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Abstract 

I propose a modified implementation of the popular Hamilton filter, to make the cyclical component 

extracted from an aggregate variable consistent with the aggregation of the cyclical components extracted 

from its underlying variables. This procedure is helpful in many circumstances, for instance when dealing 

with a variable that comes from a definition or when the empirical relationship is based on an equilibrium 

condition of a growth model. The procedure consists of the following steps: 1) build the aggregate variable, 

2) run the Hamilton filter regression on the aggregate variable and store the related OLS estimates, 3) use 

these estimated parameters to predict the trends of all the underlying variables, 4) rescale the constant terms 

to obtain mean-zero cyclical components that are aggregation-consistent. I consider two applications, 

exploiting U.S. and Canadian data. The former is based on the GDP expenditure components, while the 

latter on the GDP of its Provinces and Territories. I find sizable differences between the cyclical 

components of aggregate GDP computed with and without the adjustment, making it a valuable procedure 

for both assessing the output gap and validating empirically DSGE models. 
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1 Introduction

Decomposing a time series into trend and cyclical components is a ubiquitous task in applied Macroeconomics.

Since the '80s, the HP �lter of Hodrick and Prescott (1997) has been the most commonly used �ltering tool.1

Hamilton (2018) proposed an alternative regression �lter (H, hereafter) that has quickly gained popularity.2

The H �lter derives the cycle (zxt ) as the deviation of the actual value of a series (xt) from its estimated trend

(zxt = xt − gxt ), which is obtained by regressing the h-period-ahead value of the series (xt+h) on a constant

and p lags of the series ({xt−s}p−1
s=0). For quarterly data, Hamilton suggests setting h = 8 and p = 4, and the

regression model is

xt+8 = βx
0 + βx

1xt + βx
2xt−1 + βx

3xt−2 + βx
4xt−3 + εxt+8

where
{
βx
j

}p

j=0
are parameters to be estimated, and εxt is the error term.

Schüler (2018) argues that the H and HP �lters share some of the same pitfalls. Jönsson (2020) and Biolsi

(2023) �nd that, in terms of real-time revision properties, the H �lter outperforms both the HP and Beveridge-

Nelson �lters.3 Quast and Wolters (2022) modify the H �lter, to obtain more reliable real-time output gap

estimates.

In this note, I focus on a less studied characteristic of these �lters, which I will refer to as their aggregation

property. Namely, whenever dealing with a variable consisting of several components (say, GDP), the related

cycle is robust irrespective of whether it is obtained by applying the �lter to the aggregate variable, or by

aggregating the individual cycles obtained from �ltering the underlying variables. The HP �lter satis�es this

property, while the H �lter does not. This is problematic when assessing the output gap and validating

empirically DSGE models, because there are multiple estimates for the same cyclical component. The intuition

for the HP �lter's aggregation result can be drawn from its closed-form solution of the trend component (gx,HP
t )

when the sample is in�nite, which is gx,HP
t =

∑∞
j=−∞ w∞

j xt+j , where w∞
j = 0.8941j(0.056168 cos(0.11168j) +

0.055833 sin(0.11168j)).4 These formulas show that the weights w∞
j assigned to each observation do not depend

on the observations themselves. For a given smoothing parameter, di�erent series will assign the same weight

to each time period. Therefore, aggregating the HP cycles of the various components leads to the same HP

cycle derived from applying the �lter to the aggregate variable. Without loss of generality, consider the case of

GDP (yt), using its most basic de�nition as the sum of consumption and investment (yt = ct + it). It follows

that the aggregation property holds because

gy,HP
t =

∞∑
j=−∞

w∞
j yt+j =

∞∑
j=−∞

w∞
j ct+j +

∞∑
j=−∞

w∞
j it+j = gc,HP

t + gi,HP
t

Di�erently, the weights used by the H �lter are estimated OLS coe�cients (
{
β̂x
j

}p

j=0
), which depend on the

1Harvey and Jaeger (1993), Cogley and Nason (1995), and Pedersen (2001) analyse the statistical issues of theHP �lter.
2Contributions in virtually every �eld of economics and �nance now use theH �lter, which has already garnered 1743 citations.

Recent in�uential papers using it are Caramp and Singh (2023), Bianchi, Ludvigson, and Ma (2022), and Nguyen (2021).
3The Beveridge-Nelson �lter is presented in Kamber, Morley, and Wong (2018).
4For more details, see Appendix A in Hodrick (2020).
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series (xt) that is �ltered. To better understand the essence of the problem, focus on the case with h = 1 and

p = 1, such that

β̂x
1 =

∑T
t=2(xt−1 − x̄)(xt − x̄)∑T

t=2(xt−1 − x̄)2

where x̄ denotes the sample average and T is the sample size.

Since gy,Ht = β̂y
0 + β̂y

1yt−1 and gc,Ht + gi,Ht = β̂c
0 + β̂c

1ct−1 + β̂i
0 + β̂i

1it−1, the aggregation property gy,Ht =

gc,Ht + gi,Ht holds when β̂y
0 = β̂c

0 + β̂i
0 and β̂y

1 = β̂c
1 = β̂i

1.

In the next section, I propose an alternative implementation of the Hamilton �lter to make it aggregation-

consistent.5 An advantage of my procedure is that, unlike Hamilton's standard formulation, it leads to a

unique assessment of the output gap, irrespective of the income de�nition. In particular, one could consider

the expenditure, product or income approaches to measuring GDP (or the GDP in di�erent sectors or regions),

which would aggregate di�erent components, leading to di�erent aggregate cycles. Another key advantage is

to provide a coherent setup to estimate DSGE models with moment-based approaches. Whenever in the set of

moments used in estimation there are the persistence and/or volatility of GDP and its components, the moments

�ltered with Hamilton's standard procedure will not be unique, making the estimation somewhat arbitrary. To

bypass these inconsistencies, I use the slope parameters estimated on the aggregate variable to predict the trends

of all its components.

2 Adjusting the Hamilton Filter

The aggregation-consistent procedure of the adjusted Hamilton �lter (H̃) consists of the following steps.

First, the aggregate variable (y) is obtained from its components.6

Second, the Hamilton �lter regression is run on the aggregate variable, and the related OLS estimates

(
{
β̂y
j

}p

j=0
) are stored.

Third, the estimated parameters are used to predict the trends of all the variables underlying the aggregate

one, by using the slope parameters already obtained (
{
β̂y
j

}p

j=1
) and by setting the constant terms (

{
β̂c
0, β̂

i
0

}
) to

an educated guess (e.g., splitting β̂y
0 according to the shares of the GDP components: β̂x

0 = (x̄/ȳ)β̂y
0 , x = {c, i})

gx,H̃t =

(
x̄

ȳ

)
β̂y
0 +

p∑
j=1

β̂y
j xt−j+1−h, x = {c, i}

Fourth, the cycles (zxt ) are computed using the usual de�nition

zxt = xt − gx,H̃t , x = {c, i}
5The analysis deals with the cyclical components in levels, as I do not perform the log transformation of the variables. Obtaining

the percentage deviations is straightforward. However, in this context log transformations are not informative, as the resulting

cyclical components would not be additive by assumption.
6For the sake of notation, I focus on a two-variable case, c and i. The procedure is trivially generalized to an arbitrary number

of variables.

3



but they are rescaled by subtracting their averages to make them mean-zero, which is a meaningful step

because according to Hamilton's standard procedure they are regression residuals

zx,H̃t = zxt − zx, x = {c, i}

3 Two Applications of the Adjusted Hamilton Filter

I now present two applications, exploiting U.S. and Canadian quarterly data.7

In the �rst application, I use U.S. macroeconomic data in the 1947Q1-2023Q1 period. I compute aggregate

GDP applying its expenditure approach de�nition for an open economy. Fig. (1) displays the di�erences between

theH and H̃ �lters, when they are implemented to compute the U.S. business cycles. As for GDP, the assessment

of the cyclical component can be o� by up to ±200 billion, which is sizable. As for Consumption and Import,

their plots reveal a systematic di�erence between the two approaches. The cyclical component of Consumption

(Import) is overstated by the H �lter until the early '90s (early '00s), and understated afterwards. This is

largely due to the persistent changes that these variables experienced in their GDP shares.8

In terms of di�erences between the two assessments of the cyclical components, the median percentage gaps

are −9.5% for Consumption, −3.1% for Investment, −29.5% for Government Purchases, −3.1% for Export, and

−32.5% for Import. These discrepancies are quantitatively important, a�ecting non-trivially the assessment

of the output gap. Fig. (2) displays the cycles for U.S. GDP and its expenditure components, computed with

the H̃ �lter. Since the main features of the U.S. macroeconomic aggregates are common to many developed

economies (e.g., the values and trends of the various GDP components shares, a high volatility of Investment,

the smoothness of Consumption), I expect the discrepancies between the two implementations to display similar

behaviors for a number of countries.

In the second application, I use GDP data for the Canadian Provinces and Territories (regions, hereafter) in

the 1947Q1-2019Q4 period. Aggregate GDP for Canada is obtained by adding up the GDPs of all eleven regions.

Fig. (3) displays the di�erences in the cyclical component of GDP. As for Canadian GDP, the assessment of

cyclical income can be o� by up to ±20 billion, which is consistent with the �ndings for the U.S.9 The plots for

British Columbia's and Ontario's discrepancies in their �ltered GDP show a systematic di�erence between the

two approaches, as the gap for British Columbia (Ontario) is decreasing (increasing) over the sample period.

In terms of di�erences between the two assessments of the cyclical components, the median percentage gaps

are between −1.2% (Quebec) and −44.1% (Northern Territories), and are substantial for most regions. Fig. (4)

displays the cycles for the GDP of Canada and its regions, computed with the H̃ �lter. Most notably, larger

regions show cycles that are more persistent, unlike smaller ones whose GDP cycles tend to be very volatile.

7For the U.S., I use NIPA data. For Canada, I use CANSIM, Statistics Canada, and Conference Board of Canada data.
8I uncovered the importance of these shares analyzing some realistic data generating processes with theoretical and Monte Carlo

methods.
9Recall that total income in the U.S. is approximately ten times larger than Canadian GDP.
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4 Conclusion

I proposed an alternative implementation of the Hamilton �lter to render it aggregation-consistent, which avoids

the pitfall of having multiple assessments of the same cyclical component. I considered two applications, using

U.S. and Canadian data. I showed quantitatively important di�erences between the cyclical component of

aggregate GDP, making the adjustment a valuable procedure for assessing the output gap.

To conclude with, the applicability of my analysis goes beyond the Hamilton �lter, because any regression-based

�lter is not aggregation-consistent.

Disclosure Statement: there are no relevant �nancial or non-�nancial competing interests to report.
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Figure 1: Di�erences in the cyclical parts of U.S. GDP and its expenditure components (H − H̃), Billion of

USD.
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Figure 2: Adjusted (aggregation-consistent) cycles for the U.S. GDP and its expenditure components ( H̃),
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Appendix A - Supplementary Analysis

In principle, one would like to know whether my empirical results can be generalised to other data. The

Hamilton multivariate regression framework is too complex to allow for clear-cut generalizations. From an

analytical perspective, I tried to understand the aggregation properties of the Hamilton �lter working with

simple Data Generating Processes (DGPs), such as stationary autoregressive processes of order 1, and random

walks.

As for the AR(1) case, with arbitrary values for the Hamilton �lter parameters h and p, the formulas get

too involved. I therefore focused on the simplest possible case, setting h = 1 and p = 1. In particular, I

assumed that the two components (c and i) of the aggregate variable y (say, GDP) are xt = ρxxt−1 + εxt , x =

{c, i} , εxt ∼ N(0, σ2
x), where −1 < ρx < 1 denotes the two autocorrelations, and σ2

x the two variances of the

shocks. Assuming weak exogeneity, using OLS in large samples to estimate the Hamilton regression on the two

components separately (asymptotically) recovers the true autocorrelation parameters. It follows that the two

trend components are gx,Ht = ρxxt−1, x = {c, i} and the aggregate trend component is gy,Ht = ρcct−1 + ρiit−1.

Manipulating the last formula (adding and subtracting ρcit−1, collecting terms, and multiplying and dividing the

second term by yt−1) leads to the following representation of the aggregate trend gy,Ht = [ρc+(ρi−ρc)
it−1

yt−1
]yt−1.

With the postulated DGPs, the aggregate variable is yt = ct + it = ρcct−1 + ρiit−1 + εct + εit. Manipulating this

formula using the same steps as above, shows that the Hamilton regression yt = βyyt−1+ eyt deals with an error

term eyt = (ρi−ρc)it−1+εct+εit (because, from the perspective of the aggregate variable, the Hamilton regression

is misspeci�ed as it is omitting the regressor it−1). Using standard steps to derive the consistency of an estimator,

leads to the following representation of the aggregate trend gy,Ht = [ρc+(ρi−ρc)
E[it−1yt−1]

E[ityt]+E[ctyt]
]yt−1. Comparing

the two expressions for the aggregate trend, one concludes that they are equal only when it−1

yt−1
= E[it−1yt−1]

E[ityt]+E[ctyt]
.

The main take-away of this analysis is that: 1) if the components ct and it have exactly the same autocorrelation

ρ = ρc = ρi, then there is no issue and the Hamilton �lter aggregates; 2) If ρc ̸= ρi, then the two following

elements play a role in creating a wedge between the two trends: a) the share of the components on the aggregate

variable (xt−1

yt−1
), and b) the covariance between the components and the aggregate variable as a share of the sum

of the covariances ( E[xt−1yt−1]
E[ityt]+E[ctyt]

).

The previous analysis is quite informative, but deals with a scenario that is not realistic when working with

macroeconomic data, which are non-stationary. The issue is that, for most macroeconomic applications, a credi-

ble DGP should display a unit root or near unit root behavior. I therefore analysed the issue of �lter aggregation

with Monte Carlo methods, simulating DGPs that feature some typical characteristics of macroeconomic data.

I considered a number of DGPs, assuming that they combine two components: 1) a stationary autoregressive

process of order 1, with high persistence (I considered values ranging from 0.90 to 0.99, so that unit root tests

have a hard time distinguishing the DGP from a random walk), 2) a deterministic (exponential) growth term,

parametrized to deliver an annual growth rate of 2%. I assumed mean-zero normally distributed shocks, select-

ing a value for the standard deviation that replicates the empirical values of the standard deviations for the

(�ltered) U.S. GDP components.

The Monte Carlo analysis con�rms the �nding above that the shares of the variables underlying the aggregate
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one play an important role in driving the discrepancy between the H �lter and its adjusted version H̃. When

these ratios are �at, or display relatively small oscillations, the di�erence between the two implementations of

the Hamilton �lter is minimal. In the U.S. data, the consequences of the relatively stable shares of Investment

and Export in total GDP can be clearly seen in the �rst part of the sample in Fig.1. In the related plots, there

are small discrepancies between using H or H̃. Di�erently, it is well-known that the shares of Consumption

and Government purchases underwent persistent changes, which are re�ected in the systematic trends in the

di�erence between using H and H̃.

As for the Random Walk case, I assumed that the two components (c and i) are generated by xt = xt−1 +

εxt , x = {c, i} , εxt ∼ N(0, σ2
x). In large samples, it is possible to apply the same analysis as in Hamilton's paper,

which implies that the Hamilton �lter collapses to a di�erence �lter, as β̂x
1 = 1, x = {c, i}. Since this result

applies also when estimating the Hamilton regression on the aggregate variable, the Hamilton �lter aggregates.

In small samples, just like in the classical Dickey-Fuller analysis, there are no theoretical results based on

closed-form formulas and standard distributions of test statistics. Without performing a thorough Monte Carlo

analysis, which is beyond the scope of this paper, it is di�cult to make general statements. Finally, in the

Hamilton regressions considered in the empirical analysis of the paper (with h = 8 and p = 4), a statistical

test on β̂x
1 = 1 does not reject the null at common levels of statistical signi�cance only in a couple of cases (for

instance, with U.S. GDP). The data I work with do not seem to support the theoretical property that all (but

the �rst) estimated slope coe�cients β̂x
j should not be statistically di�erent from zero, while β̂x

1 should be equal

to one. However, this could be due to the relatively small sample sizes of the two datasets I rely on.
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