Emma Kuwertz ICNFP – Kolymbarí, Crete 22-30 August 2015

Supersymmetry Searches in ATLAS

University of Victoria

The Standard Model... as of LHC run 1

Energy

Standard particles Higgs boson discovery in $2012 \rightarrow$ the SM is complete! Н Higgs ... but open questions remain Quarks eptons Force particles Η Velocity Force strength strong weak Η EM Distance

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

Recent ATLAS summary paper on run 1 searches for third generation squarks [arXiv:1506.08616]

Strongly produced SUSY GGM higgsino-like neutralino, µ>0

No evidence for physics beyond SM:

- M(gluino) lower limit @ \sim 1140 GeV for higgsino-bino NLSP (right)
- M(qluino) lower limit @ \sim 1260 GeV for higgsino-bino NLSP (lower left)
- M(qluino) lower limit $@ \sim 1300$ GeV for bino NLSP (lower right)

 $m_{m_{e}^{0}}$ [GeV]

Observed limit (±1 $\sigma_{\text{theory}}^{\text{SUSY}}$

Expected limit $(\pm 1 \sigma_{exp})$

چ 1700 گ

μ[GeV]

All limits at 95% CL

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

 $SR_{\mu}^{\gamma j}$ and $SR_{\mu}^{\gamma j}$ analyses

ATLAS

∑₀¹⁸⁰⁰ 5 1700

arXiv:1507.05493

 $m_{\tilde{\gamma}^0}$ [GeV]

ee+μμ ee

VRTZ

VRTZ

^{(high} Ң)

VRTZ

(high E_T^{miss})

SR

μμ

10

4

2

n

-2

CRT

VRT

VRT

(high H)

VRT

(high E^{miss}

- N_{exp}) / σ_{tot}

N obs Excess of events observed in on-Z SR

- 1.7 σ excess in $\mu \mu$
- 3.0 σ excess in ee CMS did not report an excess in this

channel

arXiv:1506.05332 Search for metastable heavy charged particles

Use missing transverse momentum triggers

- → Most efficient for LLPs decaying within detector volume
- → For light neutralinos high momentum jets contribute to energy imbalance

Scan of phenomenologícal MSSM parameter space

- 19 dimensional phenomenological MSSM sampled
- 310,000 models surviving all theory and non-LHC experimental constraints
- interpreted using results from 22 ATLAS run 1 searches

Conclusions

- An enormous variety of searches undertaken during LHC run 1 covering many different production and decay modes and final states.
- No evidence for physics beyond the SM during run 1 \rightarrow experiments have published many exclusion limits, continuing to constrain SUSY parameter space.
- All eyes are now on run 2: will we find something in the new data? If so will it be SUSY?
- Whatever the new data brings, SUSY provides us with enough diversity to build analyses that push further into the uncovered corners of possibilities.

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: July 2015

Sta	atus: July 2015						$\sqrt{s} = 7, 8 \text{ TeV}$
	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	$\int \mathcal{L} dt [\mathbf{fb}]$	¹] Mass limit $\sqrt{s} = 7$ TeV $\sqrt{s} = 8$ TeV	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow \tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow \tilde{q}\tilde{\chi}_{1}^{0} \\ (\text{compressed}) \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q(\ell\ell \lceil \ell \nu / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{0} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow qq(\ell\ell \lceil \nu / \nu \nu) \tilde{\chi}_{1}^{0} \\ \text{GMSB} (\ell \text{ NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{Gravitino LSP} \end{array} $	$\begin{array}{c} 0.3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 2 \ e, \mu \ (off-Z) \\ 0 \\ 0 \\ 0-1 \ e, \mu \\ 2 \ e, \mu \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets 2 jets 2 jets 2 jets mono-jet	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20 20 20.3 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1507.05525 1405.7875 1507.05525 1503.03290 1405.7875 1507.05525 1501.03555 1407.0603 1507.05493 1507.05493 1507.05493 1507.05493 1503.03290 1502.01518
3 rd gen. <i>§</i> med.	$ \begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{1} \end{array} $	0 0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	\$\tilde{s}\$ 1.25 TeV m(\$\tilde{t}^0]\$<400 GeV \$\tilde{s}\$ 1.1 TeV m(\$\tilde{t}^0]\$<350 GeV \$\tilde{s}\$ 1.34 TeV m(\$\tilde{t}^0]\$<400 GeV \$\tilde{s}\$ 1.3 TeV m(\$\tilde{t}^0]\$<300 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{c} \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1} (natural GMSB) \\ \tilde{t}_{2}\tilde{t}_{2}, \ \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (SS) \\ 1 - 2 \ e, \mu \\ 0 - 2 \ e, \mu \ (Z) \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets/1-2 nono-jet/c-ta 1 b 1 b	Yes Yes Yes b Yes ag Yes Yes	20.1 20.3 4.7/20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 1404.2500 1209.2102, 1407.0583 1506.08616 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{split} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \to \ell \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \to \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \to \tilde{\tau} \nu(\tau \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \to \tilde{\ell}_L \nu \tilde{\ell}_L \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_L \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \to W \tilde{\chi}_1^0 \Lambda \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \to W \tilde{\chi}_1^0 \Lambda \tilde{\chi}_1^0, h \to b \tilde{b} / W W / \tau_1 \\ \tilde{\chi}_2^0 \tilde{\chi}_2^0, \tilde{\chi}_2^0, \tilde{\chi}_2^0, \tilde{\chi}_1 \in \mathcal{K}_2 \end{split} $ GGM (wino NLSP) weak prod.	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ -/γγ e,μ,γ 4 e,μ 1 e,μ + γ	0 0 0-2 jets 0-2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^-$ Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^-$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu\nu/\mu\mu\nu$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow Z\tilde{G}$		1 jet - 1-5 jets - - μ - is -	Yes Yes - - Yes - -	20.3 18.4 27.9 19.1 19.1 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1310.3675 1506.05332 1310.6584 1411.6795 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{c} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \; RPV \; CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow ee\tilde{\nu}_{\mu}, e\mu\tilde{\nu}_{\tau}, \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau\tau\tilde{\nu}_e, e\tau\tilde{\nu}_{\tau}, \\ \tilde{g}s, \tilde{g} \rightarrow qq \\ \tilde{g}s, \tilde{g} \rightarrow q\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq \\ \tilde{g}s, \tilde{g} \rightarrow \tilde{\chi}_1^0, \tilde{\chi}_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell \end{array} $	$\begin{array}{c} e\mu, e\tau, \mu\tau \\ 2 \ e, \mu \ (SS) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (SS) \\ 0 \\ 2 \ e, \mu \ (SS) \\ 0 \\ 2 \ e, \mu \end{array}$	- 0-3 b - - 6-7 jets 6-7 jets 0-3 b 2 jets + 2 b 2 b	Yes Yes Yes - Yes - Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1502.05686 1404.250 ATLAS-CONF-2015-026 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	č 490 GeV m(x̃_1)<200 GeV	1501.01325
					1(⁻¹ 1 Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.