

Department of Economics

Multiagent System Platform for Auction Simulations

Alan Mehlenbacher

Department of Economics, University of Victoria

Victoria, B.C., Canada V8W 2Y2

Abstract

I have developed a multiagent system platform that provides a valuable complement to the

alternative auction research methods. The platform facilitates the development of heterogeneous

agents and provides an experimental environment that is under the experimenter's complete

control. Simulations with alternative learning methods results in impulse balance learning as the

most promising approach for auctions.

JEL classification: C15, C72, D83.

Keywords: agent-based computational economics; agent learning;

Author Contact:
Alan Mehlenbacher, Dept. of Economics, University of Victoria, P.O. Box 1700, STN CSC, Victoria, B.C.,

Canada, V8W 2Y2; e-mail: amehlen@uvic.ca; Voice: (250) 721-8537; FAX: (250) 721-6214

Department Discussion Paper DDP0706

 ISSN 1914-2838

 2

1 Introduction

Multiagent systems have been applied to problems that are dynamic, complex,

and distributed, and thus have been used to model the machines in manufacturing and

process control, work orders in production scheduling, jobs and departments in business

process optimization, planes in air traffic control, treatments and tests in hospital patient

scheduling, messages in communication networks, and in many more areas (Weiss,

1999). In economics, agents have been used to model the behavior of, and interactions

between, consumers, workers, families, firms, markets, regulatory agencies, and so on

(see Tesfatsion, 2003 and 2006), and there have been a few applications of agent systems

to auctions (Kim, 2007; Byde, 2002; and Hailu and Schilizzi, 2004). Section 2 discusses

alternatives to multiagent systems in the analysis of auctions and why the multiagent

system method was chosen for the current research.

An agent is a software entity that is autonomous, communicating, and adaptive.

Autonomy means that an agent is driven by its own objectives, possesses resources (e.g.,

information) of its own, is capable of recording information about its environment, and

can choose how to react to the environment. An agent is also a communicating software

entity. Agents communicate directly with other agents by passing messages. Because

each agent is autonomous, an agent must send requests to other agents for things to be

done. For example, in this system, agents send messages to coordinate auctions, establish

values, send bids, move to a new auctioneer, and so on. The agents are developed using

object-oriented design. This means that the system consists of approximately 100

independent programs that are called “classes.” Section 3 describes the design principles

and, together with the Appendix, provides a guide to the classes.

 3

An agent endeavours to improve its state (e.g., profit or revenue) in at least two

ways. The first type of learning is reinforcement learning that uses feedback on results of

actions to improve the results. The second type of learning is belief learning that

involves updating beliefs about the environment, markets, and competitors, which may

provide further improvements to the agent. Section 4 presents the results of an

evaluation of different methods of agent learning.

2 Alternatives to Multiagent Systems

The major alternatives to using a multiagent system are mathematical theory, lab

experiments, econometric models, and computational models.

2.1 Mathematical Theory

In a mathematical approach, mathematical machinery is developed (e.g.,

optimization, order statistics, supermodularity, etc.), simplifying assumptions are made,

and results proven using theorems. However, applying these theoretical results to real-

world auctions is problematic. For example, Milgrom (2004, p. 22) has identified the

following problems: “Academic mechanism design theory relies on stark and

exaggerated assumptions to reach theoretical conclusions that can sometimes be fragile.

Among these are the assumptions (i) that bidders’ beliefs are well formed and describable

in terms of probabilities, (ii) that any differences in bidder beliefs reflect differences in

their information, (iii) that bidders not only maximize, but also cling confidently to the

belief that all other bidders maximize as well.”

A more realistic model of industry bidders can be achieved by using artificially

intelligent software agents that are designed to optimize adaptively using the information

they receive from the seller. This approach directly addresses the problems identified by

 4

Milgrom. There are fewer and more flexible simplifying assumptions
1
, information to

agents can be restricted to own information or expanded to information about other bids,

and agents are programmed to maximize within the constraints of the abilities and

information they have.

2.2 Lab Experiments

One approach to dealing with the limitations of theory has been to perform lab

experiments, usually using student subjects (Kagel and Levin, 2002). These experiments

have the benefit of bidders that encompass the wide range of human reasoning and

feeling, but the disadvantage is the inexperience of the bidders. The subjects, whether

students or adults from industry, must learn about the bidding environment from scratch,

and this constrains the complexity of the mechanisms that can be studied in the lab. The

subjects simply do not have the time to develop the richness of task-specific knowledge

that is used again and again in a real-world industry auction (Dyer et alia, 1989). Lab

experiments are also expensive and time consuming. Because of these constraints, the

number of existing publications on human auction experiments is small, and the

experiments are limited to relatively simple environments. However, the results provide

useful benchmarks to assess the results of the computational models (see Section 3.3).

2.3 Econometric Models

There are two types of econometric methods that have been applied to auction

data: regression analysis and structural models. For example, regression analysis is

applied by De Silva et alia (2002, 2003) to bidding data from road construction

procurement auctions, by Athey and Levin (2001) to data from U.S. timber auctions, and

1
 The single major assumption in this approach is the method the agents use to learn bidding strategies.

 5

by Iledare et alia (2004) to data of oil lease auctions. The aim of the structural modelling

approach is to recover from the auction data distributions of values and bids, in order to

then analyze such topics as: whether the values are private, affiliated, or common; the

extent of collusion; the impact of entry costs, and so on. Some researchers use

parametric distribution functions (Li and Perrigne, 2003; Haile et alia, 2003; Li et alia,

2000) , but an increasing number of authors are using nonparametric methods (Campo et

alia, 2003; Hendricks et alia, 2003). A thorough overview with several examples is

contained in Paarsch and Hong (2006).

The major advantage of the econometric methods is that they use data from real

auctions. The most serious disadvantage is that data is very difficult to obtain. In

addition, econometric models are restrictive because the econometrician does not know

the value estimates of the bidders, and all bidding strategies are based on these

valuations. In addition, the structural models assume that bidders use a Bayesian Nash

equilibrium bidding strategy, which is a very questionable assumption (Bajari and

Hortacsu, 2005).

2.4 Computational Models

Another approach is to use a computational method that is not agent-based.

Dynamic programming methods have been used to determine optimal bidding strategies

for bidders. The use of these methods began with Friedman (1956) and is reviewed in

Stark and Mayer (1971). Since a large volume of historical data on competitor bids is

required to determine the optimal bidding strategy for a single bidder, the approach is

useful for advising bidders in situations in which large volumes of data exists, such as

online bidding (Tesauro and Bredin, 2002) and electricity markets (Attaviriyanupap et

 6

alia, 2005). The main advantage of the dynamic programming approach is that it

produces an optimized bidding strategy based on real-world data, but the disadvantage is

that such datasets are few and far between.

 In summary, there are advantages and disadvantages to each approach. The

major advantages of agent computational modelling are that it does not require the

simplifying assumptions of mathematical analysis, can model the experienced bidders in

complex environments that are beyond the reach of lab experiments, does not require

assumptions about values or Bayesian Nash equilibrium required by econometric

methods, and does not require large amounts of historical data required by dynamic

programming methods.

3 Design Methods

The object-oriented design methods are described in Section 3.1. Section 3.2

describes some of the major classes that have been developed for the basic agent

functions, auctions, and other applications. In Section 3.3, I present the methods that are

used to verify the validity of the agent models.

3.1 Object-Oriented Design

The multiagent system is designed using object-oriented principles and developed

with Java, which is a platform-independent, object-oriented programming language. Two

of the main advantages of an object-oriented approach are instantiation and extension.

When we develop a Java program, we create a "class" that is an independent program

with a specific purpose. This class can be used ("instantiated") one or more times to

become an "object" that can then be executed. For example, I program a bidder agent

class and then instantiate it many times to produce a large population of bidder agent

 7

objects. Each class program consists of properties and methods. For a bidder agent,

properties include name, current bid price, and value estimate; and methods include

handling a message, moving to a new auction, and adjusting the bid price. All properties

are for private use by the class, but these properties may sometimes be set or retrieved by

other classes. Some methods are for public access but others are restricted for use only

within the object. We can create base classes with common attributes and functions and

extend them using more specific attributes and functions. For example, cars, trucks and

busses have many common attributes and functions that we would place in a Vehicle

class, which is then extended by the classes Car, Truck, and Bus. Then, we can extend

the Car class to classes for SUV, Sedan, and so on. In this application, AbstractAgent

class is extended by AbstractBidderAgent, which is extended by MultiUnitBidderAgent,

which is extended by BankAgent. All of the extensions from the AbstractAgent class are

illustrated in Figure 1.

3.2 Classes

The base multiagent platform is implemented with about 22 Java classes that are

shown in Table 1. I have previously extended these classes in studies of repeated games

with evolving finite automata using about 17 classes, repeated games with probabilistic

finite automata using about 9 classes, and a simple trading economy using about 15

classes. The focus of this paper is auction simulations, which have been implemented

using about 43 classes that are shown in Table 2. Some of the classes are described in the

Appendix.

For auctions, there are auctioneer agents (sellers), bidder agents (buyers), and a

coordinator agent to implement the important coordination mechanisms (Decker and

 8

Lesser, 1995). The basic idea is that each auction format (e.g. single-unit sealed bid,

single-unit English, etc.) has an associated auction class to handle the mechanics of

fetching bids, choosing a winner, etc., and an associated conversation class that handles

the communication between the bidders and the auctioneer. The auctioneer uses the

appropriate auction class and the bidder uses the appropriate conversation class. The

system supports a wide variety of options for current and future simulations. I can select

the auction type (sale or procurement), payment type (first-price, second-price), bid

format (sealed, English), numbers (of items being auctioned, auctions, auctioneers, and

bidders), value (private value, common value, mixed value), and so on. The major design

goal is to provide broad functionality so that different mechanisms can be studied for

both single-unit and multi-unit auctions.

3.3 Verification of Multiagent Models

Multiagent systems, like other computational methods, have the challenge of

verification. In my work, I use four approaches to verification.

First, verification is facilitated in multiagent models by explicitly modelling real

world objects and relationships. For example, in the multiagent model of consumer

choice in a transportation system, households, persons, and families are modeled with

realistic behaviours (Salvini and Miller, 2005) based on observations and data. In my

multiagent model, bidder learning is modeled using adjustment rules that are based on

results from lab experiments (Ockenfels and Selten, 2005; Neugebauer and Selten, 2006).

Second, verification is strengthened by comparing simulation results to data from

lab experiments for the simple cases for which there are such results. This is virtually

impossible for very complex auction mechanisms, and in these cases test data itself is

 9

generated computationally (Leyton-Brown and Shoham, 2006). For games that are less

complex than auctions, there are good opportunities to test learning models against data

from lab experiments (Arifovic et alia, 2006). The single-unit sealed bid and English

auctions that I study are of moderate complexity (Mehlenbacher, 2007a, 2007b), and the

results can be verified against lab experiments in the simple cases of, for example, pure

private values and pure common values. Agreement with this data lends credibility to the

validity of the model in the more complex cases.

Third, the model must have as few parameters as possible, and the model must

produce results that are stable within a range of the parameters. For example, if a

reasonable range of one parameter is [0, 1], the model must be stable within a subset of

this range, e.g. [0.3, 0.8]. If there are two or more parameters, then the model must be

stable for an intersection of subranges. This is admittedly a subjective process, but it

provides a relative measure of confidence in the model if the results are stable over [0.3,

0.8] when the results of another model are stable over [0.5, 0.7].

Fourth, the model must converge for the variables being studied. These

convergence results are important, since it is impossible to interpret auction results for

bid strategies, profit, revenue, and efficiency when there is no convergence. For

example, without convergence the results are different when we stop the simulation in

period t+10 from the results when stopping the simulation in period t. Also, the fact that

convergence occurs in less than, say, 100 periods makes it reasonable to infer that the bid

strategies of human agents could converge in a realistic number of real-world auctions.

 10

4 Learning Models

An agent can improve its profit through learning in at least two ways. The first

type (“belief learning”) is described in Section 4.1. Belief learning involves updating

beliefs about the environment, markets, and competitors, which may provide further

improvements to the agent. Several alternative methods of the second type (“action

learning”) are described in Section 4.2, and Section 4.3 presents an evaluation of the

alternative methods. I have implemented the two types of learning with about 31 Java

classes in three packages (Table 3).

4.1 Belief Learning

Belief learning is modelled by probabilistic networks (also called Bayesian

networks and belief networks), and I developed the Java classes shown in Table 3 using

the concepts and algorithms in Cowell et alia (1999) and Shafer (1996)
2
. Briefly, a

probabilistic network is a directed acyclic graph in which nodes represent the random

variables, an arrow from node X to node Y means that X has a direct influence on Y, and

each dependent node has a conditional probability table. In constructing a probabilistic

network, you choose
3
 the set of relevant variables that describe the beliefs, add the nodes

by adding the "root causes" first, then the variables they influence, and so on until you

reach the leaves which have no direct causal influence on other variables. Finally, you

define the conditional probability table for each node, which provides the probability that

a given node state will occur, given the states in the preceding nodes. In order for the

2
 I developed a compact package of software for agents, but there are several products available that are

oriented towards working with large datasets, e.g., Hugin.

3
 Given a large enough dataset, it is possible to for an agent to learn the structure of its Bayesian network

(Heckerman, 1998).

 11

agent to make inferences from observed facts, the network must be converted into a more

compact form called a junction tree. First, the network is moralized, which means that all

parents of a node are joined (or “married” and thus becoming “moral”!). Second, the

moralized network is triangulated, which means that every polygon larger than a triangle

is filled in to produce a network of connected triangles. Third, the triangles are converted

into nodes of a junction tree, i.e., a junction tree is network of the triangles. During this

process, the conditional probability tables are modified appropriately. Now when the

agent observes some change in the environment, the change is propagated to all the nodes

of the junction tree and the conditional probability tables are updated. To the agent, this

means that its belief system is updated to accommodate the new information.

I performed many computational experiments with agents developing beliefs

based on information they compile using the bid distribution classes listed in Table 2.

These classes provide an agent with distributions of its own results for profit, winning,

etc. and the results of other agents (for this, the I3 agents were provided with the identity

of other bidders) in order to develop beliefs about relative strength. The bidders then

used these beliefs to modify their ongoing bid strategy depending on the specific

opponents in each auction. However, I found that using belief learning in this context did

not significantly change the overall results for profit, revenue, and efficiency compared to

agents who did not use belief learning. This result occurred because the auction-specific

strategies are stationary around the ongoing bidding strategy and thus had no effect on the

averages. Therefore, in the interests of parsimony, I removed belief learning from the

model and have therefore not used it in the current research on auctions. However, I

 12

believe that belief learning has potential application in other types of multiagent models,

especially in macroeconomic models where expectations play a major role.

4.2 Action Learning Alternatives

There is considerable scope for choosing the action learning model for the agents.

Alternatives for action learning include simple reinforcement learning, reinforcement

learning methods, experience-weighted attraction, learning direction theory, genetic

algorithms, and neural networks.

Simple reinforcement learning uses profit to reinforce action weights. Thus, the

actions are usually modelled as discrete states that can be weighted, and only one type of

information is used (profit). This method has been applied with some success to normal

form games (Erev and Roth , 1998) and to auctions by Armantier (2004), Daniel et alia

(1998), Seale et alia (2001), Bower and Bunn (2001), and Nicolaisen et alia (2001). I

experimented with this simple reinforcement method, but I also extended it using two

types of states: the average profit of the bidder and the average profit of the bidder’s

opponents. In the first, the state is 0 if the bidder’s own average profit is negative, and 1

if it is positive. In the second, the state is 0 if the opponents on average are losers

(negative average profits), and 1 if the opponents are on average profitable. The action

weights occur in pairs, one for each state, that are updated as in the simple reinforcement

learning but now depending on the state.

More sophisticated methods of reinforcement learning have not previously been

used in auctions, so I performed simulations for common-value first-price sealed-bid

auctions using dynamic programming, temporal difference, and Q-Sarsa methods (Sutton

and Barto, 1998). The dynamic programming method reinforces actions by both actual

 13

profit and expected future profits (based on past profits) as in Sutton and Barto (1998,

Chapter 4). I use the states as described above for the extended simple reinforcement

learning methods, along with a state transition table containing the probabilities of

transition from one state to another. The weights are then updated by combining the

profit for the current state with the weights for the states indicated by the state transition

table. In the temporal difference method, the agent uses profit to reinforce the current

state-action pair as well as the state-action pair that preceded the current action. This

approach closely follows Sutton and Barto (1998, Chapter 6). Q-Sarsa learning involves

reinforcing the current state-action pair as well as all of the state-action pairs that

preceded this action. This involves the use of eligibility traces as described in Sutton and

Barto (1998, Chapter 7).

Experience-weighted attraction uses profit for winners and foregone profit for

losers to reinforce discrete action states. Camerer has used this method extensively in

games (Camerer, 2003; Camerer et alia, 2002), and it has been applied to auctions by

Rapoport and Amaldoss (2004).

Learning direction theory (Selten, 1998) has been applied as impulse balance

learning to auctions by Selten and Buchta (1998), Selten et alia (2005), Ockenfels and

Selten (2005), and Neugebauer and Selten (2006). The method has also been used to

interpret experimental data by Garvin and Kagel (1994) and Kagel and Levin (1999).

Impulse balance learning uses foregone profit upon losing as an upward impulse on a

continuous bidding strategy and money on the table upon winning as a downward

impulse. The downward impulse is weighted by a balance factor that is the ratio of the

expected value of the upward impulse to the downward impulse. I augmented this

 14

method to include adjustment using actual loss by the winner and foregone loss (the

amount the agent would have lost if it had won) by the losers. The agent adjusts the bid

strategy for a loser to bid higher depending on the level of foregone profit and bid lower

depending upon the level of foregone loss. A winner reduces its bid in proportion to the

money on the table if it made a profit and in proportion to the actual loss if it made a loss.

Genetic algorithms have been applied to auctions by Dawid (1999) and Andreoni

and Miller (1995), and neural networks have been used by Bengio et alia (1999).

Genetic algorithms require discrete states, and genetic algorithms and neural networks

use only profit to guide the optimization.

4.3 Action Learning Evaluation

To guide selection of an appropriate learning method, we need to establish the

level of intelligence required. Since the research is motivated by an interest in real-world

asset-sale auctions such as those for timber sales, drilling licences, and treasury

securities, the agents must simulate experienced real-world auction bidders. A credible

learning method for simulating these sophisticated bidders must satisfy four criteria: (1)

be a realistic representation of how humans can potentially maximize profit in the auction

environment, (2) potentially utilize all available information feedback, (3) handle

continuous bids, and (4) be extendable.

Human reasoning cannot be captured with a single computational paradigm but is

situational and adaptable and involves a combination of heuristics and rules-of-thumb,

together with logic and optimization when required (Dyer et alia, 1989; Hutchinson and

Gigerenzer, 2005; Ohtsubo and Rapoport, 2006). In a study using experienced

construction executives, Dyer et alia (1989, p. 115) concluded that “success in the field

 15

thus derives not from conformity to a narrow notion of rationality, but from acquiring and

utilizing detailed knowledge of a particular market environment.” Genetic algorithms

and neural networks are general-purpose methods that require the researcher to fit the

reasoning to the algorithm and do not accommodate the specific economic reasoning that

goes into developing the various auction strategies. The more straightforward methods

like simple reinforcement, experience-weighted attraction, and impulse balance are

superior in this regard.

Research in auctions (Dyer and Kagel, 1996; Dyer et alia, 1989) demonstrates

that bidders acquire and use detailed knowledge in their specific auction environments.

Thus, a realistic learning method must accommodate different levels of information and

utilize more than just profit. Except for experience weighted attraction and impulse

balance, the methods use only profit and are thus too informationally restrictive.

Experience weighted attraction uses profit and foregone profit, but impulse balance uses

money on the table and foregone profit and can be extended to use profit, loss, and

foregone loss.

A further limitation of most of the learning methods is that they are implemented

using discrete states. If the discretization is too fine, the implementation is too

inefficient; if it is too coarse, the bidding is not realistic enough for meaningful economic

conclusions. The impulse balance model is the exception since it deals efficiently with

continuous
4
 increases or decreases in the bidding strategy.

Finally, the method should be extendable so that other auction mechanisms and

context variables can be accommodated in future studies, but only a method like impulse

4
 Continuous in this context means real numbers that are not restricted to integers and that are represented

by 32 bits.

 16

balance can be practically extended in this way. The basic method uses money on the

table and foregone profit, and I have extended it to use actual profit, actual loss, foregone

loss, and estimates of these impulses when information is restricted.

In summary, the method that comes closest to satisfying the criteria is the

augmented impulse balance method. Thus, this method is developed and expanded in

subsequent chapters.

5 Conclusion

The multiagent system approach with agents using modified impulse balance

learning has the advantages of not requiring the simplifying assumptions of mathematical

theory and of not being constrained in complexity by the limited experience of

experimental subjects. Impulse balance learning provides the best foundation for

learning in auctions since it is a realistic representation of experienced human bidders,

utilizes several types of information feedback, handles continuous bids, and is

extendable. Therefore, I modify and extend the impulse balance method in multiagent

system simulations of sealed-bid auctions (Mehlenbacher, 2007a), English auctions

(Mehlenbacher, 2007b), and treasury auctions (Mehlenbacher, 2007c).

6 Acknowledgements

I am indebted to David Scoones, Linda Welling, Don Ferguson, and Tony Marley

for their valuable suggestions. I am also grateful to the Social Sciences and Humanities

Research Council of Canada for scholarship support during the course of this research.

7 References

Andreoni, J., Miller, J.H., 1995. Auctions with artificial adaptive agents. Games and

Economic Behavior. 19: 39-64.

 17

Arifovic, J., McKelvey, R. Pevnitskaya, S., 2006. An initial implementation of the turing

tournament to learning in repeated two person games. Games and Economic

Behavior, 57: 93-122.

Armantier, O., 2004. Does observation influence learning? Games and Economic

Behavior. 46: 221-239.

Athey, S., Levin, J., 2001. Information and competition in U.S. forest service timber

auctions. Journal of Political Economy, 109, No. 2, 375–417.

Attaviriyanupap, P., Kita, H., Tanaka, E., Hasegawa, J., 2005. New bidding strategy

formulation for day-ahead energy and reserve markets based on evolutionary

programming. Electrical Power and Energy Systems, 27: 157–167.

Bajari, P. and Hortacsu, A., 2005. Are structural estimates of auction models reasonable?

Evidence from experimental data. Journal of Political Economy, 113(4): 703–

741.

Bengio, S., Bengio, Y., Robert, J., Belanger, G., 1999. Stochastic learning of strategic

equilibria for auctions. Neural Computation. 11: 1199-1209.

Bower, J., Bunn, D., 2001. Experimental analysis of the efficiency of uniform-price

versus discriminatory auctions in the england and wales electricity market.

Games and Economic Behavior. 25: 561-592.

Byde, A., 2002. Applying evolutionary game theory to auction mechanism design.

HPL-2002-321, Hewlet-Packard Company.

Camerer, C., 2003, Behavioral game theory: experiments in strategic interaction.

Princeton University Press.

 18

Camerer, C., Ho, T.-H., Chong, J. K., 2002. Sophisticated experience-weighted

attraction learning and strategic teaching in repeated games. Journal of

Economic Theory. 104: 137-188.

Campo, S., Perrigne, I. , Vuong, Q., 2003. Asymmetry in first-price auctions with

affiliated private values. Journal of Applied Econometrics, 18: 179-207.

Cowell, R. G., A. P. Dawid, S.L. Lauritzen, Spiegelhalter, D.J. 1999, Probabilistic

Networks and Expert Systems, Springer.

Daniel, T. E., Seale, D.A., Rapoport, A., 1998. Strategic play and adaptive learning in

the sealed-bid bargaining mechanism. Journal of Mathematical Psychology. 42:

133-166.

Dawid, H., 1999. On the convergence of genetic learning in a double auction market.

Journal of Economic Dynamics and Control. 23: 1545-1567.

De Silva, D. G., Dunne, T., Kosmopoulou, G., 2002. Sequential bidding in auctions of

construction contracts. Economics Letters, 76: 239–244.

De Silva, D. G., Dunne, T., Kosmopoulou, G., 2003. An empirical analysis of entrant

and incumbent bidding in road construction contracts. The Journal of Industrial

Economics, 51(3): 295–316.

Dyer, D., Kagel, J. H., and Levin, D., 1989. A comparison of naïve and experienced

bidders in common value offer auctions: laboratory analysis. The Economic

Journal,. 99, 108-115.

Dyer, D., Kagel, J.H., 1996. Bidding in common value auctions: how the commercial

construction industry corrects for the winner’s curse. Management Science. 42,

1463-1475.

 19

Erev, I., Roth, A.E., 1998. Predicting how people play games: reinforcement learning in

experimental games with unique, mixed strategy equilibria. American Economic

Review. 88: 848-881.

FIPA, 2002. FIPA Communicative Act Library Specification. Foundation for Intelligent

Physical Agents, Document SC00037J.

Friedman, L., 1956. A competitive-bidding strategy. Operations Research, 4(1):104-

112.

Garvin, S., Kagel, J.H., 1994. Learning in common value auctions: some initial

observations. Journal of Economic Behavior and Organization. 25: 351-372.

Haile, P. A., Hong, H., Shum, M., 2003. Nonparametric tests for common values in

first-price sealed-bid auctions. Yale University Working Paper.

Hailu, A., Schilizzi, S., 2004. Are auctions more efficient than fixed price schemes when

bidders learn?” Australian Journal of Management. 29: 147-168.

Heckerman, D., 1998. A tutorial on learning with Bayesian networks. In: Jordon, M.I.

(Ed), Learning in Graphical Models,. Kluwer Academic Publishers, pp. 301-354.

Hendricks, K., Pinkse, J., Porter, R. H., 2003. Empirical implications of equilibrium

bidding in first-price, symmetric, common value auctions. The Review of

Economics Studies, 70, 115-145.

Hendricks, K., Porter, R. H., and Wilson, C. A.,1994. Auctions for oil and gas leases

with an informed bidder and a random reservation price. Econometrica, 62, No.

6, 1415-1444.

 20

Hutchinson, J. C., Gigerenzer, G., 2005. Simple heuristics and rules of thumb: Where

psychologists and behavioral biologists might meet. Behavioral Processes. 69:

97-124.

Iledare, O., Pulsipher, A., Olatubi, W., Mesyanzhinov, D. 2004. an empirical analysis of

the determinants and value of high bonus bids for petroleum leases in the U.S.

outer continental shelf (OCS). Energy Economics, 26: 239-259.

Kagel, J.H., Levin, D., 1999. Common value auctions with insider information.

Econometrica. 67: 1219-1238.

Kagel, J.H., Levin, D., 2002. Common Value Auctions and the Winner’s Curse. Princeton

University Press.

Kim, Y. S., 2007. Maximizing sellers’ welfare in online auction by simulating bidders’

proxy bidding agents. Expert Systems with Applications 32(2): 289-298.

Milgrom, P., 2004. Putting Auction Theory to Work. Cambridge University Press.

Leyton-Brown, K. and Y. Shoham, 2006. A test suite for combinatorial auctions. In:

Cramton, P., Shoham, Y., and Steinberg, R. (Eds), Combinatoria Auctions. The

MIT Press, pp. 451-478.

Li, T., Perrigne, I, 2003. Timber sale auctions with random reserve prices. Review of

Economics and Statistics, 85. 15, No. 1, 189-200.

Li, T., I. Perrigne, Vuong, Q., 2000. Conditional independent private information in OCS

wildcat auctions. Journal of Econometrics, 98, 129-161.

Mehlenbacher, A., 2007a. Multiagent system simulations of sealed-bid auctions with

two-dimensional value signals. University of Victoria, Economics Department

Discussion Paper, DDP0707.

 21

Mehlenbacher, A., 2007b. Multiagent system simulations of signal averaging in English

auctions with two-dimensional value signals. University of Victoria, Economics

Department Discussion Paper, DDP0708.

Mehlenbacher, A., 2007c. Multiagent system simulations of treasury auctions.

University of Victoria, Economics Department Discussion Paper, DDP0709.

Neugebauer, T., Selten, R., 2006. Individual behavior of first-price auctions: the

importance of information feedback in computerized experimental markets.

Games and Economic Behavior , 54, 183-204.

Nicolaisen, J., Petrov, V., Tesfatsion, L., 2001. Market power and efficiency in a

computational electricity market with discriminatory double-auction pricing. ISU

Economic Report No. 52, Iowa State University.

Ockenfels, A., Selten, R., 2005. Impulse balance equilibrium and feedback in first price

auctions. Games and Economic Behavior. 51: 155-170.

Ohtsubo, Y. , Rapoport, A., 2006. Depth of reasoning in strategic form games. Journal

of Socio-Economics. 35: 31-47.

Paarsch, H. J., Hong H., 2006, An Introduction to the Structural Econometrics of Auction

Data. The MIT Press.

Rapoport, A., Amaldoss, W., 2004. Mixed-strategy play in single-stage first-price all-pay

auctions with symmetric bidders. Journal of Economic Behavior and

Organization. 54: 585–607.

Salvini, P.A. and E.J. Miller, 2005. ILUTE: An operational prototype of a

comprehensive microsimulation model of urban systems", Networks and Spatial

Economics, 5: 217-234.

 22

Seale, D. A., Daniel, T.E., Rapoport, A., 2001. The information advantage in two-

person bargaining with incomplete information. Journal of Economic Behavior

and Organization. 44: 177-200.

Selten, R., 1998. Features of experimentally observed bounded rationality. European

Economic Review, 42: 413-436.

Selten, R., Buchta, J., 1998. Experimental sealed bid first price auctions with directly

observed bid functions. In: Budescu, D. V., Erev, I., and Zwick, R. (Eds), Games

and Human Behavior: Essays. Lawrence Erlbaum Associates, pp. 53-78.

Selten, R., Abbink, K., Cox, R., 2005. Learning direction theory and the winner’s curse.

Experimental Economics 8: 5-20.

Shafer, G., 1996, Probabilistic Expert Systems, SIAM.

Sutton, R. S., Barto, A. G., 1998, Reinforcement learning: an introduction, The MIT

Press.

Tesauro, G., Bredin, J. L. Strategic sequential bidding in auctions using dynamic

programming. in: Proceedings of the first international joint conference on

Autonomous agents and multiagent systems, ACM Press.

Tesfatsion, L., 2003. Agent-based computational economics: modeling economies as

complex adaptive systems. Information Sciences 149: 263-269.

Tesfatsion, L. , Judd, K., 2006. Handbook of Computational Economics: Volume 2

Agent-Based Computational Economics. Elsevier.

Weiss, G., 1999. Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence. The MIT Press.

 23

8 Tables

Table 1. Base Packages and Classes

Package Class Extends

1. agent 1. AbstractAgent

2. AgentInfo

3. Registry

2. distributions 4. RandomNumber

5. Beta

6. Normal

7. Uniform

RandomNumber

RandomNumber

RandomNumber

3. grid 8. Cell

9. Coordinates

10. Grid

11. Options

4. gui 12. BasicMenu

13. GuiFrame

14. HelpFrame

15. InfoPanel

JMenuBar

JFrame

JFrame

JPanel

5. statistics 16. Moments

17. Regression

18. TimeSeries

6. support.filesupport 19. Tracing

7. support.guisupport 20. Console

21. MenuCreator

22. RadioButtonPanel

JPanel

 24

Table 2. Auction Packages and Classes

Package Class Extends

1. auction.agent 1. AbstractAuctioneerAgent

2. AbstractBidderAgent

3. AbstractCoordinatorAgent

4. BankAgent

5. BidDistributions

6. CentralBankAgent

7. MultiUnitAuctionerAgent

8. MultiUnitBidderAgent

9. MultiUnitBidDistributions

10. SingleUnitAuctioneerAgent

11. SingleUnitBidderAgent

12. SingleUnitBidDistributions

13. SingleUnitCoordinatorAgent

14. TreasuryCoordinatorAgent

AbstractAgent

AbstractAgent

AbstractAgent

MultiUnitBidderAgent

MultiUnitAuctionerAgent

AbstractAuctioneerAgent

AbstractBidderAgent

BidDistributions

AbstractAuctioneerAgent

AbstractBidderAgent

BidDistributions
AbstractCoordinatorAgent

AbstractCoordinatorAgent

2. auction.bidding 15. Auction

16. AuctionResult

17. Bid

18. MultiUnit

19. MultiUnitEnglish

20. MultiUnitSealed

21. SecondaryTreasuryMarket

22. SingleUnit

23. SingleUnitEnglish

24. SingleUnitSealed

Auction

MultiUnit

MultiUnit

Auction

SingleUnit

SingleUnit

3. auction.conversation 25. MultiUnitConversation

26. MultiUnitSealedConversation

27. MultiUnitEnglishConversation

28. SingleUnitConversation

29. SingleUnitSealedConversation

30. SingleUnitEnglishConversation

MultiUnitConversation

MultiUnitConversation

SingleUnitConversation

SingleUnitConversation

4. auction.grid 31. AuctionAgentCell

32. AuctionAgentGrid

33. AuctionAgentOptions

Cell

Grid

Options

5. auction.gui 34. AuctionAgentGuiFrame

35. AuctionAgentOptionDialogSingleUnit

36. AuctionAgentOptionDialogTreasury

37. SliderHandlerSingleUnit

38. SliderHandlerTreasury

GuiFrame

JDialog

JDialog

6. auction.simulation 39. AveragingImpulseOutput

40. BidImpulseOutput

41. EfficiencyOutput

42. ProfitOutput

43. RevenueOutput

 25

Table 3. Learning Packages and Classes

Package Class Extends

1. learning 1. Action

2. SingleUnitLearning

3. Rla

4. RLas

5. EWA

6. DP

7. TD

8. Q

9. IB

10. IBA

11. SingleUnitImpulse

12. MultiUnitAdjustment

13. MultiUnitRules

SingleUnitLearning

SingleUnitLearning

SingleUnitLearning

SingleUnitLearning

SingleUnitLearning

SingleUnitLearning

SingleUnitLearning

SingleUnitLearning

SingleUnitLearning

MultiUnitAdjustment

2. probnet.algorithm 14. CreateJunctionTree

15. FindCliques

16. InitializePotentials

17. Moralize

18. PerfectOrder

19. Triangulate

3. probnet.bayesnetwork 20. ActiveBN

21. BayesNetwork

22. BayesNode

23. ChainComponent

24. JunctionTree

25. JunctionTreeNode

26. Key

27. Network

28. Node

29. PotentialTable

30. Separator

31. Table

Network

Node

Node

Network

Node

Table

Node

 26

9 Figures

Figure 1. Simple Class Diagram for Auction Bidder Classes

 27

10 Appendix

This Appendix describes some of the design concepts used in implementing the

functionality for Agents, Conversations, and Auctions.

 Agent Classes

There is a base AbstractAgent class that provides functions common to all agents.

AbstractCoordinatorAgent, AbstractAuctioneerAgent, and AbstractBidderAgent classes extend

AbstractAgent and then these in turn are extended for single-unit, multi-unit, and treasury

auctions.

A coordinator agent has two major tasks: to create the other agents and coordinate the

auctions. For each auction, the coordinator broadcasts a message to every auctioneer to hold an

auction and directs the agents to move if there is more than one auctioneer. The coordinator can

randomly distribute the bidders equally or unequally to the auctioneers.

An auctioneer agent has three major tasks: execute the auction, notify the bidders, and

print results. An auctioneer creates an auction object of the appropriate type (e.g.,

SingleUnitSealed, MultiUnitSealed, etc.) based on the type of auction that has been set by the

experimenter. The auctioneer then uses the auction object to execute the auction, fetch bids,

pick winners, and send results to the bidders. For the benefit of the experimenter, the auctioneer

agent also prints results for the experimenter using classes in the auction.simulation package.

A bidder agent has three major tasks: learn how to improve bidding, calculate a bid and

send it to the Auctioneer using the Bid class (The Bid class holds attributes for a bid: the bidder,

value signal, action that led to the bid, and the bid amount plus the resulting ranking, profit,

foregone profit, and so on.), and move to a new auctioneer (if the Bidders option is "random").

Each bidder agent has a learnBidFactor method that is called when the auction object requests

 28

the bidder's participation in an auction. The learnBidFactor method in turn calls one of the

learning algorithms (see Section 3) to calculate the bid factor. For the benefit of the

experimenter, the bidder agent also prints results for the experimenter using the classes in the

auction.simulation package.

Conversation Classes

The bidder communicates with the auctioneer using protocols encapsulated in

conversation classes. The message types are consistent with FIPA Agent Communication

Language (FIPA, 2002).

The SingleUnitConversation and MultiUnitCoversation classes tell the bidders to learn

and inform them of auction results. They are extended by the classes for sealed-bid and English

auctions that retrieve the bids from the bidders. The process involves a single message for

sealed-bid auctions, but involves many messages for the English auctions. Starting with a low

price, SingleUnitEnglish iterates through a loop: send to active bidders the price and the latest

dropout price; remove bidders who reject this price level from the auction; increment the price.

Auction Classes

Each auction involves the following four major functions: manage the auction, fetch

bids, pick the winner(s), and calculate payment(s). The processes of auction management,

picking the winner, and calculating the payment are handled by the SingleUnit and MultiUnit

classes. Since the process of fetching bids differs for sealed-bid and English auctions, this

function is handled by extensions of these classes.

