

Development of the ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

ANIMMA 2023, Lucca

Clément Camincher on behalf of the ATLAS Liquid Argon Calorimeter group

Toward HL-LHC

- The LHC will have a major upgrade during the next long shutdown in 2026-2029; will become High Luminosity LHC
- The goal is to reach and instantaneous luminosity up to 7×10^{34} cm⁻² s⁻¹ (~7 times the design value)
- Up to 200 proton-proton interactions will occur every 25 ns
- Should allow to record 10 times more data in the following decade than what have been done so far
- Would allow to probe even further the standard model and especially rare processes.

DEFINITION

EXCAVATION

ATLAS experiment

- Large multipurpose experiment at one of the colliding points of LHC
- Built for new physics search and precision measurement of the Standard Model of particle physics
- Structured by layers of sub-detectors
 - 1. Inner tracker
 - 2. Electromagnetic calorimeter
 - 3. Hadronic calorimeter
 - 4. Muon spectrometer
- Can detect and measure the energy and positions of electrons, photons, muons and jets
- Neutrinos are not directly measured but estimated by reconstruction of missing transverse energy

З

Liquid Argon Calorimeters (LAr)

- Used for electromagnetic calorimetry in central and forward regions and hadronic calorimetry in forward regions
- Sampling calorimeter with liquid argon as active material and lead, copper and tungsten as passive material
- Accordion geometry for electromagnetic calorimetry ($|\eta|<3.2$) to ensure full azimutal coverage
- Copper plates for hadronic calorimeter in forward regions $(1.5 < |\eta| < 3.2)$
- Honeycomb structure for very forward regions (3.1 < $|\eta| < 4.9$)
- outer copper layer inner copper layer kapton
- outer copper layer
 - stainless steel glue

- Total of 182k units of readout
- Provide data for both trigger and precision readout

LAr Readout principles for HL-LHC

• A triangular pulse is generated when a particle deposits energy in the detector

Front-end electronics

- Process the digits to extract energies values • The signal is shaped to a bipolar pulse for each cell
- Pulse is sampled and digitised at 40 MHz
- Digits are sent via optical link to the back-end system

Back-end electronics

- Compute also time position of the pulse
- Send energies values at 40 MHz to the trigger system
- Buffer data before trigger decision
- Send full precision data stream to data acquisition

LAr upgrade for HL-LHC

	TID [kGy]		NIEL $[n_{\rm eq}/{\rm cm}^2]$		SEE $[h/cm^2]$	
ASIC	2.26	(2.25)	4.9×10^{13}	(2)	$7.7 imes 10^{12}$	(2)
COTS (multiple lots)	30.2	(30)	$19.6 imes 10^{13}$	(8)	3.1×10^{13}	(8)
COTS (single-lot)	7.5	(7.5)	$4.9 imes 10^{13}$	(2)	7.7×10^{12}	(2)
LVPS between TileCal fingers (barrel)	6.0	(30)	4.4×10^{13}	(8)	$8.0 imes 10^{12}$	(8)
LVPS at PP2 (barrel)	0.39	(30)	2.4×10^{12}	(8)	3.4×10^{11}	(8)
LVPS between TileCal fingers (endcap)	4.26	(30)	$9.8 imes 10^{12}$	(8)	1.5×10^{12}	(8)
HEC LVPS	0.32	(2.25)	2.4×10^{12}	(2)	3.8×10^{11}	(2)

- Higher luminosity induce significant increase of the radiation dose
 - Legacy front-end electronic to be replaced
- Profit from latest technologies
- Should cope with higher trigger rates
- 4 main components to be re-worked:
 - Shaping + Digitization Calibration
 - Processing

Digitization & Shaping boards (FEB2)

- Custom ASICs Design :
 - ALFE: custom 130 nm CMOS ASIC
 - preamp-shaping CR-(RC)²
 - 2 gains
 - COLUTA: custom 65 nm CMOS ASIC
 - Rad-hard ADC
 - >11 bits precision and 14 bits of dynamic range
- Front-End Board (FEB2) prototype in preparation with :
 - Latest version of ASICs
 - Full scale number of with **128 channels** \bullet
 - Work ongoing to finalise rad-hard powering

 10^{-3}

10-4 +

 10^{-4}

 10^{-3}

- 32 Preamp-shaper (ALFEs) 32 ADCs (COLUTAs) 22 serializer (lpGBT)

1524 FEB2 will be mounted on the detector

Energy resolution

Input Current [mA]

 10^{-1}

 10^{-2}

Calibration boards

- Inject known pulse into the cryostat for calibration purposes
- Needed 2 custom mades ASIC
 - CLAROC: HF Switch 180 nm XFAB
 - LADOC: 130 nm CMOS ASIC for 16b DAC
- Very good pulse linearity over the full expected range
- Radiation hardness under test
- Full scale board in preparation
- 122 calibration boards will be mounted on the detector

Full scale board diagram

Timing/Control/Monitoring boards

- LATOURNETT board for time control and monitoring of front-end
- ATCA board with High 13 FPGA (1 master and 12 slaves)
- Each LATOURNETT could control up to 72 front-end boards
- Should transmit both timing an control commands to front-end via Radhard IpGBT protocol through optical links
- Ethernet commands (asynch. with LHC) and timed-in signals (synch. with LHC) are merged into a single synch. IpGBT frame
- 30 boards will be for the whole detector
- Clock jitter < 1 ns at the front-end level

Prototype of LATOURNETT board

LATOURNETT-only, Critical Sensors

Data processing board (LASP)

Detailed schematics of the firmware blocks and main signal paths on the processing boards

- The processing board (LASP) receive ADCs from up to 6 FEB2 and process energies values out of them for each LHC bunch crossing (40 MHz)
- ATCA board with 2 large FPGA (AGILEX) + Smart Rear Transition Module (SRTM) with a SOC (Zyng)
- The 278 boards should in total receive and process an amount of **0.34 Pbps.**
- Rad-hard IpGBT protocol used for data transmission from lacksquaredetector
 - Up to 132 links @10.24 Gbps for each board
- Should provide energy values @40 MHz for trigger decision
- Should buffer data for ~10 μ s before sending it to DAQ
- Very complex firmware under development to meet all those requirements

Online energy computation

- There is more in Anne-Sophie's talk
- With higher luminosity more particle will deposit energies on the detector
- More chance to have pulse close in time in a single readout channel
 - Current method of Optimal Filtering is E_T [GeV] 50 not sufficiently precise anymore
- Plan to used advanced neural network algorithms embedded in FPGA to compute the energies in such harsh conditions

10

Examples of overlapping pulses

Integration & Tests GBT Jag

- Integrated within a "mini" readout chain have been built at CERN
 - 32 channels digitizer (FEB2) test board
 - Processor (LASP) test board with previous generation of FPGA
 - Services (timing/control/readout) based on legacy hardware
- Now preparation of a "medium" readout chain
 - 14 FEB2 read simultaneously
- Installation on ATLAS detector to start in 2027

FEB2 (Digitizer) test board with 32 channels

LASP (processor) test board

Summary

- Liquid argon calorimeter upgrade for HL-LHC is on track
- ASICs for front-end boards have been validated and production has started
- Full scale prototype boards of each type in preparation
- First integration test demonstrated successful communication between boards
- More achievements expected soon!

en validated and type in preparation successful

Backup

References

- ATLAS Document
- Phase-2 scoping document
- Liquid Argon Calorimeter Phase-2 Technical design report