

SUSY Searches at 13 TeV at ATLAS

Isabel TRIGGER TRIUMF Blois 2016/5/30-2016/6/3

I.Trigger, TRIUMF

Run-2 Data in 2015

- Generally smooth operation:
 3.2 fb⁻¹ good for analysis
- New "insertable B-layer" in pixel detector
- More complete coverage with additional muon detectors
- Fraction of live channels even better than Run-1
- And, of course, substantially higher energy (8 →13 TeV)!

З

Outline: what to do with a *relatively* small data sample at a brand new energy

- Strong interaction: squark / gluino pairs
 - Steep cross-section increase from 8 to 13 TeV
 - Consider possibility of compressed scenarios with long-lived sparticles
 - 3rd generation squark searches very important (theoretically motivated)
 - But stop searches covered in <u>talk by</u> <u>Bertrand Martin d.L.</u> so explicitly not included here; will touch on sbottom
 - Talk arranged approximately in increasing order of complexity
 - Goal is NOT to show all results, but to illustrate analysis strategy, reach

I.Trigger, TRIUMF

n: 279685 ent: 690925592 15-09-18 02:47:06 CEST

Jets

Strong production:

squarks or gluinos have large cross section if they are "light"; if cross section large enough, 2015 data surpasses Run 1 limits; simplest decays contain only jets and missing E_T

2-6 jets & E^{Tmiss} (no leptons)

- Start simple:
 - assume only gluinos (or only squarks) and LSP light
 - 2- or 3-body decays to quark jets and LSP
 - also consider intermediate light chargino
 - 7 signal regions depend on number of jets (2, 4, 5, 6), compression of mass spectrum (loose, medium or tight background rejection)
- Analyses all based on cut on m_{eff} , (scalar sum of p_T of N leading jets and E_T^{miss})
- Exclusions to 1-1.5 TeV, generally exceed Run-1 limits

Generic Analysis Strategy

- Signal Regions (SR) optimized e.g. for higher or lower masses or larger or smaller mass differences between strongly produced SUSY particle and LSP
- Control Regions defined for each SR and each major background (top, W/Z+jets, multijets... in this case, 4 CR for each SR)
 - orthogonal to SR

1605.03814

minimal Signal contamination and maximum statistics

pre-fit!

- similar systematics & kinematics to SR
- fit for major backgrounds and extract scale factors from fits to apply in SR and Validation Regions
- Validation Regions (VR, orthogonal to both SR and CR, and with little signal contamination) used to cross-check background estimations from CR fits
- Then compare number of events predicted in SR from all fitted backgrounds (plus smaller ones taken from MC) and with number in SR in data
- Limits then set on new physics: background-only, modelindependent and model-dependent

Validation region name

3500

m_{eff}(incl.) [GeV]

I.Trigger, TRIUMF

Blois 2016

Data /

Monojet & large ETmiss

 Very compressed mass spectrum scenarios: small squark-LSP mass difference

1604.07773

- Consider light squark and sbottom pair production (also stop to charm), with ISR jet
- Fit 3 main backgrounds: W(ev)/W(µv)/Z(vv)+jets
 - $(Z \rightarrow \mu \mu \text{ is proxy for } Z \rightarrow \nu \nu)$
- 13 signal regions defined by E_T^{miss} thresholds/ranges from 250 - 700 GeV

2 b-jets and E^{Tmiss}

ATLAS-CONF-2015-066

- Light 3rd gen sparticles favoured cancel heavy quark terms in Higgs mass self-energy corrections
 - Stop searches covered in plenary talk by B.Martin.d.L.
 - Focus here on simple sbottom pair production. Cut-based SR requires 2 b-jets in events passing E_{T}^{miss} trigger:

 - E_{T}^{miss} >250 GeV, m_{bb} >200 GeV
 - "Contransverse mass">250 GeV • $m_{\rm CT}^2(v_1, v_2) = [E_{\rm T}(v_1) + E_{\rm T}(v_2)]^2 - [p_{\rm T}(v_1) - p_{\rm T}(v_2)]^2$
 - 2nd signal region focuses on small Δm region, requires ISR jet (pT>300 GeV) to boost sbottom pair, E_T^{miss} >400 GeV
 - Slight deficit seen in all SR; stringent limits ۲

I.Trigger, TRIUMF

Blois 2016

3 (or more) b-jets and ET^{miss}

- Pair-produced gluinos decaying via virtual sbottom or stop
 - 4 b-jets (\geq 3 tagged) and E_T^{miss}
 - 4 b-jets (≥3 tagged), E_T^{miss} and additional decay products of W-bosons from the 4 tops (0 or ≥1 lepton and many jets)
- Several signal regions for each final state, targeting increasingly compressed scenarios
- Observe slightly fewer events than expected (also in validation regions) so limits somewhat better than expected, 1.78 TeV for sbottom and 1.76 TeV for stop, for M(neutralino)≲700 GeV

<u>1602.06194</u>

7-10 jets & E_T^{miss} (no leptons)

- If more complex cascade decays of gluinos allowed, produce more jets (possibly including b-jets), but potentially less E_T^{miss}
- Use high-multiplicity jet triggers:
 - 6 jets of pT>45 GeV
 - 9 SR: 8, 9 or 10 jets of which 0, 1 or 2 b-tagged
 - or 5 of pT>70 GeV
 - 6 SR with 7 or 8 jets of which 0, 1 or 2 b-tagged
- Cut-based analyses, discriminant $E_T^{11155}/\sqrt{H_T}$
 - $H_T = \text{scalar sum of jet } p_T$
- Gluino masses up to 1.4 TeV excluded in large regions in these simplified models

I.Trigger, TRIUMF

Jets with Leptons

Strong production, with electroweak particles in the vent: 193690558 015-06-13 23:52cascade decays leading to final-state electrons or muons, greatly increasing trigger efficiency

Blois 2016

1605.04285

1 lepton, jets & E^{Tmiss}

- Pair-produced gluinos decaying via light charginos
 - 3-body decay via virtual squarks; one final-state W(*) decays leptonically, along with up to 6 jets and E_T
- E_{T}^{miss} trigger (70 GeV in trigger, 200 GeV offline) lets very soft leptons be included
- Several $E_{T_{miss}}^{miss}$ -dependent variables (m_T, H_T, m_{eff}, E_T) used to define 6 SR:
 - soft lepton & ≥ 2 or ≥ 5 jets; hard lepton $\& \ge 4$ (2 variants), 5 or 6 jets
- Interpretation in several simplified models with assumptions about relations between sparticle masses

12

ATLAS-CONF-2015-082

$Z(\longrightarrow II)$ & Jets, E_T^{miss}

80

60

40

20

 $(N_{obs} - N_{exp})/\sigma_{tot}$

- Similar to previous, with both neutralinos light, and Z replacing W in final state
- One Z decays leptonically, along with E_T^{miss} and several jets
- In signal, both leptons come from Zulletdecay, so same-flavour. Control sample with different-flavour leptons used to estimate e.g. top-pair background.
- Cuts: E_T^{miss} >225 GeV, H_T >600 GeV, $n_{iets} \ge 2$, 81< m_{II} <101 GeV define signal region

$\frac{\text{ATLAS-CONF-2015-082}}{7(, 11) , 1 - + - mis}$

- $Z(\rightarrow II)$ + Jets, E_T^{miss} (cont'd)
- 21 events observed in SR (10 ee, 11 μμ)
- 10.3 ± 2.3 expected
 - p-value: 0.013
 - 13 TeV signif.: 2.2σ
 - Observed (Expected)
 S⁹⁵: 20.0 (10.2+4.4-3.0)

2 same-sign or 3 leptons

 Gluinos are neutral - charged electroweak particles in both decay branches may have <u>same charge</u>

1602.09058

EPJ C. 76(5).1-26

- Can also have 3 leptons (or 2 SS leptons) arising from final states with multiple Z, W or t decaying leptonically
 - Both signatures extremely rare in SM
- 4 signal regions according to number of b-jets and/or light jets
- Final discriminant is high E_T^{miss}
- Exceeds Run-1 limits in certain models

Lifetime

In (for example) compressed mass-spectrum scenarios or situations like "split" SUSY where 3-body decays can by highly suppressed by large sparticle masses, there may be very little phase space for decays to the LSP, resulting in a long-lived NLSP. This could elude standard missing-energy searches, and requires special attention.

long-lived highly ionizing

- particles
- Gluino (charged) R-hadrons:
 - stable (lifetime>50 ns)
 - or metastable (decay to qq +LSP)
- Look for tracks with large dE/dx from Si-pixels and high pT
- stable gluino R-hadrons excluded below 1570 GeV
- Gluino R-hadrons with lifetime > 0.4 ns exclusions given for 100 GeV LSP, lower mass limits 740-1590 GeV

Summary

- With 3.2 fb⁻¹ at 13 TeV, ATLAS already extends reach of many strong-production SUSY scenarios over 8 TeV limits
- Limits ~1.5 TeV for gluinos in simplest models
- Interesting but not (yet?) significant excess in Z(to II)+ETmiss analysis first seen at 8 TeV persists
- Expect ~25 fb⁻¹ in 2016:
 - Confirm or demolish the excess
 - Extend limits in strong production toward kinematic limits
 - Look for weakly produced SUSY with sensitivity beyond Run-1
- An interesting year for SUSY. The year?

Blois 2016

ATLAS Preliminary

 $\sqrt{s} = 7, 8, 13 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: March 2016

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫ <i>L dt</i> [fb	D ⁻¹] Mass limit	$\sqrt{s} = 7, 8$	$\frac{1}{\sqrt{s}} = 13 \text{ TeV}$	Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM\\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{k}_{0}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{k}_{0}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{k}_{1}^{0} (\text{compressed}) \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q (\ell \ell / \ell \nu / \nu \nu) \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{k}_{1}^{1} \rightarrow q q W^{\pm} \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu) \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{k}_{1}^{0} \\ GMSB (\tilde{\ell} \text{ NLSP}) \\ GGM (\text{bino NLSP}) \\ GGM (\text{higgsino-bino NLSP}) \\ GGM (\text{higgsino-bino NLSP}) \\ GGM (\text{higgsino NLSP}) \\ GGM (\text{higgsino NLSP}) \\ Gravitino LSP \end{array}$	$\begin{array}{c} 0-3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 2 \ e, \mu \ (off-Z) \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 <i>b</i> 2-6 jets 1-3 jets 2 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets 7-10 jets 0-2 jets 2 jets 2 jets 2 jets 2 jets 2 jets 2 jets 1 <i>b</i> 2 jets 2 jets 2 jets 1 <i>b</i> 2 jets 2 jets 2 jets 1 <i>b</i> 2 jets 2 jets 2 jets 1 <i>b</i> 2 jets 2 jets 1 <i>b</i> 2 jets 2 jets 2 jets 1 <i>b</i> 2 jets 2 jets 2 jets 1 <i>b</i> 2 jets 2 j	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 3.2 20.3 3.2 3.3 20 3.2 20.3 20.3 2	\$\vec{q}\$ \$\vec{q}\$ \$\vec{980 \end{bmatrix} V } \$\vec{q}\$ \$\vec{980 \end{bmatrix} V } \$\vec{q}\$ \$\vec{q}\$ \$\vec{610 \end{bmatrix} V } \$\vec{q}\$ \$\vec{q}\$ \$\vec{610 \end{bmatrix} V } \$\vec{q}\$ \$\vec{q}\$ \$\vec{820 \end{bmatrix} V } \$\vec{q}\$ \$\vec{g}\$ \$\vec{820 \end{bmatrix} V } \$\vec{9}\$ \$\vec{g}\$ \$\vec{8}\$ \$\vec{8}\$ \$\vec{8}\$ \$\vec{g}\$ \$\vec{8}\$ \$\vec{1}\$ \$\vec{8}\$ \$\vec{1}\$ \$\vec{g}\$ \$\vec{8}\$ \$\vec{1}\$ \$\vec{1}\$ \$\vec{1}\$ \$\vec{1}\$ \$\vec{g}\$ \$\vec{1}\$ \$\vec{1}\$ \$\v	1.85 TeV 1.52 TeV 1.6 TeV 1.38 TeV 1.4 TeV 1.63 TeV 34 TeV 1.37 TeV .3 TeV	$\begin{split} \mathbf{m}(\tilde{q}) &= \mathbf{m}(\tilde{g}) \\ \mathbf{m}(\tilde{k}_{1}^{0}) &= 0 \text{ GeV}, \ \mathbf{m}(1^{\text{st}} \text{ gen.} \tilde{q}) &= \mathbf{m}(2^{\text{nd}} \text{ gen.} \tilde{q}) \\ \mathbf{m}(\tilde{q}) &= \mathbf{m}(\tilde{k}_{1}^{0}) &< 5 \text{ GeV} \\ \mathbf{m}(\tilde{k}_{1}^{0}) &= 0 \text{ GeV} \\ \mathbf{m}(\tilde{k}_{1}^{0}) &= 100 \text{ GeV} \\ \mathbf{m}(\tilde{k}_{1}^{0}) &= 50 \text{ GeV}, \ c\tau(\text{NLSP}) &< 0.1 \text{ mm} \\ \mathbf{m}(\tilde{k}_{1}^{0}) &< 950 \text{ GeV}, \ c\tau(\text{NLSP}) &< 0.1 \text{ mm}, \ \mu &< 0 \\ \mathbf{m}(\tilde{k}_{1}^{0}) &< 850 \text{ GeV}, \ c\tau(\text{NLSP}) &< 0.1 \text{ mm}, \ \mu &> 0 \\ \mathbf{m}(\text{NLSP}) &> 430 \text{ GeV} \\ \mathbf{m}(\tilde{G}) &= 1.8 \times 10^{-4} \text{ eV}, \ \mathbf{m}(\tilde{g}) &= \mathbf{m}(\tilde{q}) = 1.5 \text{ TeV} \end{split}$	1507.05525 ATLAS-CONF-2015-062 <i>To appear</i> 1503.03290 ATLAS-CONF-2015-062 ATLAS-CONF-2015-076 1501.03555 1602.06194 1407.0603 1507.05493 1507.05493 1507.05493 1503.03290 1502.01518
3 rd gen. <u>§</u> med.	$\begin{array}{c} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> , <i>µ</i> 0-1 <i>e</i> , <i>µ</i>	3 b 3 b 3 b	Yes Yes Yes	3.3 3.3 20.1	ğ ğ ğ 1	1.78 TeV 1.76 TeV 1.37 TeV	m(𝔅₁0)<800 GeV m(𝔅₁0)=0 GeV m(𝔅₁0)<300 GeV	ATLAS-CONF-2015-067 <i>To appear</i> 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \to b \tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \to t \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \to b \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \to W b \tilde{\chi}_{1}^{0} \text{ or } t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \to c \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1} (natural GMSB) \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \to \tilde{t}_{1} + Z \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \to \tilde{t}_{1} + h \end{split} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 0-2 \ e, \mu \ (C) \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 \ e, \mu \end{array}$	2 b 0-3 b 1-2 b 0-2 jets/1-2 b nono-jet/c-ta 1 b 1 b 6 jets + 2 b	Yes Yes Yes Yes g Yes Yes Yes Yes	3.2 3.2 4.7/20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	eV r	$\begin{split} & m(\tilde{x}_1^0) < 100 \mathrm{GeV} \\ & m(\tilde{x}_1^0) = 50 \mathrm{GeV}, m(\tilde{x}_1^\pm) = m(\tilde{x}_1^0) + 100 \mathrm{GeV} \\ & m(\tilde{x}_1^0) = 55 \mathrm{GeV} \\ & m(\tilde{x}_1^0) = 1 \mathrm{GeV} \\ & m(\tilde{x}_1^0) = 1 \mathrm{GeV} \\ & m(\tilde{x}_1^0) < 85 \mathrm{GeV} \\ & m(\tilde{x}_1^0) > 150 \mathrm{GeV} \\ & m(\tilde{x}_1^0) < 200 \mathrm{GeV} \\ & m(\tilde{x}_1^0) = 0 \mathrm{GeV} \end{split}$	ATLAS-CONF-2015-066 1602.09058 1209.2102, 1407.0583 08616, ATLAS-CONF-2016-007 1407.0608 1403.5222 1403.5222 1506.08616
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \bar{b} / W W / \pi \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ GGM (wino NLSP) weak prod$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau, \mu \\ 2 \ \tau, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 4 \ e, \mu \\ 1 \ e, \mu + \gamma \end{array}$	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_1^{\pm})$ $m(\tilde{\chi}_2^{0})=m(\tilde{\chi}_2^{0})$	$\begin{split} &m(\tilde{\chi}_{1}^{0}){=}0 \; \text{GeV} \\ &m(\tilde{\chi}_{1}^{0}){=}0 \; \text{GeV}, \; m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{0}))) \\ &m(\tilde{\chi}_{1}^{0}){=}0 \; \text{GeV}, \; m(\tilde{\tau}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{0}))) \\ &\tilde{\chi}_{2}^{0}, \; m(\tilde{\chi}_{1}^{0}){=}0, \; m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{0})) \\ &m(\tilde{\chi}_{1}^{\pm}){=}m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}){=}0, \; sleptons \; decoupled \\ &m(\tilde{\chi}_{1}^{\pm}){=}m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}){=}0, \; sleptons \; decoupled \\ &\tilde{\chi}_{3}^{0}, \; m(\tilde{\chi}_{1}^{0}){=}0, \; m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{2}^{0}){+}m(\tilde{\chi}_{1}^{0}))) \\ &er{<}1 \; mm \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493
Long-lived particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\lambda}$ Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\lambda}$ Stable, stopped \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{\sigma}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow eev/e\mu v/\mu\mu v$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G}$	$\tilde{\chi}_1^{\pm}$ Disapp. trk $\tilde{\chi}_1^{\pm}$ dE/dx trk 0 dE/dx trk $\tau(e,\mu)$ 1-2 μ 2 γ displ. $ee/e\mu/\mu$ displ. vtx + jet	1 jet - 1-5 jets - - - μμ - ts -	Yes Yes - - Yes -	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.54 TeV	$\begin{split} &m(\tilde{\chi}_1^{+})\text{-}m(\tilde{\chi}_1^{0})\sim 160 \; MeV, \; \tau(\tilde{\chi}_1^{+})=0.2 \; ns \\ &m(\tilde{\chi}_1^{+})\text{-}m(\tilde{\chi}_1^{0})\sim 160 \; MeV, \; \tau(\tilde{\chi}_1^{+})<15 \; ns \\ &m(\tilde{\chi}_1^{0})=100 \; GeV, \; 10 \; \mu s < \tau(\tilde{g}) < 1000 \; s \\ &m(\tilde{\chi}_1^{0})=100 \; GeV, \; \tau>10 \; ns \\ &10 < tan\beta < 50 \\ &1 < \tau(\tilde{\chi}_1^{0}) < 3 \; ns, \; SPS8 \; model \\ &7 \; < \tau(\tilde{\chi}_1^{0}) < 740 \; mm, \; m(\tilde{g})=1.3 \; TeV \\ &6 \; < \tau(\tilde{\chi}_1^{0}) < 480 \; mm, \; m(\tilde{g})=1.1 \; TeV \end{split}$	1310.3675 1506.05332 1310.6584 <i>To appear</i> 1411.6795 1409.5542 1504.05162 1504.05162
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ Bilinear RPV CMSSM $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu\tilde{v}_{\mu}$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau\tau\tilde{v}_{e}, e\tau\tilde{v}_{e}$ $\tilde{g}\tilde{s}, \tilde{g} \rightarrow qqq$ $\tilde{g}\tilde{s}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{s}, \tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell$	$\begin{array}{cccc} r & e\mu, e\tau, \mu\tau \\ & 2 \ e, \mu \ (\text{SS}) \\ \vec{v}_e & 4 \ e, \mu \\ \vec{v}_\tau & 3 \ e, \mu + \tau \\ & 0 \\ & 2 \ e, \mu \ (\text{SS}) \\ & 0 \\ & 2 \ e, \mu \end{array}$	- 0-3 b - 6-7 jets 6-7 jets 0-3 b 2 jets + 2 b 2 b	Yes Yes Yes - Yes -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c} \tilde{v}_{\tau} \\ \tilde{q}, \tilde{g} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{g} \\ $	1.7 TeV 1.45 TeV	$\begin{split} & t_{311}'=0.11, \ \lambda_{132/133/233}=0.07 \\ & m(\tilde{g})=m(\tilde{g}), \ c\tau_{LSP}<1 \ \text{mm} \\ & m(\tilde{X}_1^0)>0.2\times m(\tilde{X}_1^1), \ \lambda_{121}\neq 0 \\ & m(\tilde{X}_1^0)>0.2\times m(\tilde{X}_1^1), \ \lambda_{133}\neq 0 \\ & \text{BR}(t)=\text{BR}(b)=\text{BR}(c)=0\% \\ & m(\tilde{X}_1^0)=600 \ \text{GeV} \\ & \text{BR}(\tilde{t}_1 \rightarrow be/\mu)>20\% \end{split}$	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1502.05686 1404.2500 1601.07453 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 510 GeV	r	m(𝐉1)<200 GeV	1501.01325
*Only a selection of the available mass limits on new 10^{-1} 1 Mass scale [TeV]									

Backups

$Z(\rightarrow II)$ + Jets, E_T^{miss} (more)

Region	$E_{\mathbf{T}}^{\mathbf{miss}}$ [GeV]	$H_{\mathbf{T}}$ [GeV]	$n_{\mathbf{jets}}$	$m_{\ell\ell}$ [GeV]	\mathbf{SF}/\mathbf{DF}	$\Delta \phi(\mathbf{jet}_{12}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})$	$m_{\mathrm{T}}(\ell_3, E_{\mathrm{T}}^{\mathrm{miss}})$ [GeV]	$n_{\rm b-jets}$
Signal regions								
SRZ	> 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	\mathbf{SF}	> 0.4	-	-
Control regions								
Z normalisation	< 60	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	\mathbf{SF}	> 0.4	-	-
CR-FS	> 225	> 600	≥ 2	$61 < m_{\ell\ell} < 121$	DF	> 0.4	-	-
CRT	> 225	> 600	≥ 2	$m_{\ell\ell} \notin [81,101]$	\mathbf{SF}	> 0.4	-	-
Validation regions	8							
VRZ	< 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	\mathbf{SF}	> 0.4	-	-
VRT	100 - 200	> 600	≥ 2	$m_{\ell\ell} \notin [81, 101]$	\mathbf{SF}	> 0.4	-	-
VRS	100 - 200	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	\mathbf{SF}	> 0.4	-	-
VR-FS	100 - 200	> 600	≥ 2	$61 < m_{\ell\ell} < 121$	DF	> 0.4	-	-
VR-WZ	100 - 200	-	-	-	3ℓ	-	< 100	0
VR-ZZ	< 100	-	-	-	4ℓ	-	-	0
VR-3L	60 - 100	> 200	≥ 2	$81 < m_{\ell\ell} < 101$	3ℓ	> 0.4	-	-

I.Trigger, TRIUMF

Blois 2016

$Z(\rightarrow II)$ + Jets, E_T^{miss} (more)

Physics process	Generator	Parton Shower	Cross section	Tune	PDF set	-		
$Z/\gamma^*(\to \ell\ell) + \text{jets}$	SHERPA 2.1.1	Sherpa 2.1.1	NNLO [23,24]	SHERPA default	NLO CT10	- Region	Flavour-symmetry	Sideband fit
tt Single-top (Wt)	Powheg Box v2 r3026 Powheg Box v2 r2856	Рутніа 6.428 Рутніа 6.428	Approx. NNLO [28,2	PERUGIA2012 [9] PERUGIA2012	NLO CTIO NLO CTIO	SRZ	5.1 ± 2.0	6.1 ± 1.7
tt + W and $tt + Zt\bar{t} + WW$	MadGraph5 2.2.2 MadGraph5 2.2.2	Рутніа 8.186 Рутніа 8.186	NLO [31,32] LO	A14 NNPDF23LO A14 NNPDF23LO	CTEQ6L1 CTEQ6L1	VRS	18.9 ± 4.8	20.5 ± 5.6
WW, WZ and ZZ	Sherpa 2.1.1	Sherpa 2.1.1	NNLO [33,34]	Sherpa default	NLO CT10			
				VRS		VR-WZ	VR-ZZ	VR-3L
Observed events			56		89	20	- 7	
Total expected ba	ackground events		52.6 ± 9.1 87		87 ± 10	15.5 ± 3.4	-6.5 ± 1.6	
Flavour symmetr	ic $(t\bar{t}, Wt, WW ar$	events	18.9 ± 4.8		1.3 ± 0.4	0	0.3 ± 0.2	
WZ/ZZ events			7.5 ± 1.7		82 ± 10	15.5 ± 3.4	4.9 ± 1.6	
$Z/\gamma^* + \text{jets event}$	S		24.8 ± 7.6	2.7 ± 2.8		0	0.2 ± 0.2	
Rare top events			1.4 ± 0.2	(0.9 ± 0.4	0.04 ± 0.02	1.0 ± 0.1	

Source	Relative systematic uncertainty $[\%]$
	SRZ
Total systematic uncertainty	22
Flavour symmetry (statistical)	14
Flavour symmetry (systematic)	12
$Z/\gamma^* + \text{jets} \text{ (systematic)}$	7.8
WZ generator uncertainty	7.6
$Z/\gamma^* + \text{jets} \text{ (statistical)}$	2.2

	SRZ
Observed events	21
Total expected background events	10.3 ± 2.3
Flavour symmetric $(t\bar{t}, Wt, WW \text{ and } Z \to \tau\tau)$ events	5.1 ± 2.0
WZ/ZZ events	2.9 ± 0.8
$Z/\gamma^* + jets$ events	1.9 ± 0.8
Rare top events	0.4 ± 0.1
<i>p</i> -value	0.013
Significance	2.2
Observed (Expected) S^{95}	$20.0 \ (10.2^{+4.4}_{-3.0})$