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Abstract 

I have developed a multiagent system platform that provides a valuable complement to the 

alternative auction research methods.  The platform facilitates the development of heterogeneous 

agents and provides an experimental environment that is under the experimenter's complete 

control.  Simulations with alternative learning methods results in impulse balance learning as the 

most promising approach for auctions.   
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1 Introduction 

Multiagent systems have been applied to problems that are dynamic, complex, 

and distributed, and thus have been used to model the machines in manufacturing and 

process control, work orders in production scheduling, jobs and departments in business 

process optimization, planes in air traffic control, treatments and tests in hospital patient 

scheduling, messages in communication networks, and in many more areas (Weiss, 

1999).  In economics, agents have been used to model the behavior of, and interactions 

between, consumers, workers, families, firms, markets, regulatory agencies, and so on 

(see Tesfatsion, 2003 and 2006), and there have been a few applications of agent systems 

to auctions (Kim, 2007; Byde, 2002; and Hailu and Schilizzi, 2004).  Section 2 discusses 

alternatives to multiagent systems in the analysis of auctions and why the multiagent 

system method was chosen for the current research. 

An agent is a software entity that is autonomous, communicating, and adaptive.  

Autonomy means that an agent is driven by its own objectives, possesses resources (e.g., 

information) of its own, is capable of recording information about its environment, and 

can choose how to react to the environment.  An agent is also a communicating software 

entity.   Agents communicate directly with other agents by passing messages.  Because 

each agent is autonomous, an agent must send requests to other agents for things to be 

done.  For example, in this system, agents send messages to coordinate auctions, establish 

values, send bids, move to a new auctioneer, and so on.    The agents are developed using 

object-oriented design.  This means that the system consists of approximately 100 

independent programs that are called “classes.”   Section 3 describes the design principles 

and, together with the Appendix, provides a guide to the classes. 
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An agent endeavours to improve its state (e.g., profit or revenue) in at least two 

ways.  The first type of learning is reinforcement learning that uses feedback on results of 

actions to improve the results.  The second type of learning is belief learning that 

involves updating beliefs about the environment, markets, and competitors, which may 

provide further improvements to the agent.   Section 4 presents the results of an 

evaluation of different methods of agent learning.   

2 Alternatives to Multiagent Systems 

The major alternatives to using a multiagent system are mathematical theory, lab 

experiments, econometric models, and computational models.   

2.1 Mathematical Theory 

In a mathematical approach, mathematical machinery is developed (e.g., 

optimization, order statistics, supermodularity, etc.), simplifying assumptions are made, 

and results proven using theorems.  However, applying these theoretical results to real-

world auctions is problematic.  For example, Milgrom (2004, p. 22) has identified the 

following problems:  “Academic mechanism design theory relies on stark and 

exaggerated assumptions to reach theoretical conclusions that can sometimes be fragile.  

Among these are the assumptions (i) that bidders’ beliefs are well formed and describable 

in terms of probabilities, (ii) that any differences in bidder beliefs reflect differences in 

their information, (iii) that bidders not only maximize, but also cling confidently to the 

belief that all other bidders maximize as well.”   

A more realistic model of industry bidders can be achieved by using artificially 

intelligent software agents that are designed to optimize adaptively using the information 

they receive from the seller.  This approach directly addresses the problems identified by 
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Milgrom.  There are fewer and more flexible simplifying assumptions
1
, information to 

agents can be restricted to own information or expanded to information about other bids, 

and agents are programmed to maximize within the constraints of the abilities and 

information they have.  

2.2 Lab Experiments 

One approach to dealing with the limitations of theory has been to perform lab 

experiments, usually using student subjects (Kagel and Levin, 2002).  These experiments 

have the benefit of bidders that encompass the wide range of human reasoning and 

feeling, but the disadvantage is the inexperience of the bidders.  The subjects, whether 

students or adults from industry, must learn about the bidding environment from scratch, 

and this constrains the complexity of the mechanisms that can be studied in the lab.  The 

subjects simply do not have the time to develop the richness of task-specific knowledge 

that is used again and again in a real-world industry auction (Dyer et alia, 1989).  Lab 

experiments are also expensive and time consuming.  Because of these constraints, the 

number of existing publications on human auction experiments is small, and the 

experiments are limited to relatively simple environments.  However, the results provide 

useful benchmarks to assess the results of the computational models (see Section 3.3).  

2.3 Econometric Models 

There are two types of econometric methods that have been applied to auction 

data:  regression analysis and structural models.  For example, regression analysis is 

applied by  De Silva et alia (2002, 2003) to bidding data from road construction 

procurement auctions, by Athey and Levin (2001) to data from U.S. timber auctions, and 

                                                 

1
 The single major assumption in this approach is the method the agents use to learn bidding strategies.     



  5 

 

by Iledare et alia (2004) to data of oil lease auctions.  The aim of the structural modelling 

approach is to recover from the auction data distributions of values and bids, in order to 

then analyze such topics as:  whether the values are private, affiliated, or common; the 

extent of collusion; the impact of entry costs, and so on.  Some researchers use 

parametric distribution functions (Li and Perrigne, 2003; Haile et alia, 2003; Li et alia, 

2000) , but an increasing number of authors are using nonparametric methods (Campo et 

alia, 2003; Hendricks et alia, 2003).  A thorough overview with several examples is 

contained in Paarsch and Hong (2006). 

The major advantage of the econometric methods is that they use data from real 

auctions.  The most serious disadvantage is that data is very difficult to obtain.  In 

addition, econometric models are restrictive because the econometrician does not know 

the value estimates of the bidders, and all bidding strategies are based on these 

valuations.  In addition, the structural models assume that bidders use a Bayesian Nash 

equilibrium bidding strategy, which is a very questionable assumption (Bajari and 

Hortacsu, 2005).   

2.4 Computational Models 

Another approach is to use a computational method that is not agent-based.  

Dynamic programming methods have been used to determine optimal bidding strategies 

for bidders.  The use of these methods began with Friedman (1956) and is reviewed in 

Stark and Mayer (1971).  Since a large volume of historical data on competitor bids is 

required to determine the optimal bidding strategy for a single bidder, the approach is 

useful for advising bidders in situations in which large volumes of data exists, such as 

online bidding (Tesauro and Bredin, 2002) and electricity markets (Attaviriyanupap et 
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alia, 2005).  The main advantage of the dynamic programming approach is that it 

produces an optimized bidding strategy based on real-world data, but the disadvantage is 

that such datasets are few and far between. 

 In summary, there are advantages and disadvantages to each approach.  The 

major advantages of agent computational modelling are that it does not require the 

simplifying assumptions of mathematical analysis, can model the experienced bidders in 

complex environments that are beyond the reach of lab experiments, does not require 

assumptions about values or Bayesian Nash equilibrium required by econometric 

methods, and does not require large amounts of historical data required by dynamic 

programming methods.   

3 Design Methods 

The object-oriented design methods are described in Section 3.1.  Section 3.2 

describes some of the major classes that have been developed for the basic agent 

functions, auctions, and other applications.  In Section 3.3, I present the methods that are 

used to verify the validity of the agent models.   

3.1 Object-Oriented Design 

The multiagent system is designed using object-oriented principles and developed 

with Java, which is a platform-independent, object-oriented programming language.  Two 

of the main advantages of an object-oriented approach are instantiation and extension.  

When we develop a Java program, we create a "class" that is an independent program 

with a specific purpose.  This class can be used ("instantiated") one or more times to 

become an "object" that can then be executed.  For example, I program a bidder agent 

class and then instantiate it many times to produce a large population of bidder agent 
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objects.   Each class program consists of properties and methods.   For a bidder agent, 

properties include name, current bid price, and value estimate;  and methods include 

handling a message, moving to a new auction, and adjusting the bid price.   All properties 

are for private use by the class, but these properties may sometimes be set or retrieved by 

other classes.   Some methods are for public access but others are restricted for use only 

within the object.  We can create base classes with common attributes and functions and 

extend them using more specific attributes and functions.  For example, cars, trucks and 

busses have many common attributes and functions that we would place in a Vehicle 

class, which is then extended by the classes Car, Truck, and Bus.  Then, we can extend 

the Car class to classes for SUV, Sedan, and so on.  In this application, AbstractAgent 

class is extended by AbstractBidderAgent, which is extended by MultiUnitBidderAgent, 

which is extended by BankAgent.  All of the extensions from the AbstractAgent class are 

illustrated in Figure 1. 

3.2 Classes 

The base multiagent platform is implemented with about 22 Java classes that are 

shown in Table 1.  I have previously extended these classes in studies of repeated games 

with evolving finite automata using about 17 classes, repeated games with probabilistic 

finite automata using about 9 classes, and a simple trading economy using about 15 

classes.  The focus of this paper is auction simulations, which have been implemented 

using about 43 classes that are shown in Table 2.  Some of the classes are described in the 

Appendix. 

For auctions, there are auctioneer agents (sellers), bidder agents (buyers), and a 

coordinator agent to implement the important coordination mechanisms (Decker and 
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Lesser, 1995).  The basic idea is that each auction format (e.g. single-unit sealed bid, 

single-unit English, etc.) has an associated auction class to handle the mechanics of 

fetching bids, choosing a winner, etc., and an associated conversation class that handles 

the communication between the bidders and the auctioneer.  The auctioneer uses the 

appropriate auction class and the bidder uses the appropriate conversation class.  The 

system supports a wide variety of options for current and future simulations.  I can select 

the auction type (sale or procurement), payment type (first-price, second-price), bid 

format (sealed, English), numbers (of items being auctioned, auctions, auctioneers, and 

bidders), value (private value, common value, mixed value), and so on.  The major design 

goal is to provide broad functionality so that different mechanisms can be studied for 

both single-unit and multi-unit auctions. 

3.3 Verification of Multiagent  Models 

Multiagent systems, like other computational methods, have the challenge of  

verification.  In my work, I use four approaches to verification.  

First, verification is facilitated in multiagent models by explicitly modelling real 

world objects and relationships.  For example, in the multiagent model of consumer 

choice in a transportation system, households, persons, and families are modeled with 

realistic behaviours (Salvini and Miller, 2005) based on observations and data.  In my 

multiagent model, bidder learning is modeled using adjustment rules that are based on 

results from lab experiments (Ockenfels and Selten, 2005; Neugebauer and Selten, 2006).   

Second, verification is strengthened by comparing simulation results to data from 

lab experiments for the simple cases for which there are such results.  This is virtually 

impossible for very complex auction mechanisms, and in these cases test data itself is 
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generated computationally (Leyton-Brown and Shoham, 2006).  For games that are less 

complex than auctions, there are good opportunities to test learning models against data 

from lab experiments (Arifovic et alia, 2006).  The single-unit sealed bid and English 

auctions that  I study are of moderate complexity (Mehlenbacher, 2007a, 2007b), and the 

results can be verified against lab experiments in the simple cases of, for example, pure 

private values and pure common values.  Agreement with this data lends credibility to the 

validity of the model in the more complex cases.    

Third, the model must have as few parameters as possible, and the model must 

produce results that are stable within a range of the parameters.  For example, if a 

reasonable range of one parameter is [0, 1], the model must be stable within a subset of 

this range, e.g. [0.3, 0.8].  If there are two or more parameters, then the model must be 

stable for an intersection of subranges.  This is admittedly a subjective process, but it 

provides a relative measure of confidence in the model if the results are stable over [0.3, 

0.8] when the results of another model are stable over [0.5, 0.7]. 

Fourth, the model must converge for the variables being studied.  These 

convergence results are important, since it is impossible to interpret auction results for 

bid strategies, profit, revenue, and efficiency when there is no convergence.  For 

example, without convergence the results are different when we stop the simulation in 

period t+10 from the results when stopping the simulation in period t.  Also, the fact that 

convergence occurs in less than, say, 100 periods makes it reasonable to infer that the bid 

strategies of human agents could converge in a realistic number of real-world auctions.  
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4 Learning Models 

An agent can improve its profit through learning in at least two ways.  The first 

type (“belief learning”) is described in Section 4.1.  Belief learning involves updating 

beliefs about the environment, markets, and competitors, which may provide further 

improvements to the agent.  Several alternative methods of  the second type (“action 

learning”) are described in Section 4.2, and Section 4.3 presents an evaluation of the 

alternative methods.   I have implemented the two types of learning with about 31 Java 

classes in three packages (Table 3). 

4.1 Belief Learning 

Belief learning is modelled by probabilistic networks (also called Bayesian 

networks and belief networks), and I developed the Java classes shown in Table 3 using 

the concepts and algorithms in Cowell et alia (1999) and Shafer (1996)
2
.  Briefly, a 

probabilistic network is a directed acyclic graph in which nodes represent the random 

variables, an arrow from node X to node Y means that X has a direct influence on Y, and 

each dependent node has a conditional probability table.  In constructing a probabilistic 

network, you choose
3
 the set of relevant variables that describe the beliefs, add  the nodes 

by adding the "root causes" first, then the variables they influence, and so on until you 

reach the leaves which have no direct causal influence on other variables.  Finally, you 

define the conditional probability table for each node, which provides the probability that 

a given node state will occur, given the states in the preceding nodes.  In order for the 

                                                 

2
 I developed a compact package of software for agents, but there are several products available that are 

oriented towards working with large datasets, e.g., Hugin. 

3
 Given a large enough dataset, it is possible to for an agent to learn the structure of its Bayesian network 

(Heckerman, 1998). 
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agent to make inferences from observed facts, the network must be converted into a more 

compact form called a junction tree.  First, the network is moralized, which means that all 

parents of a node are joined (or “married” and thus becoming “moral”!).  Second, the 

moralized network is triangulated, which means that every polygon larger than a triangle 

is filled in to produce a network of connected triangles.  Third, the triangles are converted 

into nodes of a junction tree, i.e., a junction tree is network of the triangles.  During this 

process, the conditional probability tables are modified appropriately.  Now when the 

agent observes some change in the environment, the change is propagated to all the nodes 

of the junction tree and the conditional probability tables are updated.  To the agent, this 

means that its belief system is updated to accommodate the new information. 

I performed many computational experiments with agents developing beliefs 

based on information they compile using the bid distribution classes listed in Table 2.  

These classes provide an agent with distributions of its own results for profit, winning, 

etc. and the results of other agents (for this, the I3 agents were provided with the identity 

of other bidders) in order to develop beliefs about relative strength.  The bidders then 

used these beliefs to modify their ongoing bid strategy depending on the specific 

opponents in each auction.  However, I found that using belief learning in this context did 

not significantly change the overall results for profit, revenue, and efficiency compared to 

agents who did not use belief learning.  This result occurred because the auction-specific 

strategies are stationary around the ongoing bidding strategy and thus had no effect on the 

averages.  Therefore, in the interests of parsimony, I removed  belief learning from the 

model and have therefore not used it in the current research on auctions.  However, I 
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believe that belief learning has potential application in other types of multiagent models, 

especially in macroeconomic models where expectations play a major role. 

4.2 Action Learning Alternatives 

There is considerable scope for choosing the action learning model for the agents.  

Alternatives for action learning include simple reinforcement learning, reinforcement 

learning methods,  experience-weighted attraction,  learning direction theory, genetic 

algorithms, and neural networks.   

Simple reinforcement learning uses profit to reinforce action weights.  Thus, the 

actions are usually modelled as discrete states that can be weighted, and only one type of 

information is used (profit).  This method has been applied with some success to normal 

form games (Erev and Roth , 1998) and to auctions by Armantier (2004), Daniel et alia 

(1998), Seale et alia (2001), Bower and Bunn (2001), and Nicolaisen et alia (2001).   I 

experimented with this simple reinforcement method, but I also extended it using two 

types of states:  the average profit of the bidder and the average profit of the bidder’s 

opponents.   In the first, the state is 0 if the bidder’s own average profit is negative, and 1 

if it is positive.   In the second, the state is 0 if the opponents on average are losers 

(negative average profits), and 1 if the opponents are on average profitable.  The action 

weights occur in pairs, one for each state, that are updated as in the simple reinforcement 

learning but now depending on the state. 

More sophisticated methods of reinforcement learning have not previously been 

used in auctions, so I performed simulations for common-value first-price sealed-bid 

auctions using dynamic programming, temporal difference, and Q-Sarsa methods (Sutton 

and Barto, 1998).  The dynamic programming method reinforces actions by both actual 
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profit and expected future profits (based on past profits) as in Sutton and Barto (1998, 

Chapter 4).   I use the states as described above for the extended simple reinforcement 

learning methods, along with a state transition table containing the probabilities of 

transition from one state to another.  The weights are then updated by combining the 

profit for the current state with the weights for the states indicated by the state transition 

table.  In the temporal difference method, the agent uses profit to reinforce the current 

state-action pair as well as the state-action pair that preceded the current action.  This 

approach closely follows Sutton and Barto (1998, Chapter 6).  Q-Sarsa learning involves 

reinforcing the current state-action pair as well as all of the state-action pairs that 

preceded this action.  This involves the use of eligibility traces as described in Sutton and 

Barto (1998, Chapter 7).   

Experience-weighted attraction uses profit for winners and foregone profit for 

losers to reinforce discrete action states.  Camerer has used this method extensively in 

games  (Camerer, 2003;  Camerer et alia, 2002), and it has been applied to auctions by 

Rapoport and Amaldoss (2004).   

Learning direction theory (Selten, 1998) has been applied as impulse balance 

learning to auctions by Selten and Buchta (1998), Selten et alia (2005), Ockenfels and 

Selten (2005), and Neugebauer and Selten (2006).  The method has also been used to 

interpret experimental data by Garvin and Kagel (1994) and Kagel and Levin (1999).  

Impulse balance learning uses foregone profit upon losing as an upward impulse on a 

continuous bidding strategy and money on the table upon winning as a downward 

impulse.  The downward impulse is weighted by a balance factor that is the ratio of the 

expected value of the upward impulse to the downward impulse.  I augmented this 
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method to include adjustment using actual loss by the winner and foregone loss (the 

amount the agent would have lost if it had won) by the losers.  The agent adjusts the bid 

strategy for a loser to bid higher depending on the level of foregone profit and bid lower 

depending upon the level of foregone loss.  A winner reduces its bid in proportion to the 

money on the table if it made a profit and in proportion to the actual loss if it made a loss. 

Genetic algorithms have been applied to auctions by Dawid (1999) and Andreoni 

and Miller (1995), and neural networks have been used by Bengio et alia (1999).  

Genetic algorithms require discrete states, and genetic algorithms and neural networks 

use only profit to guide the optimization.   

4.3 Action Learning Evaluation 

To guide selection of an appropriate learning method, we need to establish the 

level of intelligence required.  Since the research is motivated by an interest in real-world 

asset-sale auctions such as those for timber sales, drilling licences, and treasury 

securities, the agents must simulate experienced real-world auction bidders.  A credible 

learning method for simulating these sophisticated bidders must satisfy four criteria:  (1) 

be a realistic representation of how humans can potentially maximize profit in the auction 

environment, (2) potentially utilize all available information feedback, (3) handle 

continuous bids, and (4) be extendable.  

Human reasoning cannot be captured with a single computational paradigm but is 

situational and adaptable and involves a combination of heuristics and rules-of-thumb, 

together with logic and optimization when required (Dyer et alia, 1989; Hutchinson and 

Gigerenzer, 2005; Ohtsubo and Rapoport, 2006).  In a study using experienced 

construction executives, Dyer et alia (1989, p. 115) concluded that “success in the field 
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thus derives not from conformity to a narrow notion of rationality, but from acquiring and 

utilizing detailed knowledge of a particular market environment.”  Genetic algorithms 

and neural networks are general-purpose methods that require the researcher to fit the 

reasoning to the algorithm and do not accommodate the specific economic reasoning that 

goes into developing the various auction strategies.  The more straightforward methods 

like simple reinforcement, experience-weighted attraction, and impulse balance are 

superior in this regard.   

Research in auctions (Dyer and Kagel, 1996; Dyer et alia, 1989) demonstrates 

that bidders acquire and use detailed knowledge in their specific auction environments.  

Thus, a realistic learning method must accommodate different levels of information and 

utilize more than just profit.  Except for experience weighted attraction and impulse 

balance, the methods use only profit and are thus too informationally restrictive.  

Experience weighted attraction uses profit and foregone profit, but impulse balance uses 

money on the table and foregone profit and can be extended to use profit, loss, and 

foregone loss. 

A further limitation of most of the learning methods is that they are implemented 

using discrete states.  If the discretization is too fine, the implementation is too 

inefficient;  if it is too coarse, the bidding is not realistic enough for meaningful economic 

conclusions.  The impulse balance model is the exception since it deals efficiently with 

continuous
4
 increases or decreases in the bidding strategy.   

Finally, the method should be extendable so that other auction mechanisms and 

context variables can be accommodated in future studies, but only a method like impulse 

                                                 

4
 Continuous in this context means real numbers that are not restricted to integers and that are represented 

by 32 bits. 
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balance can be practically extended in this way.  The basic method uses money on the 

table and foregone profit, and I have extended it to use actual profit, actual loss, foregone 

loss, and estimates of these impulses when information is restricted. 

In summary, the method that comes closest to satisfying the criteria is the 

augmented impulse balance method.  Thus, this method is developed and expanded in 

subsequent chapters. 

5 Conclusion 

The multiagent system approach with agents using modified impulse balance 

learning has the advantages of not requiring the simplifying assumptions of mathematical 

theory and of not being constrained in complexity by the limited experience of 

experimental subjects.  Impulse balance learning provides the best foundation for 

learning in auctions since it is a realistic representation of experienced human bidders, 

utilizes several types of information feedback, handles continuous bids, and is 

extendable.   Therefore, I modify and extend the impulse balance method in multiagent 

system simulations of sealed-bid auctions (Mehlenbacher, 2007a), English auctions 

(Mehlenbacher, 2007b), and treasury auctions (Mehlenbacher, 2007c).   
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8 Tables 

 

Table 1.  Base Packages and Classes 

Package Class Extends 

1. agent 1. AbstractAgent 

2. AgentInfo 

3. Registry 

 

2. distributions 4. RandomNumber 

5. Beta 

6. Normal 

7. Uniform 

 

RandomNumber 

RandomNumber 

RandomNumber 

3. grid 8. Cell 

9. Coordinates 

10. Grid 

11. Options 

 

4. gui 12. BasicMenu 

13. GuiFrame 

14. HelpFrame 

15. InfoPanel 

JMenuBar 

JFrame  

JFrame  

JPanel 

5. statistics 16. Moments 

17. Regression 

18. TimeSeries 

 

6. support.filesupport 19. Tracing  

7. support.guisupport 20. Console 

21. MenuCreator 

22. RadioButtonPanel 

 

 

JPanel 
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Table 2.  Auction Packages and Classes 

Package Class Extends 

1. auction.agent 1. AbstractAuctioneerAgent 

2. AbstractBidderAgent  

3. AbstractCoordinatorAgent 

4. BankAgent 

5. BidDistributions 

6. CentralBankAgent 

7. MultiUnitAuctionerAgent 

8. MultiUnitBidderAgent 

9. MultiUnitBidDistributions 

10. SingleUnitAuctioneerAgent 

11. SingleUnitBidderAgent 

12. SingleUnitBidDistributions 

13. SingleUnitCoordinatorAgent 

14. TreasuryCoordinatorAgent 

AbstractAgent 

AbstractAgent 

AbstractAgent 

MultiUnitBidderAgent 

 

MultiUnitAuctionerAgent 

AbstractAuctioneerAgent  

AbstractBidderAgent  

BidDistributions 

AbstractAuctioneerAgent 

AbstractBidderAgent  

BidDistributions 
AbstractCoordinatorAgent 

AbstractCoordinatorAgent 

2. auction.bidding 15. Auction 

16. AuctionResult 

17. Bid 

18. MultiUnit 

19. MultiUnitEnglish 

20. MultiUnitSealed  

21. SecondaryTreasuryMarket 

22. SingleUnit 

23. SingleUnitEnglish  

24. SingleUnitSealed 

 

 

 

Auction  

MultiUnit 

MultiUnit  

 

Auction 

SingleUnit 

SingleUnit 

3. auction.conversation 25. MultiUnitConversation  

26. MultiUnitSealedConversation 

27. MultiUnitEnglishConversation 

28. SingleUnitConversation 

29. SingleUnitSealedConversation 

30. SingleUnitEnglishConversation 

 

MultiUnitConversation  

MultiUnitConversation 

 

SingleUnitConversation 

SingleUnitConversation 

4. auction.grid 31. AuctionAgentCell  

32. AuctionAgentGrid  

33. AuctionAgentOptions  

Cell 

Grid 

Options 

5. auction.gui 34. AuctionAgentGuiFrame  

35. AuctionAgentOptionDialogSingleUnit  

36. AuctionAgentOptionDialogTreasury 

37. SliderHandlerSingleUnit 

38. SliderHandlerTreasury 

GuiFrame 

JDialog 

JDialog 

6. auction.simulation 39. AveragingImpulseOutput 

40. BidImpulseOutput  

41. EfficiencyOutput 

42. ProfitOutput  

43. RevenueOutput 
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Table 3.  Learning Packages and Classes 

Package Class Extends 

1. learning 1. Action 

2. SingleUnitLearning 

3. Rla 

4. RLas 

5. EWA 

6. DP 

7. TD 

8. Q 

9. IB 

10. IBA 

11. SingleUnitImpulse 

12. MultiUnitAdjustment 

13. MultiUnitRules 

 

 

SingleUnitLearning 

SingleUnitLearning 

SingleUnitLearning 

SingleUnitLearning 

SingleUnitLearning 

SingleUnitLearning 

SingleUnitLearning 

SingleUnitLearning 

SingleUnitLearning 

 

MultiUnitAdjustment 

2. probnet.algorithm 14. CreateJunctionTree 

15. FindCliques 

16. InitializePotentials 

17. Moralize 

18. PerfectOrder 

19. Triangulate 

 

3. probnet.bayesnetwork 20. ActiveBN 

21. BayesNetwork 

22. BayesNode 

23. ChainComponent 

24. JunctionTree 

25. JunctionTreeNode 

26. Key 

27. Network 

28. Node 

29. PotentialTable 

30. Separator 

31. Table 

 

Network 

Node 

Node 

Network 

Node 

 

 

 

Table 

Node 
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9 Figures 

 

Figure 1.  Simple Class Diagram for Auction Bidder Classes 
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10 Appendix  

This Appendix describes some of the design concepts used in implementing the 

functionality for Agents, Conversations, and Auctions. 

 Agent Classes 

There is a base AbstractAgent class that provides functions common to all agents.   

AbstractCoordinatorAgent, AbstractAuctioneerAgent, and AbstractBidderAgent classes extend 

AbstractAgent and then these in turn are extended for single-unit, multi-unit, and treasury 

auctions.     

A coordinator agent has two major tasks:  to create the other agents and coordinate the 

auctions.  For each auction, the coordinator broadcasts a message to every auctioneer to hold an 

auction and directs the agents to move if there is more than one auctioneer.  The coordinator can 

randomly distribute the bidders equally or unequally to the auctioneers.   

An auctioneer agent has three major tasks:  execute the auction, notify the bidders, and 

print results.  An auctioneer creates an auction object of the appropriate type (e.g., 

SingleUnitSealed, MultiUnitSealed, etc.) based on the type of auction that has been set by the 

experimenter.   The auctioneer then uses the auction object to execute the auction, fetch bids, 

pick winners, and send results to the bidders.  For the benefit of the experimenter, the auctioneer 

agent also prints results for the experimenter using classes in the auction.simulation package. 

A bidder agent has three major tasks:  learn how to improve bidding, calculate a bid and 

send it to the Auctioneer using the Bid class (The Bid class holds attributes for a bid:  the bidder, 

value signal, action that led to the bid, and the bid amount plus the resulting ranking, profit, 

foregone profit, and so on.), and move to a new auctioneer (if the Bidders option is "random").   

Each bidder agent has a learnBidFactor method that is called when the auction object requests 
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the bidder's participation in an auction.  The learnBidFactor method in turn calls one of the 

learning algorithms (see Section 3) to calculate the bid factor.  For the benefit of the 

experimenter, the bidder agent also prints results for the experimenter using the classes in the 

auction.simulation package. 

Conversation Classes 

The bidder communicates with the auctioneer using protocols encapsulated in 

conversation classes.  The message types are consistent with FIPA Agent Communication 

Language (FIPA, 2002).    

The SingleUnitConversation and MultiUnitCoversation classes tell the bidders to learn 

and inform them of auction results.  They are extended by the classes for sealed-bid and English 

auctions that retrieve the bids from the bidders.  The process involves a single message for 

sealed-bid auctions, but involves many messages for the English auctions.  Starting with a low 

price, SingleUnitEnglish iterates through a loop:  send to active bidders the price and the latest 

dropout price;  remove bidders who reject this price level from the auction;  increment the price. 

Auction Classes 

Each auction involves the following four major functions:  manage the auction, fetch 

bids, pick the winner(s), and calculate payment(s).  The processes of auction management, 

picking the winner, and calculating the payment are handled by the SingleUnit and MultiUnit 

classes.  Since the process of fetching bids differs for sealed-bid and English auctions, this 

function is handled by extensions of these classes. 


