

Run Number: 204474 Event Number: 73848585 Date: 2012-06-05, 15:33:33 CET

Electron: black Cells: Tiles, EMC Jets: Arrows Jet: E = 271 GeV φ = 109 ° η = 0.25

SEARCHES FOR SUPERSYMMETRY IN EVENTS CONTAINING A Z BOSON, JETS AND MISSING TRANSVERSE MOMENTUM

NExT Workshop

Jet: E = 154 GeV Φ = 131 °

φ = 131 η = 1.9 E = 129 GeV φ = 100° η = 1.4

29 April 2015

Emma Kuwertz on behalf of the ATLAS Collaboration

Electron: P =-87 GeV Pt= 86 GeV φ = 332°

University of Victoria

Electron: P = 64 GeV Pt= 18 GeV φ = 325° η = -2

Overview

Presenting a search for SUSY in final states with a leptonically decaying Z boson, at least two jets and missing transverse energy (MET).

R-parity conservation

MET from escaping LSPs

Quarks from gluino and squark decays

jets in the final state

http://arxiv.org/abs/1503.03290 20.3 fb⁻¹, $\sqrt{s} = 8$ Te

Recent results from CMS:

<u>http://arxiv.org/abs/1502.06031</u> 19.4 fb⁻¹, $\sqrt{s} = 8 \,\, {\rm TeV}$

SUSY signal scenarios

Analysis is optimised towards **general gauge mediated** SUSY models (GGM)

- Gravitino LSP
- Prompt higgsino NLSP

Event selection

- At least 2 isolated leptons
- At least 2 jets
- 2 same-flavour opposite-sign (SFOS) leptons with 81<m_{II}<101 GeV

Control regions are used for background estimations

Validation regions are used to check background estimates

Event selection

$\mathrm{On} ext{-}Z$ Region	$E_{ m T}^{ m miss} \ [{ m GeV}]$	$H_{ m T} \ [{ m GeV}]$	$n_{ m jets}$	$m_{\ell\ell} \ [{ m GeV}]$	SF/DF
Signal region	ons				
SR-Z	> 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF
Control reg	ions				
Seed region	-	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF
$CRe\mu$	> 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	DF
CRT	> 225	> 600	≥ 2	$m_{\ell\ell}\notin[81,101]$	SF
Validation	regions				
VRZ	< 150	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF
VRT	150 – 225	> 500	≥ 2	$m_{\ell\ell} \notin [81, 101]$	SF
$\overline{\mathrm{VRTZ}}$	150-225	> 500	≥ 2	$81 < m_{\ell\ell} < 101$	$\overline{\mathrm{SF}}$

Background estimation overview

	Background	Estimation method	Generator
	Fake leptons: Multi-jets W → lnu Z → nunu Single top	Matrix method	
Instrumental		Matrix method	
MET		Matrix Method	•
	$DY/Z \rightarrow 11$	Jet smearing	Sherpa
Dominant backgrounds	ttbar	Flavour-symmetry	Powheg+Pythia Powheg+Jimmy Alpgen
	Single top (Wt) WW	Flavour-symmetry	Powheg+Pythia
		Flavour-symmetry	Powheg
	WZ	MC	Powheg+Pythia8
	ZZ	MC	Powheg+Pythia8
	tt+W, tt+WW, tt+Z, t+Z	MC	MadGraph+Pythia

Data driven backgrounds

MC backgrounds

"Flavour-symmetric" backgrounds

Estimation strategy

ttbar, Wt, WW, Z→tautau

Flavour symmetric

 $ee: \mu\mu: e\mu = 1:1:2$

Electron-muon channel → same-flavour channel

Estimate in SF channel

Data e-mu channel

$$N_{ee}^{ extbf{est.}} = rac{1}{2} N_{e\mu} \, k_{ee} \, lpha$$
 $N_{\mu\mu}^{ extbf{est.}} = rac{1}{2} N_{e\mu} \, k_{\mu\mu} \, lpha$

Reconstruction efficiency scale factor

Trigger efficiency scale factor

"Flavour-symmetric" backgrounds

Reconstruction efficiency scale factors

$$k_{ee} = \sqrt{\frac{N_{ee}^{\text{VRZ}}}{N_{\mu\mu}^{\text{VRZ}}}},$$

$$k_{\mu\mu} = \sqrt{rac{N_{\mu\mu}^{\mathsf{VRZ}}}{N_{ee}^{\mathsf{VRZ}}}}$$

Use the number of events selected in Z dominated event samples in data

Trigger efficiency scale factors

$$\alpha = \frac{\sqrt{\epsilon_{ee}^{\mathrm{trig}}\epsilon_{\mu\mu}^{\mathrm{trig}}}}{\epsilon_{e\mu}^{\mathrm{trig}}}$$

Different channels use different triggers

→ need to account for this in efficiency correction

Side band fit

Normalise ttbar MC in Z side bands

• Alpgen+Pythia, Powheg+Pythia, Powheg +Jimmy

Cross check this cross check using identical regions at lower MET

Flavour-symmetry method also checked!

Signal region	Flavour-symmetry	Sideband fit
SR-Z ee SR-Z $\mu\mu$	2.8 ± 1.4 3.3 ± 1.6	4.9 ± 1.5 5.3 ± 1.9

Consistent results from cross-checks Good agreement in validation regions

Jet smearing method

No real MET in $Z \rightarrow ll$ events

Define a **seed** region

well measured jets low MET

Smear jet p_T and phi with jet response function

Bulk tuned to data using di-jet analysis

Non-Gaussian tails tuned to data using 3-jet analysis

29/04/2015

"Pseudo-data"

E. Kuwertz - Z+jets+MET

Jet smearing - Z+jets background

Use high statistics Sherpa Z+jets MC to cross check data driven estimate

Signal region	Jet-smearing	Z+jets MC
SR-Z ee SR-Z $\mu\mu$	$0.05 \pm 0.04 \\ 0.02^{+0.03}_{-0.02}$	0.05 ± 0.03 0.09 ± 0.05

Fake leptons

"Fake" lepton background:

- lepton from heavy flavour decay,
- electron from photon conversion,
- muon from meson decaying in flight,
- mis-identified hadron.

The matrix method

Analysis selects **isolated** leptons

→ remove isolation criteria

Number of leptons failing isolation

$$N_{\rm fake} = \frac{N_{\rm fail} - (1/\epsilon^{\rm real} - 1)N_{\rm pass}}{(1/\epsilon^{\rm fake} - 1/\epsilon^{\rm real})}$$

Number of leptons passing isolation

Relative identification efficiency for fake leptons Relative identification efficiency for real leptons

Results

SR-Z ee	SR-Z $\mu\mu$	SR-Z same-flavour combined
16	13	29
4.2 ± 1.6	6.4 ± 2.2	10.6 ± 3.2
2.8 ± 1.4	3.3 ± 1.6	6.0 ± 2.6
0.05 ± 0.04	$0.02^{+0.03}_{-0.02}$	0.07 ± 0.05
0.18 ± 0.06	0.17 ± 0.06	0.35 ± 0.12
1.2 ± 0.5	1.7 ± 0.6	2.9 ± 1.0
$0.1^{+0.7}_{-0.1}$	$1.2^{+1.3}_{-1.2}$	$1.3_{-1.3}^{+1.7}$
	16 4.2 ± 1.6 2.8 ± 1.4 0.05 ± 0.04 0.18 ± 0.06	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

3 sigma

An excess of events is observed in the signal regions

Excess more apparent in dielectron channel

Unblinded distributions

 H_T distributions

Events / 25 GeV Flavour Symmetric \sqrt{s} = 8 TeV, 20.3 fb⁻¹ Other Backgrounds 10 SR-Z ee $m(\tilde{g}), \mu = (700, 200) \text{GeV}^{-}$ m(g),μ=(900,600)GeV MET distributions 6 250 300 350 400 450 500 200 E^{miss} [GeV]

ATLAS vs CMS

Exclusion limits on GGM models

Limits set on GGM models are weaker than expected

Exclude up to m(gluino) = 900 GeVand mu = 1000 GeV

Exclude up to m(gluino) = 850 GeVand mu = 900 GeV

μ [GeV]

Conclusion and outlook

- ATLAS search for SUSY in final states with a Z boson, jets and MET presented.
- A 3 sigma deviation from the Standard Model expectation was observed.
- CMS reports good agreement with expectation in the same final state but phase space cuts are different.
- Something to look out for in Run II.

