Search for Additional Higgs Bosons in ATLAS

Kenji Hamano (University of Victoria) for the ATLAS Collaboration

University of Victoria

Beyond the Standard Model

- The Standard Model (SM) of particle physics is a very successful theory.
- But not perfect.
- For example, SM Lagrangian does not include:
 - Dark matter.
 - Neutrino mass term.
- Many ideas beyond the standard model exists.
 - Two Higgs Doublet Models (2HDM).
 - These models have dark matter candidates.
 - One example: Supersymmetric extension of SM (SSM).
 - Seesaw and radiative neutrino mass mechanisms.
 - These models explain the smallness of the neutrino masses.
 - Left-right symmetric models, and many more... •

SUPERSYMMETRY

SUSY particles

Two Higgs Doublet Models

- The Standard Model (SM) Lagrangian has 1 Higgs doublet.
 - 4 degrees of freedom
 - 3 weak gauge boson masses + 1 Higgs boson (h)
- 2 Higgs Doublet Models (2HDM) has additional Higgs Doublet
 - Additional 4 degrees of freedom.
 - Additional 4 Higgs Bosons.
 - Heavy scalar: H
 - Pseudo scalar: A
 - Charged scalars: H⁺ and H⁻
 - Additional parameter:
 - tanβ = the ratio of vacuum expectation values of the two Higgs doublets.

Searches in ATLAS

- Look for all major decay modes:
 - Neutral Higgs: ZZ, WW, Z γ , $\gamma\gamma$, Zh, hh, $\tau^+\tau^-$, tt/, bb/
 - Charged Higgs: t<u>b</u>, τν
 - Doubly Charged Higgs: I+I+ (I-I-), W+W+ (W-W-)
- I'll talk about only recent results:
 - τ+τ- (New, first time shown to public) [No reference # yet]
 - t->bH+, H+-> τ+ν: JHEP 09 (2018) 139, arXiv:1807.07915
 - pp->Hbb, H->bb: submitted to Phys. Rev. D, arXiv:1907.02749
- 2HDM constraints:
 - Summary of limits in hMSSM scenario: ATL-PHYS-PUB-2019-034
 - hMSSM = Minimal Supersymmetric Standard Model (MSSM) + 125 GeV Higgs (h).
 - Summary of limits from dark matter searches: JHEP 1905 (2019) 142, arXiv:1903.01400
 - h(bb) dark matter search: ATLAS-CONF-2018-039
- In Nicolo's talk
 - hh->bbbb: submitted to JHEP, arXiv:2001.05178
 - WW+ZZ: Phys. Rev. D 98 (2018) 052008, arXiv:1808.02380

Neutral Higgs

 $\phi = h/A/H$

 $= h A/H - - \phi = h/A/H$

s.

000000

g 000000000 • 13 TeV, 139 fb⁻¹.

X

- Production mode g 0000000
 - gluon-gluon tusion
 - b-associated production
- The τ+τ- mode is e
 - 2 τ⁺τ⁻ decay m
 - lep-had: τ_eτ_{had}
 - Single electron and single muon triggers are used.
 - had-had
 - Single tau triggers are used.
 - Two τ_{had} and no electron or muon.
- Main backgrounds:
 - jet- τ fake, Muitlijet -> data-driven fake-factor method.
 - Top -> MC simulation.
 - $Z/\gamma^* \rightarrow \tau\tau \rightarrow MC$ simulation.

Main source of systematic errors

9 00000000

g 0000000

h/A/H

 $\phi = h/A/H$

= h/A/H

Neutral Higgs -> T+T-

- Model independent limit on the (cross section)*(branching fraction)
 - Significant improvement wrt the 2017 result (13 TeV, 36 fb⁻¹).
- Limits on A mass vs tanβ plain.
 - Interpreted in M_h¹²⁵ scenario.
 - Aslo in hMSSM scenario.
 - Dominant contribution to the 2d exclusion (see p9).

• 13 TeV, 36.1 fb⁻¹.

- H⁺ decay modes.
 - Leptonic τv : sensitive in high tan β region.
 - Hadronic tb: sensitive in low tanβ region (arXiv:1808.03599).
- Main backgrounds:
 - $t\underline{t} \rightarrow MC$ simulation.
 - τ mis-ID -> fake factor method.
 - Main source of systematic uncertainty for low mass.
- Model independent limits on production cross section * decay branching fraction.
 - Significant improvement wrt the 2015 result.
- Interpreted in hMSSM scenario.
 - Limits on H^+ mass vs tan β plain.
 - Significant improvement wrt the 2015 result.

 $m_{H^{+}} \, [\text{GeV}]$

arXiv:1907.02749

Neutral Higgs -> bb

• 13 TeV, 27.8 fb⁻¹.

- Associate production with b-jets.
 - Decay to 2b.
 - Single or double b-jet trigger.
- Main backgrounds:
 - Multijet -> simulation.
- Limits on (cross section)*(branching fraction).
- Interpreted in hMSSM scenario.
 - Limits on A mass vs tanβ plain.

ATL-PHYS-PUB-2019-034

Summary of hMSSM limits

• 13 TeV, 36 fb⁻¹.

- 8 analyses are interpreted in hMSSM scenario.
 - Limits on A mass vs tanβ plain.
- Higher tan β : dominated by $\tau^+\tau^-$.
 - New 139 fb⁻¹ result is just a rough draw by hand (not official).
- Lower tan β : dominated by hh->4b.

Summary of dark matter searches

- 13 TeV, 36.1 fb⁻¹.
- 2HDM + pseudo-scalar mediator model.
 - a = dark matter mediator (pseudo-scalar).
 - $\chi =$ dark matter particle.
- Limits on mass and tanβ.
 - mono-Z and mono-h channels dominate the limits.

ATLAS-CONF-2018-039

Mono-H(bb) dark matter

search

 \bar{q}

q

- 13 TeV, 79.8 fb⁻¹.
- 2HDM + vector mediator model.
 - Z' = dark matter mediator (vector).
 - $\chi = \frac{\text{dark matter particle.}}{100}$
- Higgs (2 b-jets) + Missing momentum (dark matter) final states.
 - Missing transverse momentum trigger.
- Limits on Z' mass vs A mass.

LLWI2020, 9-15 Feb 2020

Conclusions

- Additional Higgs bosons are well motivated.
 - Dark matter, neutrino mass etc.
 - **2HDM** are mainly used in ATLAS searches.
- Many decay modes were explored.
 - No additional Higgs has been found so far.
 - Limits on cross sections, branching fractions, parameter values were set.
- Only recent results were presented in details.
 - Significant improvements from previous results were achieved.

Backup: Doubly Charged Higgs

- Seesaw mechanisms:
 - Large mass of additional particles explains the smallness of neutrino masses like seesaw.
 - Type II seesaw model:
 - Additional scalar triplet -> singly and doubly charged scalars.
- Radiative neutrino mass models:
 - Generate neutrino mass by loop diagram
 - Zee-Babu model:
 - Additional singly and doubly charged scalars.

arXiv:0711.0483 [hep-ph]

arXiv:2001.05178

Backup: Neutral Higgs -> hh ->

4b

- 13 TeV, 126 fb⁻¹.
- Higgs -> hh is rare in SM.
 - BSM contribution can be significant if any.
 - This analysis consider only VBF production.
 - b-jet triggers are used.
 - ggF production was done in arXiv:1906.02025 with 36.1 fb⁻¹.
- Main backgrounds:
 - Multijet (95%) -> data-driven. Derived from 2b+2j control region.
 - m(2b) vs m(2b) distributions are used to suppress this background.
 - Dominant source of the systematic uncertainty.
 - t<u>t</u> (5%) -> MC simulation.
- Limits on the cross section is set.

LLWI2020, 9-15 Feb 2020

Backup: Neutral Higgs -> ZZ, WW

- 13 TeV, 36 fb⁻¹. [™] t ---- [™] q → ^V v -----[₩]
- Combine 8 ZZ and WW resonance searches.
 - WW -> qqqq, lvqq, lvlv
 - ZZ -> qqqq, vvqq, llqq, llvv, llll
- Set limits on cross sections.

LLWI2020, 9-15 Feb 2020

Backup: Dark Higgs search

- 13 TeV, 79.8 fb⁻¹.
- RECAST: Apply a new model to an existing analysis
 - Original analysis (ATLAS-CONF-2018-039):
 - Mono-H(bb) dark matter search.
 - New model:
 - Dark Higgs boson s -> 2b.
 - Dominant decay mode at low mass (m_s < 150 GeV).
 - Vector mediator Z' -> 2χ.
- Limits on (cross section)*(branching fraction).
- Limits on mediator mass vs dark Higgs mass.

