficiency by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 12. Value Multiplier:  Second-price auctions 

Value Multiplier by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 13.  Profit:  Second-price auctions  

Profit by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 14.  Efficiency:  Second-price auctions  

Efficiency by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 15.  Revenue:  First-Price Auctions  

Revenue by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 16.  Revenue:  Second-Price Auctions  

Revenue by Common Value Percent 

 (I1:  Solid, I2: Dot, I3:  DashDot) 
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Figure 17.  Revenue Effects of Revealed Common Value 

Revenue Difference from No Information, by Common Value Percent 

I3 Information 

(Solid: 8ε = ; Dot: 12ε = ; Dash-Dot: 18ε = ; Dash-Dot-Dot: 27ε = ) 

First-Price, Four Bidders First-Price, Seven Bidders 
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