LATEST RESULTS FROM THE MONO-X CHANNELS

Kenji Hamano (University of Victoria) DM@LHC 2016 in Amsterdam

University of Victoria

Dark Matter Searches at LHC

- Dark Matter (DM) exists ← cosmological observations.
- Particle nature of DM is completely unknown.
- LHC may be able to produce DM particles, but detectors (ATLAS or CMS) cannot detect them (MET).
- We need a SM particle recoil against DM to trigger the events → mono-X (+ MET) searches.

q

Mono-X models

- Full theory to predict dark matter particles: SUSY, Extra Dimensions, etc:
 - George Redlinger's talk on SUSY searches.
- Simplified Models:
 - One DM and one mediator particles in addition to SM.
 - Five parameters:
 - DM mass, mediator mass, mediator width, mediator SM coupling, mediator DM coupling.
- Effective Field Theory (EFT) models.
 - The mediator is integrated out.
 - Two parameters (less model dependent):
 - DM mass, effective energy scale.
 - Variety of operators: D5 (vector), D6 (axialvector) etc.
 - Valid only where "momentum transfer Q < mediator mass".
 - This can be a problem in Run2 (higher energy, 13 TeV).

 χ

 $\overline{\chi}$

Mono-X channels

- X = Vector Boson or Higgs are covered.
 - Highlights are on 13 TeV analysis (all ATLAS at this moment)
- Mono-photon
 - Low background.
- Mono-Z or mono-W
 - Z can be emitted from mediator in t-channel.
 - Hadronic decay mode → larger cross section
 - Leptonic decay mode \rightarrow cleaner signature.
- Mono-H
 - No ISR (Initial State Radiation) Higgs.
 - H can be emitted from mediator in s-channel.
 - H -> bb decay mode \rightarrow larger cross section.
 - H -> $\gamma\gamma$ decay mode \rightarrow clean signature.
- VVxx (HHxx) contact interaction is unique.
- Other mono-X:
 - Mono-jet: Andreas Korn's talk.
 - Mono-heavy quark(s): Alberto Zucchetta's talk.

Λ	I at LHC	2016	(Amsterdam)	4

Mono-photon	8 TeV	ATLAS: arXiv:1411.1559[hep-ex] CMS: arXiv:1410.8812
	13 TeV	ATLAS: https://atlas.web.cern.ch/Atlas/ GROUPS/PHYSICS/PAPERS/ EXOT-2015-05/
Mono-Z/W (hadr)	8TeV	ATLAS: arXiv:1309.4017[hep-ex] CMS: CMS PAS EXO-12-055
	13 TeV	ATLAS: ATLAS-CONF-2015-080
Mono-Z(II)	8 TeV	ATLAS: arXiv: 1404.0051[hep-ex] CMS: arXiv: 1511.09375
Mono-W(Iv)	8 TeV	ATLAS: arXiv:1407.7495[hep-ex] CMS: arXiv:1408.2745[hep-ex]
Mono-H(bb)	8 TeV	ATLAS: arXiv:1510.0621[hep-ex]
	13 TeV	ATLAS: ATLAS-CONF-2016-019
Mono-H(gamgam) 8 TeV	ATLAS: arXiv:1506.01081[hep-ex]
	13 TeV	ATLAS: ATLAS-CONF-2016-011

Simplified model parameters in Run2

- Based on the Dark Matter Forum recommendation (arXiv:1507.00966 [hep-ex]).
- Dark matter: Dirac particles.

- Mediator: Vector, Axialvector, Scalar or Pseudoscalar particles.
- Mediator width: minimal width = sum of contributions from DM and quarks lighter than a half of the mediator mass.
- S-channel coupling constants:
 - Coupling to DM: g_{DM} = 1.0
 - Coupling to SM: universal to all quarks.
 - Vector and Axialvector: $g_{SM} = 0.25$ (larger values are constrained by dijet searches, also to keep the mediator width narrow).
 - Scalar and Pseudoscalar: $g_{SM} = 1.0$
- T-channel couplings: $g_{DM} = g_{SM} = 0.1 7$

Mono-photon Signal simulation

- Simplified model
 - Axial vector mediator
 - Higher cross section than scalar.
 - Corresponds to spin-dependent interaction
 - \rightarrow Direct detection has lower sensitivity.
- γγXX contact interaction
 - EW coupling: $k_1 = k_2 = 1.0$
 - Suppression scale: Λ = 3.0 TeV

6

13 TeV

Mono-Photon Results

• ATLAS: 13 TeV, 3.2 fb⁻¹

	SR	1muCR	2muCR	2eleCR	PhJetCR
Observed events	264	145	29	20	214
Fitted background	295 ± 34	145 ± 12	27 ± 4	23 ± 3	214 ± 15
$Z(\rightarrow \nu\nu) + \gamma$	171 ± 29	0.15 ± 0.03	0.00 ± 0.00	0.00 ± 0.00	8.6 ± 1.4
$W(\rightarrow \ell \nu) + \gamma$	58 ± 9	119 ± 17	0.14 ± 0.04	0.11 ± 0.03	22 ± 4
$Z(\rightarrow \ell \ell) + \gamma$	3.3 ± 0.6	7.9 ± 1.3	26 ± 4	20 ± 3	1.2 ± 0.2
γ + jets	15 ± 4	0.7 ± 0.5	0.00 ± 0.00	0.03 ± 0.03	166 ± 17
Fake photons from electrons	22 ± 18	1.7 ± 1.5	0.05 ± 0.05	0.00 ± 0.00	5.8 ± 5.1
Fake photons from jets	26 ± 12	16 ± 11	1.1 ± 0.8	2.5 ± 1.3	9.9 ± 3.1
Pre-fit background	249 ± 29	105 ± 14	23 ± 2	19 ± 2	209 ± 50

- Statistical error 9%
- Systematic error 11%
 - Main systematic error: Electron and Jet fake rate.
- Dominant background:
 - Z(vv)+γ, W(lv)+γ
 - Fake electrons and jets
 - Estimated from CR (control regions)

Photon p_T

Mono-Photon Limits

Truncated = non-valid region is removed

Mono-Photon Limits

Truncated = EFT non-valid region is removed

Mono-W/Z (hadronic) Results

•	AT	LAS:	13	TeV,	3.2	<u>fb</u> -1

Process	events
Z+jets	519 ± 31
W+jets	326 ± 22
$t\bar{t}$ and single-top	217 ± 18
Diboson	88 ± 12
Total Background	1150 ± 30
Data	1143

- Main systematic error:
 - Modeling of large-R jets 5 10%
- Main background:
 - Z+jets, W+jets, ttbar
 - One muon and two muon control region was used.

Mono-W/Z (hadronic) Limits

Simplified model (vector mediator):

Simplified model

10⁻³

10-35

10⁻³⁶

10⁻³⁷¹

10⁻³⁸ 10-39 10-40

10-4

10-43

10-44

10-45

10⁻⁴⁶

10-47

1

ENON100 2012 -- - ATLAS mono-W/Z I

10

10²

10³ 1 [GeV]

cross-section [cm²]

х-N 10 8 TeV

10⁻⁴¹

 10^{3}

CMS

 M_{γ} (GeV)

10²

10

COUPP 2012

10³ [GeV] m_ر

10²

10

Mono-H Signal simulation (1)

- Simplified model
 - Vector mediator Z', with mass m_{Z'}
 - g_{DM} = 1.0, g_q = 1/3
 - Z'-Higgs coupling: g_{Z'} = m_{Z'}
 - Baryonic Higgs SM Higgs mixing: sinθ=0.3
- Heavy scalar model
 - Heavy scalar H, with mass m_H
 - Lagrangian:

$$\mathcal{L}_{H} = -\frac{1}{4} \beta_{g} \kappa_{hgg}^{\text{SM}} G_{\mu\nu} G^{\mu\nu} H + \beta_{V} \kappa_{hVV}^{\text{SM}} V_{\mu} V^{\mu} H$$

Mono-H Signal simulation (2)

- Two Higgs Doublet Model (2HDM)
 - Vector mediator Z', with mass m_{Z'}
 - Pseudo-scalar Higgs boson A, with mass m_A
 - DM mass fixed: m_{DM} = 100 GeV
 - The ratio of the v.e.v. of two doublets: tanβ=1
 - SM Higgs heavy scalar Higgs mixing angle $\alpha = \beta \pi/2$

(SM Higgs h, heavy scalar H, pseudo-scalar A, charged scalars H⁺ and H⁻ are the 5 Higgs bosons after symmetry breaking.)

NEW

Mono-H(bb) Results

• ATLAS 13 TeV, 3.2 fb⁻¹; 4 signal regions:

$E_{\mathrm{T}}^{\mathrm{miss}}$	Resolved			Merged
(GeV)	150-200	200-350	350-500	>500
Z + jets	258.52 ± 26.81	171.24 ± 13.13	14.63 ± 1.21	3.80 ± 0.44
W + jets	94.78 ± 27.79	70.14 ± 21.67	7.51 ± 2.42	2.48 ± 0.71
$t\bar{t}$ & Single top	1444.38 ± 44.39	656.02 ± 24.51	30.76 ± 1.41	4.83 ± 0.88
Multijet	21.38 ± 9.96	10.89 ± 5.08	0.58 ± 0.27	-
Diboson	17.84 ± 1.62	18.73 ± 0.98	2.53 ± 0.22	1.20 ± 0.12
SMVh	2.77 ± 1.30	2.78 ± 1.40	0.46 ± 0.23	0.15 ± 0.08
Tot. Bkg.	1839.68 ± 33.12	929.80 ± 19.63	56.47 ± 2.08	12.47 ± 1.27
Data	1830	942	56	20
Exp. Signal	80.15 ± 7.95	244.53 ± 17.76	160.58 ± 11.56	149.28 ± 33.67

Resolved, 2 b-tag

Merged, 2 b-tag

- Stat error 20.5%
- Systematic error 10.3%
- Main background:
 - Z+jets, W+jets, ttbar
 - Estimated from
 1and 2 lepton CR

Mono-H(bb) Limits

2HDM

Simplified model

 $m_A < 500 \text{ GeV}$ is excluded.

 $m_{7'}$ < 900 GeV is excluded.

Mono-H(yy) Results

• ATLAS 13 TeV, 3.2 fb⁻¹; 4 signal regions

Mono-H(yy) Limits

Simplified model:

Heavy scalar model:

m_н [GeV]

Conclusions

- Mono-γ/Z/W/H dark matter searches were presented for ATLAS and CMS.
- These are
 - Clean channels.
 - No-ISR processes are possible.
- Simplified models are the main focus in Run2 (13 TeV).
- Mediator mass exclusion
 - Mono-photon: 710 GeV
 - Mono-H(bb): 900 GeV
- Better exclusion at low mass than direct detection experiments.

Backup: Mono-Photon event selection and background estimation 1 muon CR

- 13 TeV, 3.2 fb⁻¹
- Event selection:
 - Photon trigger with threshold of $p_T > 120$ GeV.
 - · Well reconstructed and isolated photon:
 - p_T > 150 GeV, |η| < 2.37.
 - * |z| < 0.25 m (suppress beam induced photons) .
 - MET > 150 GeV.
 - $\Delta \phi(\gamma, MET) > 0.4$ (back to back).
 - Lepton veto (suppress W/Z events).
 - Rejects events with more than 1 jet.
- Low background:
 - Z(vv)+γ (irreducible): simulation normalized in two leptons control region.
 - W(Iv)+γ and Z(II)+γ with missing lepton(s): simulation normalized in single muon and two leptons control regions.
 - γ+jets with missing jets: simulation normalized in low MET control region.
 - W/Z + jets, top, diboson:
 - Fake photon from leptons: determine electron-to-photon misidentification factor with Z(ee) sample -> apply it to e+MET sample.
 - Fake photon from jets: ABCD method with photon ID and isolation.

Backup: Mono-W/Z(hadronic) Event

Selection and Backgrounds

- 13 TeV, 3.2 fb⁻¹, MET trigger
- Event Selection
 - W or Z candidate = large-R jet
 - MET > 250 GeV, and track based MET: p-MET > 30 GeV
 - Min[Δφ(MET,jets)] > 0.6 : no jets near MET
 - Δφ(MET,p-MET) < π/2: track MET align to MET
 - Lepton veto
- Background estimation
 - Two muons CR: Z+jets
 - One muon and no b-tagged track jets CR: W+jets
 - One muon and b-tagged track jets CR: ttbar

13 TeV

Backup: Mono-H(bb) Event Selection

- 13 TeV, 3.2 fb^{-1,} MET trigger.
- MET > 150 GeV, and track based MET: p-MET > 30 GeV
- Lepton veto (no isolated electron or muon with pT>7GeV)
- H candidate:
 - Two small-R jets (j₁ and j₂) in resolved region (MET<500GeV)
 - Leading jet $p_T > 45 \text{ GeV}$
 - One large-R jet in merged region (MET>500GeV)
 - 1 or 2 b-tagged jet(s).
- Resolved region : cuts to suppress multi-jets background
 - min[$\Delta \phi$ (MET,jets)] > 20 deg: No jets near MET.
 - $\Delta \phi$ (MET,p-MET) < 90 deg: MET and track MET align.
 - $\Delta \phi$ (MET,Higgs) > 120 deg: MET and H go back-to-back.
 - $\Delta \varphi(j_1, j_2) < 140$ deg: Two jets are not back-to-back.

Backup: Mono-H(bb) Background Estimation

- W+jets and ttbar with missing lepton: One-muon control region.
- Z+jets with missing leptons: Two-lepton control region
- Multi-jet background (resolved region): data-driven method. Derived from multi-jet dominant region.

Backup: Mono-H(bb) Systematic errors

Systematic errors

Source of uncertainty	Impact (%)
Total	23.0
Statistical	20.5
Systematic	10.3
Experimental Unc	ertainties
<i>b</i> -tagging	6.6
Luminosity	4.4
$\text{Jets} + E_T^{\text{miss}}$	2.8
Leptons	0.4
Theoretical and Modelin	g Uncertainties
Тор	5.1
Z+jets	3.4
Signal	2.6
W+jets	1.5
Diboson	0.6
Multijet	0.5
VH	0.4

Backup: Mono-H(bb) Limits

Backup: Mono-H(bb) Limits

2HDM limits

mA = 300 GeV, mZ' = 700 - 1300 GeV is excluded

Backup: Mono-H(yy) Event selection and Backgrounds

- 13 TeV, 3.2 fb⁻¹, photon trigger.
- Event selection:
 - H candidate = two isolated photons with pT > 25 GeV, |n| < 2.37

Category	$E_{\rm T}^{\rm miss}$ [GeV]	$p_{\rm T}^{\rm hard}$ [GeV]	$p_{\rm T}^{\gamma\gamma}$ [GeV]
High $E_{\rm T}^{\rm miss}$, high $p_{\rm T}^{\gamma\gamma}$	> 100	-	> 100
High $E_{\rm T}^{\rm miss}$, low $p_{\rm T}^{\gamma\gamma}$	> 100	-	≤ 100
Intermediate $E_{\rm T}^{\rm miss}$	$> 50 \text{ and } \le 100$	> 40	-
Rest	-	-	> 15

- H mass window [105 GeV, 160 GeV]
- Signal and background are parameterized:
 - Signal : a double sided Crystal Ball (DSCB) function
 - Background:
 - An analytical function is chosen from background MC samples.
 - Evaluated by fitting to background dominant data.

Backup: Mono-H(yy) Systematic errors

Systematic errors:

Source	Maximum uncertainty (%)	
Experi	mental	
Luminosity	5	
Trigger efficiency	0.4	
Vertex selection	3.6 (Intermediate), 20 (High $E_{\rm T}^{\rm miss}$)	
Photon identification efficiency	2.8	
Photon energy scale	1	
Photon energy resolution	2	
Photon isolation efficiency	4	
$E_{\rm T}^{\rm miss}$ reconstruction	1 (Rest), 20 (Intermediate and High $E_{\rm T}^{\rm miss}$)	
Pile-up reweighting	4.5	
Theoretical		
QCD scale uncertainty of ggH $p_{\rm T}$ spectrum	10 - 20	
Modelling of ggH $E_{\rm T}^{\rm miss}$ spectrum	25	
PDF	9	
MPI	1 (Intermediate), 50 (High $E_{\rm T}^{\rm miss}$)	
$BR(h \rightarrow \gamma \gamma)$	4.9	