Searches for a heavy Higgs boson at ATLAS PLHC 2012: 4-9th June, Vancouver

Alex Martyniuk, University of Victoria On behalf of the ATLAS collaboration

08/06/2012

ATLAS & LHC The Higgs

Outline

Event display of a $ee\mu\mu$ candidate event with $m_{4/} = 209.7$ GeV.

ATLAS & LHC The Higgs

ATLAS & LHC

- ATLAS is a general purpose detector
- Almost full 4π layered coverage
- 2011 data taking efficiency at \approx 93.5%
- Recorded 5.25fb⁻¹
- Runs with good data quality $\approx 90 96\%$
- Peak $\mathcal{L} = 3.6 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$

Alex Martyniuk Searches for a

ATLAS & LHC The Higgs

The Higgs Boson

- Higgs mechanism is the source of electroweak symmetry breaking in the SM
- Provides mass to the vector bosons and the fermions
- The Higgs boson is a physical manifestation of the scalar field
- Electroweak data along with measurements of the top and W mass strongly favour a light SM Higgs
- Models beyond the SM can contain a high mass Higgs
- Important to complement indirect exclusions with a direct search in the region
- In the remainder of the talk a heavy Higgs is assumed to have m_H ≥ 200GeV

Alex Martyniuk Searches for a heavy Higgs boson at ATLAS

The SM channels The combination

The pieces of the puzzle

Higgs Decay	Subsequent Decay	Additional Sub-Channels	m _H Range	L [fb ⁻¹]
$H \rightarrow \gamma \gamma$	-	9 sub-channels ($p_{T_t} \otimes \eta_{\gamma} \otimes \text{conversion}$)	110-150	4.9
$H \rightarrow ZZ$	lll'l'	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	110-600	4.8
	llvv	$\{ee, \mu\mu\} \otimes \{\text{low pile-up, high pile-up}\}$	200-280-600	4.7
	llgą	{b-tagged, untagged}	200-300-600	4.7
$H \rightarrow WW$	lvlv	$\{ee, e\mu, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, VBF\}$	110-300-600	4.7
	lvgg'	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}\}$	300-600	4.7
$H ightarrow au^+ au^-$	ll4v	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{1\text{-jet}, VBF, VH\}$	110-150	4.7
	$\ell \tau_{had} 3 \nu$	$ \{e, \mu\} \otimes \{0\text{-jet}\} \otimes \{E_T^{\text{miss}} \ge 20 \text{ GeV} \} \\ \oplus \{e, \mu\} \otimes \{1\text{-jet}, \text{VBF} \} $	110-150	4.7
	$\tau_{had}\tau_{had}2v$	{1-jet}	110-150	4.7
$VH \rightarrow b\overline{b}$	$Z \rightarrow v \overline{v}$	$E_T^{\text{miss}} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\}$	110-130	4.6
	$W \rightarrow \ell v$	$p_T^W \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	110-130	4.7
	$Z \rightarrow \ell \ell$	$p_T^Z \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	110-130	4.7

LHC Higgs x-sec pages

- ATLAS analyses make use of the various Higgs production and decay modes
- The low mass channels were covered in the previous session by Tatsuya
- Beyond $m_H \ge 2m_V$ the Higgs is expected to predominantly decay to two on-shell vector bosons
- Therefore in the range $m_H = 200 600$ GeV the ATLAS searches are dominated by the diboson channels

The SM channels

$H \rightarrow ZZ \rightarrow IIII'$

- Analysis uses m_{A1} distribution as the discriminating variable
- Three separate channels combined: 4μ , $2e2\mu$, 4e
- Clean signature with a low background
- Provides good sensitivity over large mass range
- Mass resolution $\approx 1.5\%(2\%)$ in $4\mu(e)$ channel at $m_H = 120$ GeV
- Deviations from the background expectation are observed at 125, 244 and 500 GeV
- Local significances of 2.1σ , 2.3σ and 2.2σ respectively
- None remain significant when the look-elsewhere effect is taken into account
- In high mass regions this channel excludes a SM Higgs mass in three ranges 182 - 233 GeV, 256 - 265 GeV and 268 - 415 GeV
- Phys. Lett. B710 383-402 (2012)

Searches for a heavy Higgs boson at ATLAS

The SM channels The combination

$H \to ZZ \to I I u ar{ u}$

- Analysis uses m_T distribution as the discriminating variable
- Two channels are combined: $2\mu 2\nu$, $2e2\nu$
- Provides significant decay branching fraction combined with distinct signature of a high _{PT} lepton pair with large E^{miss}_T
- Separate selections are made in the low (m_H < 280 GeV) and high (m_H > 280 GeV) mass regions
- Data sample of 4.7fb⁻¹ split into low (2.3fb⁻¹) and high (2.4fb⁻¹) pileup regions
- No significant excesses are seen in the full mass range
- The channel by itself excludes a SM Higgs mass in the range 320 < m_H < 560 GeV</p>
- arXiv:1205.6744 Submitted to PLB

intries / 20 GeV

The SM channels The combination

H ightarrow ZZ ightarrow Ilqar q

- Analysis uses m_{IIjj} distribution as the discriminating variable
- Two channels are combined: 2µqq̄, 2eqq̄
- Separate selections are made in the low (m_H < 300 GeV) and high (m_H > 300 GeV) mass regions
- Analysis is further split into tagged (2 b-tags) and untagged selections (< 2 b-tags)
- The tagged selection offers greater rejection of the dominant Z+jets background
- No significant excesses are seen in the full mass range
- The channel by itself excludes a SM Higgs mass in the ranges 300 < m_H < 310 GeV and 360 < m_H < 400 GeV</p>
- ATLAS-CONF-2012-017

The SM channels The combination

$H \rightarrow WW \rightarrow I \nu I \nu$

Alex Martyniuk Searches for a heavy Higgs boson at ATLAS

The SM channels The combination

$H \rightarrow WW \rightarrow I \nu I \nu : MVA \text{ Results}$

The SM channels The combination

$H \rightarrow WW \rightarrow I \nu q \bar{q}$

- Analysis uses m_{WW} distribution as the discriminating variable
- Two channels are combined: $\mu \nu_{\mu} q \bar{q}$, $e \nu_{e} q \bar{q}$
- Analysis is split into 0, 1 and 2 additional jet categories
- Monte Carlo studies performed to provide a background parameterisation which is validated in M_{ii} sidebands
- No significant excesses are seen in the full mass range
- The best sensitivity in this channel occurs at 400 GeV
- Here an upper limit on the H → WW cross section of 2.6 pb is set
- This corresponds to 2.2 times the SM prediction
- ATLAS-CONF-2012-018

11/14

The SM channels The combination

Combination result

- The channels shown have been combined to give the overall ATLAS Higgs search result
- Systematics in the combination are taken to be either 100% correlated or 100% uncorrelated between channels
- In the absence of a signal expect to exclude the Standard Model Higgs boson at 95% C.L. between: 120 < m_H < 555 GeV
- Observed exclusion at 95% C.L.: 110 < m_H < 117.5, 118.5 < m_H < 122.5, 129 < m_H < 539 GeV</p>
- Observed exclusion at 99% C.L.: 130 < m_H < 486 GeV</p>
- A SM high mass Higgs is therefore excluded by this combination below m_H < 539 GeV</p>
- ATLAS-CONF-2012-019

The SM channels The combination

A closer look

- The exclusion in the high mass region is dominated by the ZZ contributions
- The WW channels also contribute, but require more data to exclude on their own
- The two high mass fluctuations observed in the ZZ → IIII channel are not significant in the combination
- A far larger fluctuation would be expected for a SM signal in these regions
- Throughout the excluded range the signal strength is fully consistent with the background only hypothesis

Searches for a heavy Higgs boson at ATLAS

Alex Martyniuk

Summary and Outlook

- Searches for the Higgs boson have been undertaken in a wide range of channels using the full ATLAS 2011 dataset of up to 4.9fb⁻¹
- The allowed SM Higgs mass range has been severely restricted by the limits set by ATLAS
- The remaining allowed regions are 117.5 < m_H < 118.5 GeV, 122.5 < m_H < 129 GeV or m_H > 539 GeV
- At a 99% C.L. the exclusion is still strong excluding a range of $130 \le m_H \le 486 \text{ GeV}$
- The LHC is back up and running well at 8 TeV
- Expect in the region of 15-20 fb⁻¹ of data delivered this year
- Focus now turns to extending the searches to higher masses and probing further for none SM strength signals

BACKUP

Typical Systematics

 Systematics in the combination are taken to be either 100% correlated or 100% uncorrelated between channels

Object	Source	Uncertainty on signal yield	Channel(s) most affected
	Luminosity	3.9%	All
Photons	Efficiency	11%	$H \rightarrow \gamma \gamma$
Electrons	Efficiency	< 3%	$H \rightarrow ZZ \rightarrow 4\ell$
	Energy scale	< 1%	
	Energy resolution	< 0.5%	
Muons	Efficiency	< 1%	$H \rightarrow ZZ \rightarrow 4\ell$
	Momentum resolution	< 1%	
Jets	Energy scale	Up to 12%	$H \rightarrow \tau \tau, b\bar{b}, ZZ \rightarrow \ell \ell q q, WW \rightarrow \ell \nu q q$
	Resolution	Up to 20%	$H \rightarrow WW \rightarrow \ell \nu q q$
<i>b</i> -jets	Efficiency	Up to 15%	$H \rightarrow b\overline{b}$
τ -jets	Efficiency	Up to 8%	$H \rightarrow \tau \tau$

Selected theoretical uncertainties

	ggF	VBF	WH/ZH	
QCD scale	±12% +8%	$\pm 1\%$	$\pm 1\%$	
$PDF + \alpha_s$	$\pm 8\%$	$\pm 4\%$	$\pm 4\%$	
Mass lineshape	$150\% imes (rac{m_H}{ ext{TeV}})^3$			

Breaking down the combination

Breaking down the combination

•
$$CL_S(\mu) = \frac{p_{\mu}}{1-p_b}$$

Breaking down the combination

 Investigate local p₀ - the probability for the background to fluctuate and give an excess of events as large or larger than that observed

Breaking down the combination

 Investigate local p₀ - the probability for the background to fluctuate and give an excess of events as large or larger than that observed

Breaking down the combination

• Blue band plots - Show the best fit of the signal strength w.r.t. the SM expectation $\mu = \frac{\sigma}{\sigma_{SM}}$

Alex Martyniuk Searches for a heavy Higgs boson at ATLAS