
Search for light dark matter at MiniBoone

Patrick deNiverville

University of Victoria

Theoretical Perspectives on New Physics at the Intensity
Frontier

[P. dN, M. Pospelov & A. Ritz ’11, arXiv: 1107.4580 [hep-ph]]
[P. dN, D. McKeen & A. Ritz ’12, arXiv: 1205.3499 [hep-ph]]

[B. Batell, P. dN, D. McKeen, M. Pospelov, A. Ritz ’14, arXiv: 1405.7049 [hep-ph]]



Motivation

Experimental limits for WIMP-Nucleon cross section

[XENON Collaboration 2012, arXiv:1207.5988 [astro-ph]]



A Low Mass Dark Matter Scenario

The primary constraint on low mass thermal relic model building is
the e↵ect on cosmology of a new particle produced copiously in the
early universe.

I If annihilation to SM states in the early universe is too weak,
too much dark matter is produced in the early universe.

I Introducing a light particle to mediate interactions between
dark sector and SM can enhance the annihilation rate.

Hidden Sector Standard Model
Light Mediator

I Too large an annihilation rate at later times would have been
observed through annihilation signals or its e↵ect on the
cosmological history of the universe.

I Choosing a scalar dark matter candidate and a vector
mediator particle results in a velocity suppressed annihilation
rate, reducing these signals.



Kinetic Mixing

Dark sector containing scalar DM � and vector mediator V , with
mV > 2m�.
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V interacts with SM through kinetic mixing with the photon.
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Four free parameters: m�, mV , , and e 0.

I Set e02

4⇡ = ↵0 = 0.1 for convenience.

I Scenario is weakly constrained by direct and indirect dark
matter searches, but constraints from collider physics are
improving.



Scenario Parameter Space - Kinetic Mixing
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Baryonic Coupling Scenario

Dark sector containing scalar DM � and vector mediator V , with
mV > 2m�.

L = |Dµ�|2�m2
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Dark vector mediator interacts with SM through kinetic mixing
with the photon, coupling to the baryonic current, or some
combination of the two.
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Five free parameters: m�, mV , , gB and e 0.

I We will consider the regime where baryonic coupling
dominates, and set  = 0.

I e 02 = 4⇡↵B when we add coupling to baryons.



Scenario Parameter Space - Baryonic Vector
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Fixed Target Neutrino Experiments

Proton Beam Target Charged Mesons

⇡±, K±

Neutrino Beam Detector

p+N ! X + ⇡±, K± ⇡±, K± ! ⌫µµ±

I Experiments impact a target with ⇠ 1020 � 1022 protons to
produce a high intensity neutrino beam.

I Neutrinos produced from decays of charged mesons
propagating through subsequent decay volume.

I Can select for neutrino or antineutrino beams through the use
of magnetic focusing horns.

I Non-neutrinos are removed from the beam before it reaches
the detector to reduce background.

I Several fixed target neutrino experiments were investigated,
including: LSND, MiniBooNE, T2K.



Dark Matter Beams

Production of a dark matter beam through:

I Radiative decays of pseudoscalar mesons: ⇡0, ⌘, ⌘0.

I Coupling to vector mesons: ⇢, !, �.

I Direct parton-level production: p + N ! V ⇤ ! ��̄

Proton Beam Target Intermediate States Dark Matter Beam Detector

⇡0, ⌘, ⌘0 ! �V ! ���̄

⇢,!,� ! V ! ��̄

p +N ! V ⇤ ! ��̄

Detection through NCE scattering o↵ electrons or nucleons. Very
similar to neutrino NCE scattering.
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Detecting Dark Matter with Neutrino Detectors

� �
V

�
e e

� �

V

N N

I In the most straightforward analyses, without special timing or
energy cuts, dark matter signal manifests as
neutral-current-like elastic scattering events in excess of those
expected from neutrinos.

I For our analyses, neutrino events are the background. Need to
generate a significant number of excess events to obtain useful
sensitivity.

I Interaction channel chosen for analysis of each experiment
dependent on backgrounds and the neutral-current elastic
scattering analyses published.



Reducing the Neutrino Background

I Sensitivity can be improved by either reducing the number of
neutrinos reaching the detector, or by di↵erentiating between
likely neutrino and dark matter events.

I Timing Cuts - DM beam takes longer to reach the detector
than neutrino beam.

I Energy Cuts - DM energy distribution peaks at a higher energy
than the neutrino distribution.

I O↵-Target/Beam Dump runs
I Can dramatically decrease the neutrino flux by sending a

proton beam directly into the beam dump, while leaving DM
flux largely unchanged.

I MiniBooNE has been running in beam dump mode for much of
the last year. [arXiv:1211.2258v1, with Richard Van de Water]
.

WIMP beam travels ⇠ 515m

50m decay pipe

25m Deployable Beam Dump

Proton Beam

50m Fixed Beam Dump

Be Target



The MiniBooNE Experiment

I Located at Fermilab.

I Operated in neutrino mode
from 2002 to 2012, delivering
nearly 2⇥1021 protons delivered
to its beryllium target.

I Target is followed by a 50
meter decay region and iron
beam dump.

I Uses an 800 ton mineral oil
Cerenkov detector, located 541
meters from the target.

I Operated in beam dump mode
from November 8, 2013 to
September 5, 2014, collecting
2⇥ 1020 POT.



MiniBooNE Kinetic Mixing - �N ! �N
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MiniBooNE Kinetic Mixing - �e ! �e
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MiniBooNE Baryonic Vector
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T2K

I Long baseline fixed-target neutrino experiment .

I Expects to deliver > 5⇥ 1021 30 GeV protons on target.
I Utilizes a multi-component near detector, ND280, and a 50

ton water Cerenkov far detector, Super-K.
I Both detectors are 2.5 degrees o↵-axis to better select for

specific neutrino energies.
I ND280 is 280 m from the target, while Super-K is 295 km

from the target.



T2K P0D Kinetic Mixing
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T2K Super-K Baryonic Vector
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Summary

I Thermal relic WIMP with a sub-GeV mass and interactions
mediated by a light U(1)0 vector boson provides a viable dark
matter candidate.

I This candidate escapes many of the best limits imposed by standard
direct, indirect and collider searches.

I While new limits are being placed on the parameter space, a
great deal of viable parameter space remains unconstrained.
Electron fixed target experiments could reduce this further.
[see i.e. arXiv:1307.6554 [hep-ph], arXiv:1403.6826 [hep-ph], arXiv:1406.3028]

I Variants on this model, such as a baryonically coupled U(1)B
vector boson, can escape many of these new constraints.

I Fixed Target Neutrino Facilities possess good sensitivity to these
hidden-sector scenarios.

I Capable of probing regions of the hidden-sector parameter
space currently inaccessible to other techniques.

I Running a Fixed Target Neutrino Experiment in an o↵ target mode
could provide new sensitivity, while requiring far fewer POT.

I A test of this approach is being conducted by the MiniBooNE
experiment.
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Choosing a Portal

For mV > 2m�

I U(1)0 Mediator - Vector Portal
I Fermionic DM - s-wave annihilation and an increased dark

matter number density due to the low dark matter mass results
in a visible distortion of the CMB. Also leads to a more visible
signal from galactic center. [Padmanabhan & Finkbeiner et al
’05; Slatyer et al ’08]

I Scalar DM - p-wave annihilation allows this scenario to be
viable for small , as the annihilation rate is suppressed by an
additional factor of v . A small v heavily suppresses the dark
matter annihilation rate.

I Scalar Mediator - Higgs Portal
I Scalar DM - s-wave annihilation excludes this scenario for the

reasons given previously.
I Fermionic DM - p-wave annihilation renders this model

viable. However, fermionic DM requires a large mixing, which
could a↵ect B decays. [Bird, Kowalewski & Pospelov 2006]



Dark Matter Beams - Production Channel Cross Sections
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