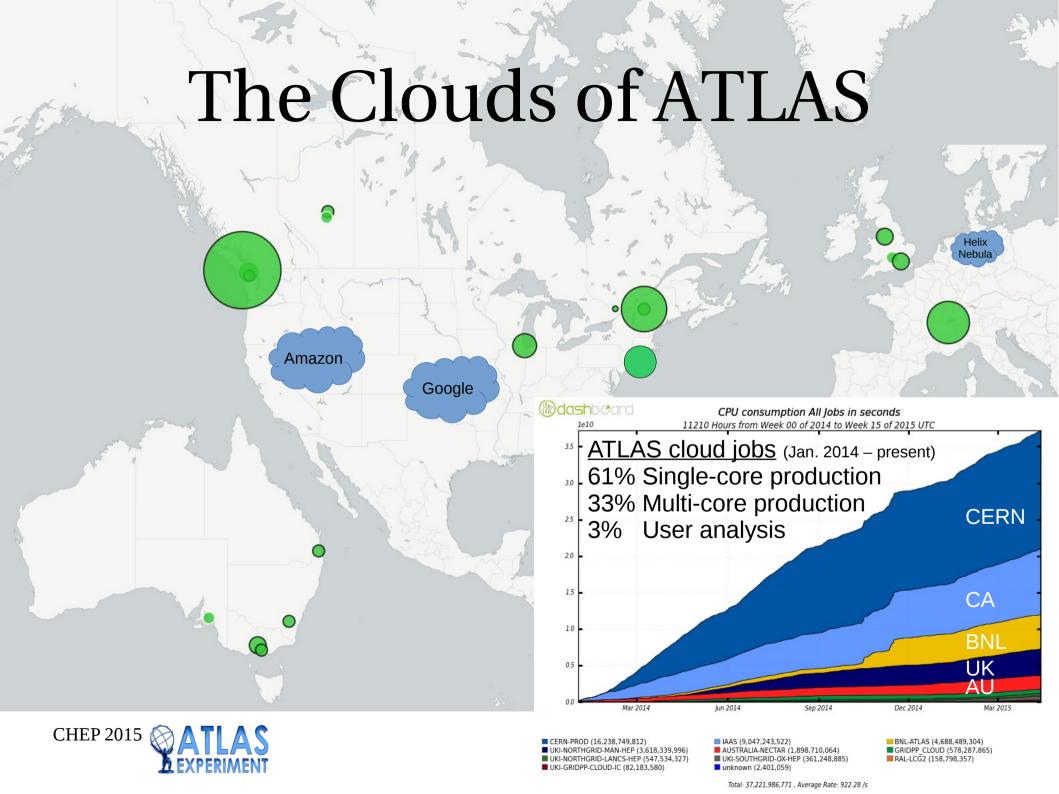
The Evolution of Cloud Computing in ATLAS

Ryan Taylor

on behalf of the ATLAS collaboration



21st International Conference on Computing in High Energy and Nuclear Physics CHEP2015 Okinawa Japan: April 13 - 17, 2015

Outline

- Cloud Usage and IaaS Resource Management
- Software Services to facilitate cloud use
- Sim@P1
- Performance Studies
- Operational Integration
 - Monitoring, Accounting

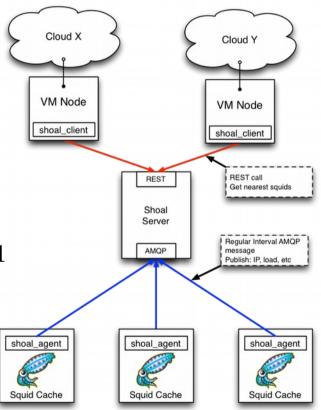
IaaS Resource Management

- HTCondor+Cloud Scheduler, VAC/VCycle, APF
- See talk 131 "HEP cloud production using the CloudScheduler/HTCondor Architecture" (C210, Tue. PM)
- Dynamic Condor slots to handle arbitrary job requirements
 - e.g. single-core, multi-core, high-mem
- uCernVM image
- Contextualization using cloud-init
- Using *Glint* Image Management System
 - see poster 304

Shoal Proxy Cache "Federator"

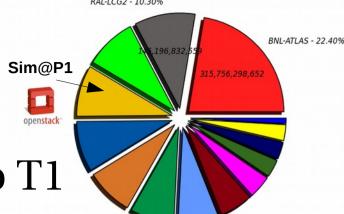
Build a fabric of proxy caches

- configurationless topology
- robust
- scalable


Needed to run uCernVM at scale

- By default, DIRECT connection to closest Stratum 0/1
- Contextualize instances to find proxy using Shoal

```
[ucernvm-begin]
CVMFS_PAC_URLS=http://shoal.heprc.uvic.ca/wpad.dat
CVMFS_HTTP_PROXY=auto
[ucernvm-end]
```


Also use Shoal for Frontier access

Currently under investigation

Sim@P1

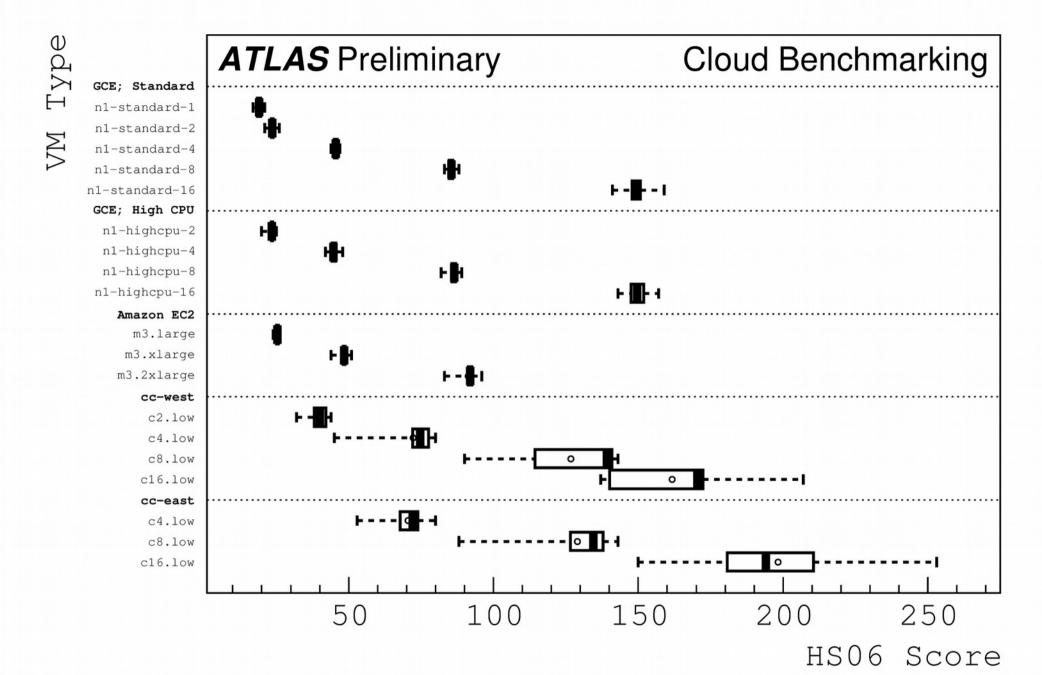
Resource contribution similar to T1

- 34M CPU hours, 1.1B MC events

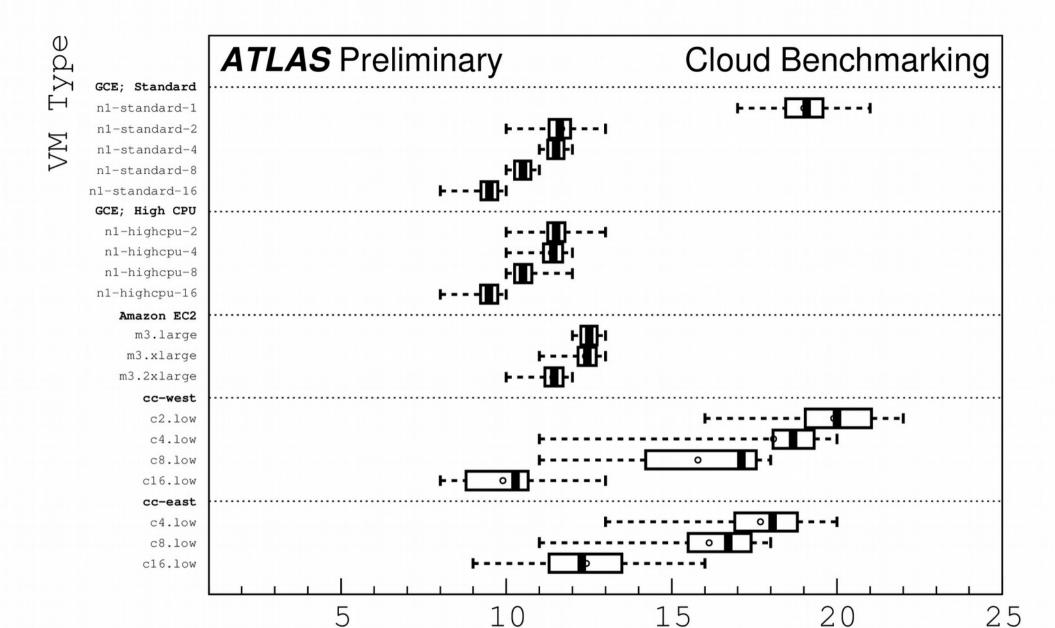
Jan,1 2014 - present

• Used for LHC stops > 24h

BNL-ATLAS - 22.40% (315.756,298.652) TRUMF-LCG2 - 8.76% (123,507,958,791) TCRN-PROD - 8.61% (121,296,702,907) FZK-LCG2 - 7.45% (105,012,391,024) NOGF-T1 - 5.56% (78,376,167,085) NIKHEF-ELPROD - 2.99% (42,105,052,337) - 6.60R.MATUN - 7.09% (420, 51,56,426,426)

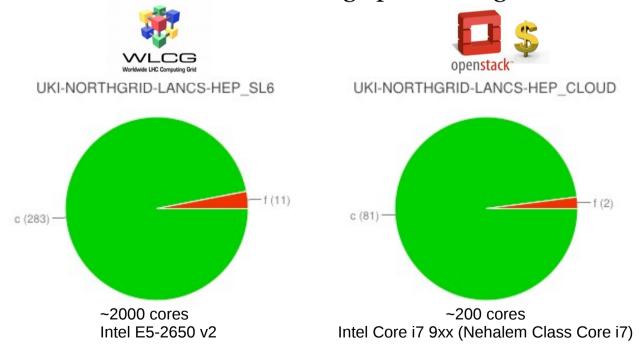

■ INFN-T1 - 8.00% (112,780,682,709) ■ IN2P3-CC - 6.87% (96,782,310,500) ■ TAIWAN-LCG2 - 3.87% (54,496,246,718) ■ PIC - 2.91% (41,009,430,947) ■ RRC-KI-TI - 0.91% (12,847,981,135)

- Fast automated switching via web GUI for shifters
 - TDAQ to Sim@P1: 20m (check Nova DB, start VMs)
 - Sim@P1 to TDAQ: 12m (graceful VM shutdown, update DB)
 - Emergency switch to TDAQ: 100s (immediate termination)
- See poster 169



HS06 Benchmarking Study

- Commercial clouds provide on-demand scalability
 - e.g. urgent need for beyond pledged resources
- But how cost-effective are they?
- Comparison to institutional clouds



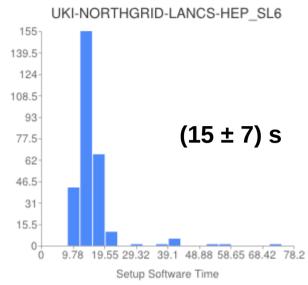
HS06 Score / Number of vCPUs

T2 & Remote Cloud Performance Comparison

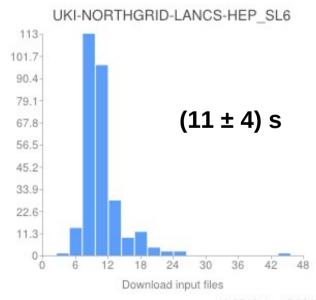
- Used Hammercloud stress tests (24 hour stream)
- Data and squid cache at grid site
 - Remote access for cloud site
 - like zero-storage processing site

Success rate similar

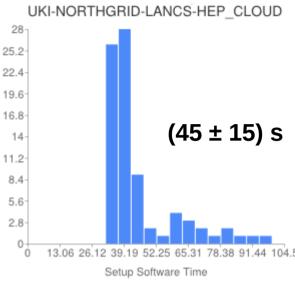
HC 20052434 MC12 AtlasG4 trf 17.2.2.2

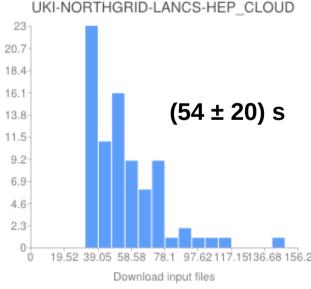


Software setup time


- Relies on CVMFS cache and Squid proxy
- VMs have to fill up empty cache

Local vs. remote storage access

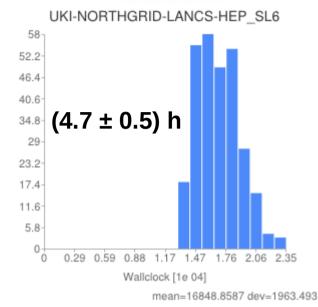




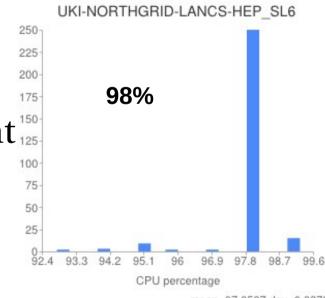
mean=10.8516 dev=3.8615

mean=45.0247 dev=14.9757

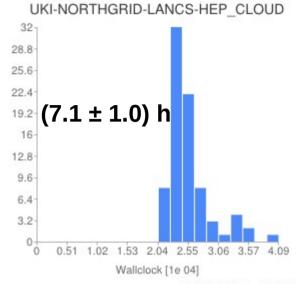
mean=54.1481 dev=20.506

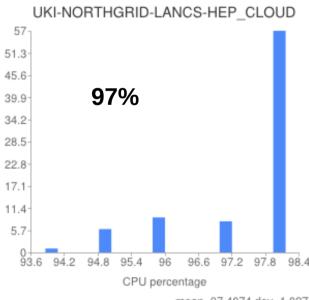


openstack*


Total running time

- 1.5x longer on cloud
- different CPUs
- hyperthreading?
- data & software access time not significant



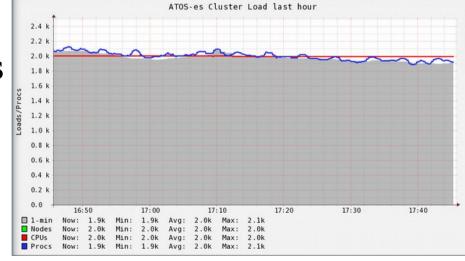

- Cloud usage is efficient 150 for this workload
- No significant performance penalty

mean=97.8587 dev=0.8372

mean=25521.8395 dev=3669.562

mean=97.4074 dev=1.0277

Cloud Monitoring


- VM management becomes the responsibility of the VO
- Basic monitoring is required
 - Detect and restart problematic VMs
 - Identify "dark" resources (deployed but unusable)

- Can identify inconsistencies in other systems through

cross-checks

Common framework for all VOs

- Implemented with Ganglia
- http://agm.cern.ch

Cloud Accounting

- Provider-side: commercial invoice for resources delivered
- Consumer-side: record resources consumed
- Need to cross-check invoice against recorded usage!

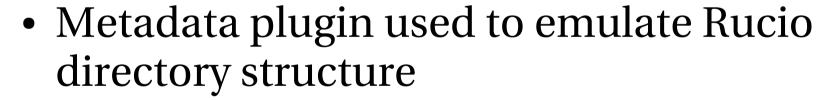
http://cloud-acc-dev.cern.ch/monitoring/ATLAS

JSON							
vo: ATLAS ‡	YE.	AR: 2015	‡	Search:			
Site	Wall ≎ Duration(h)	CPU \$ Duration(h)	CPU \$ Count	Network ≎ inbound(Gb)	Network ≎ outbound(Gb)	≎ Memory(GB)	Disk(GB) ≎
ANALY_NECTAR	1345684.93	909621.80	132.71	1160206.53	169450.58	3347.57	125998.71
BIFI	317963.41	335909.38	28.34	284018.06	12353.41	867.31	32572.42
CERN-PROD_CLOUD	7441207.81	4618307.88	748.26	2028791.80	206220.29	13275.43	609617.97
CESNET-METACLOUD	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CETA-GRID	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DBCE	138418.61	9433.99	8.30	5389.89	160.14	37.88	6964.81
FZJ	99643.91	94402.51	10.91	118243.78	2887.58	373.50	18966.25
GRIDPP_CLOUD	65524.94	36181.48	7.31	2141.50	184.52	94.78	7222.18
HELIX_NEBULA_ATOS	561591.75	216889.48	35.41	31936.93	2911.78	555.35	29481.60
HELIX_NEBULA_CloudSigma	415.49	216.53	0.12	938.36	12.98	1.51	91.28
HELIX_NEBULA_TSystems	0.00	0.00	0.00	0.00	0.00	0.00	0.00
IAAS	476845.83	317833.51	48.86	120680.72	13853.08	484.93	33280.22
IAAS_MCORE	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Conclusion

- Increasing use of clouds in ATLAS Distributed Computing
- Performance characterization of commercial clouds
- More integration into operational model
 - accounting, monitoring, support
- Developing and deploying services to facilitate cloud use

Extra Material


Dynamic Federation UGR

- Lightweight, scalable, stateless
- General-purpose, standard protocols and components

- Could be adopted by multiple experiments
- e.g. DataBridge, LHCb demo: http://federation.desy.de/fed/lhcb/

- No site action needed to join
 - HTTP endpoints extracted from AGIS with script

RACF/BNL Amazon Project

Enabled by \$200k grant from Amazon to run all ATLAS workloads at large scale

Encompasses provisioning/compute, storage, networking, and ATLAS workflow.

VMs via Imagefactory and templates/profiles.

VM runtime config by cloud-init->Hiera->masterless Puppet.

Provisioning via AutoPyFactory, HTCondor-G. HTCondor batch pool.

3 EC2 regions and 12 instance types to maximize capacity. Spot market.

SRM/GridFTP EC2 instance w/ S3FS back end. One per region.

Ultimately S3 native storage endpoint. Job stage-in/out via S3.

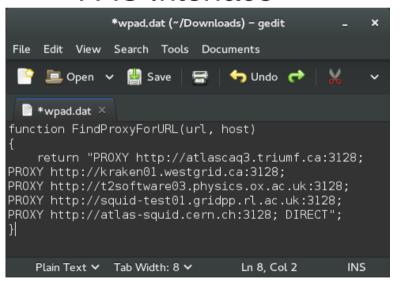
10/100Gb peering and 10Gb DirectConnect to 3 regions via ESNet.

Data egress fees waived as long as <15% of total cost.

Event service nearing completion w/ S3 objectstore, active deletion, and EC2 merge jobs.

S3 storage support in Rucio/DDM.

2.5k node/20k core tested so far, 100k core final goal

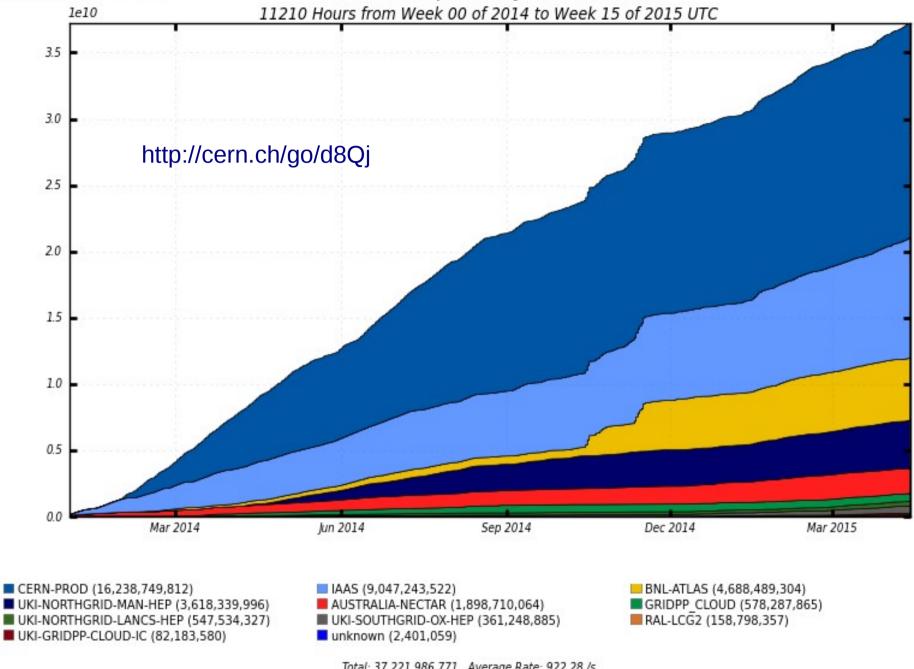


List of Active Squids

5 active in the last 180 seconds

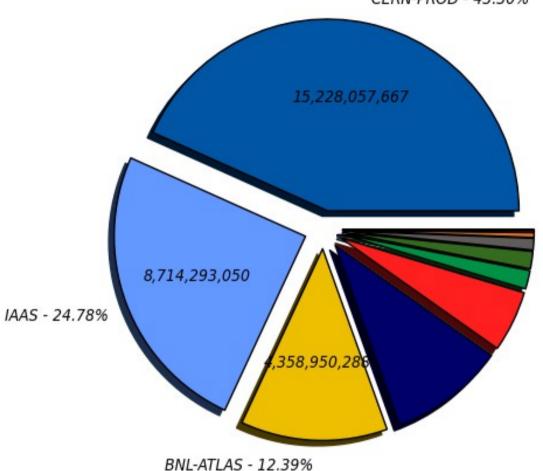
#	Hostname	Public IP	Private IP	Bytes Out	City	Region	Country	Latitude	Longitude	Last Received	Alive	Verified	Access Level
•	squid-test01.gridpp.rl.ac.uk	130.246.183.249		0 kB/s	Appleton		United Kingdom	51.7	-1.35	7s	42h40m43s	✓	Global
2	kraken01.westgrid.ca	206.12.48.249	172.22.2.25	809 kB/s	Vancouver		Canada	49.2836	-123.1041	10s	107h49m9s	✓	Global
3	atlascaq3.triumf.ca	142.90.110.68		0 kB/s	Vancouver		Canada	49.2765	-123.2177	20s	166h20m3s	✓	Global
4	atlas-squid.cern.ch	128.142.200.105		0 kB/s	Geneva		Switzerland	46.1956	6.1481	22s	166h19m59s	×	Global
5	t2software03.physics.ox.ac.uk	163.1.5.175		35 kB/s	Oxford		United Kingdom	51.75	-1.25	26s	166h18m56s	✓	Global

PAC Interface

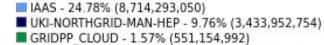

github.com/hep-gc/shoal

CHEP 2013 Poster

CPU consumption All Jobs in seconds



CPU consumption Good Jobs in seconds (Sum: 35,171,369,721) CERN-PROD - 43.30%

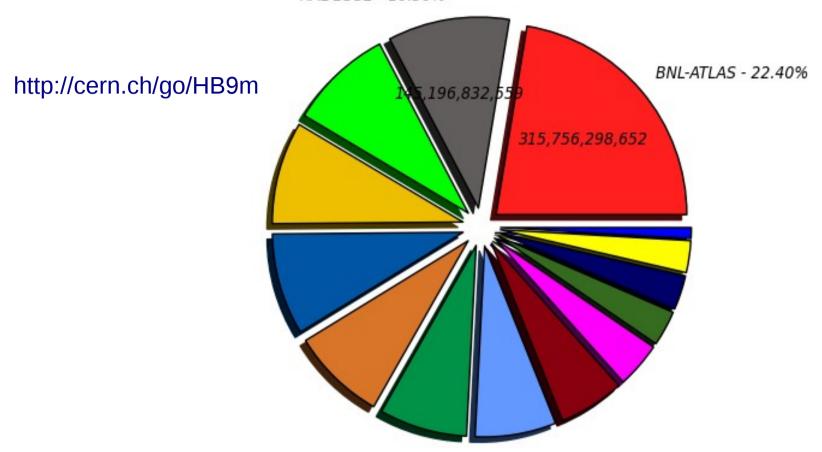


AUSTRALIA-NECTAR - 5.16% (1,814,557,950)

■ UKI-NORTHGRID-LANCS-HEP - 1.45% (510,576,626)

RAL-LCG2 - 0.40% (141,790,156)

unknown - 0.00% (242,844)


■ UKI-SOUTHGRID-OX-HEP - 0.98% (343,132,582)

UKI-GRIDPP-CLOUD-IC - 0.21% (74,660,812)

CPU consumption Good Jobs in seconds (Sum: 1,409,504,237,701) RAL-LCG2 - 10.30%

- BNL-ATLAS 22.40% (315,756,298,652)
- TRIUMF-LCG2 8.76% (123,507,958,791)
- CERN-PROD 8.61% (121,296,702,907)
- FZK-LCG2 7.45% (105,012,391,024)
- NDGF-T1 5.56% (78,376,167,085)
- NIKHEF-ELPROD 2.99% (42,105,052,337)
- SARA-MATRIX 2.70% (38,051,259,244)

- RAL-LCG2 10.30% (145,196,832,559)
- CERN-P1 8.68% (122,284,923,093)
- INFN-T1 8.00% (112,780,682,709)
- IN2P3-CC 6.87% (96,782,310,500)
- TAIWAN-LCG2 3.87% (54,496,246,718)
- PIC 2.91% (41,009,430,947)
- RRC-KI-T1 0.91% (12,847,981,135)

