New ATLAS results in SUSY searches for 3rd generation squarks and ElectroWeak production

Claire David on behalf of the ATLAS collaboration University of Victoria

SUSY in ATLAS: 3rd generation squark production

Motivations

SUSY models conserving R-Parity \downarrow Lightest Supersymmetric Particle (LSP) stable \downarrow Event with large Missing Transverse Momentum (E_T^{miss})

p

2

b/t

Sbottom/stop production: different decay modes depending on mass hierarchy.

Direct sbottom production $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$

1308.2631

Direct sbottom: $b_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h(bb) \tilde{\chi}_1^0$

ATLAS-CONF-2013-061

Direct stop in: $\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^{\pm}$ $\tilde{t_1} \rightarrow t + \tilde{\chi}$ ATLAS-CONF-2013-065 5 Stop can decay into variety of final states \rightarrow dependence of mass hierarchy between lightest Chargino/Neutralino. Analysis completes the high-BR 0 lepton & 1 lepton searches. Here 2 leptons + 2 b-jets: p- purer, less efficient selection with m_{T_2} between *b*-jets - strongly optimized MVA analysis $m(\tilde{t}_1) > m(t)$ $m(\tilde{t}_1) - m(\tilde{\chi}_1^{\pm}) > m(b)$ Model Stop decays to lightest chargino / neutralino (LSP) with W decaying leptonically E_{T}^{miss} + 2 opposite sign lepton (e, μ) + 2 *b*-jets **Final states** $m_{\mathrm{T2}}(\mathbf{p}_{\mathrm{T}}^{1}, \mathbf{p}_{\mathrm{T}}^{2}, \mathbf{q}_{\mathrm{T}}) = \min_{\mathbf{q}_{\mathrm{T}}^{1} + \mathbf{q}_{\mathrm{T}}^{2} = \mathbf{q}_{\mathrm{T}}} \left\{ \max[\ m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{1}, \mathbf{q}_{\mathrm{T}}^{1}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{2}, \mathbf{q}_{\mathrm{T}}^{2}) \] \right\}$ Variable p_T for massless particle, min over all q_T decompositions $m_{T_2}(l, l, E_T^{miss})$ sharp bound > m_W $m_{_{\rm T2}}$ discriminant used in multivariate analysis (MVA) high cut on $\mathbf{m}_{T2}(b, b, l+l+\mathbf{E}_{T}^{\text{miss}}) = \mathbf{m}_{T2}^{b-jet}$ based on a Boosted Decision Tree (BDT) Sensitive to large stop/chargino Δm **Signal Regions** Small chargino/neutralino Δm Exploits geometric/kinematic features of stop decays Main bkgd Top quark pair & single top (Wt channel) Top quark pair and diboson productions **CRT**: SR with 1 b-jet \Rightarrow top quark pairs *tt* CRs: high m_{T2} cut **CRZ**: 81 < m_n < 101 GeV \Rightarrow Z/γ^* + jets $m_{\eta} \notin [61,121] \text{ GeV} \Rightarrow \text{high } t\bar{t} \text{ purity, kin. close to SR}$ Bkgd /CR **VRT:** $m_n \notin [81,101]$ GeV \Rightarrow top pair + Wt

ATLAS-CONF-2013-068

Model	if $\Delta m < m_W^2 + m_B^2 \Rightarrow de$ Using presence of In		
	small $\Delta m \Rightarrow$ ISR jet	medium $\Delta m \Rightarrow$ charm-jet	$\bigwedge \qquad \qquad$
Final states SR	0 lepton + $E_T^{miss} > 220 \text{ GeV}$ 1 st jet $p_T > 280 \text{ GeV}$ max 3 jets $p_T > 30 \text{ GeV}$	$0 \text{ lep } + \text{E}_{\text{T}}^{\text{miss}} > 410 \text{ GeV}$ $1^{\text{st}} \text{ jet } \text{p}_{\text{T}} > 270 \text{ GeV} + \text{min 3 jets}$ $2^{\text{nd}} 3^{\text{rd}} \text{ not } b \Rightarrow t\bar{t} \text{ reduction}$ $4^{\text{th}} \text{ medium } \textbf{c-tag} \rightarrow \text{new @ LHC!}$	$\Delta m = m_{\tilde{t}} - m_{\tilde{\chi}_{1}^{0}}^{\tilde{t}}$
Variable	$\Delta \phi_{\min}(\text{jet}, p_T^{\text{miss}}) > 0.4 \Rightarrow$	to reduce multijets background	
Main bkgd	$Z(\rightarrow \nu\nu) + jets$	$t\bar{t}$ W($\rightarrow l, \nu$) + jets	No excess observed. Exclusion limits at 95% CL:
Bkgd /CR EW : 1 lepton (e, μ) charm: 81< m _{$\mu\mu$} < 101 GeV \Rightarrow $t\bar{t}$ rejection Top : lower E _T ^{miss} and p _T <i>c</i> -tag \rightarrow <i>b</i> -tag Multijets : data driven <i>jet-smearing</i> method			$m_{\tilde{t}} < 200 \text{ GeV for } \Delta m < 85 \text{ GeV}$
ATLAS Prelir ATLAS Prelir 10 ³ Ldt=20.3 fb 10 ² 10 10 ¹ 10 ² 10 10 ² 10 10 ² 10 10 ² 400	minary $f^{-1}, NS = 8 \text{ TeV}$ $f^{-1}, $	$10^{4} \qquad \qquad \textbf{ATLAS Preliminary} \qquad \textbf{Data 2012} \\ \text{Standard Model} \\ W (\rightarrow I \lor) + jets \\ \textbf{I} (+X) + single top \\ Z (\rightarrow \lor \lor) + jets \\ \textbf{I} (+X) + single top \\ Z (\rightarrow \lor \lor) + jets \\ \textbf{I} (+X) + single top \\ \textbf{I} (-Y) + jets \\ \textbf{I} (+X) + single top \\ \textbf{I} (-Y) + jets \\ \textbf{I} (-$	Charm-tagged + Monojet-like selection Charm-tagged + Monojet-like selection Charm-tagged + Monojet-like selection Charm-tagged + Monojet-like selection Charm-tagged + Monojet-like selection Expected limit $(\pm 1 \sigma_{exp})$ LEP $(\theta = 0^{\circ})$ CDF (2.6 fb^{-1}) All limits at 95% CL 200 150 100 150 200 250 300 $m_{\tilde{t}}$ [GeV]

ElectroWeak production

Motivations

Stringent ATLAS/CMS limits on squark/gluino masses Naturalness \Rightarrow light Higgsinos \Rightarrow growing interest in Weak SUSY Direct production of charginos/neutralinos may dominate @ LHC Multilepton signatures: clean final states, neatly reconstructed

ATLAS-CONF-2013-069

10

_1 10

-2

10

10

 $\sigma_{tot}[pb]: pp \rightarrow SUSY$

 $\tilde{t}_1 \tilde{t}_1^*$

 $\sqrt{S} = 8 \text{ TeV}$

Two lepton (e, μ) analysis

Model	Large squark/gluino masses ⇒ direct chargino/neutralino/slepton production (mass: few 100 GeV)						
Final states	$E_{T}^{miss,rel} > 70 \text{ GeV} + 2 \text{ opposite-sign leptons (e, }\mu)$ W	Channel: only different-flavour e^{\pm} , μ^{\mp}					
Variable	$m_{\text{T2}} = \min_{\mathbf{q}_{\text{T}}} \left[\max \left(m_{\text{T}}(\mathbf{p}_{\text{T}}^{\ell 1}, \mathbf{q}_{\text{T}}), m_{\text{T}}(\mathbf{p}_{\text{T}}^{\ell 2}, \mathbf{p}_{\text{T}}^{\text{miss}} - \mathbf{q}_{\text{T}}) \right) \right]$ q _T min the 2 m _T . Presence of end-point at m _w for $t\bar{t}$ and WW	$m_{\rm T}(\mathbf{p}_{\rm T}, \mathbf{q}_{\rm T}) = \sqrt{2(p_{\rm T}q_{\rm T} - \mathbf{p}_{\rm T} \cdot \mathbf{q}_{\rm T})}.$ V events.					
Signal Regions	2 SR: sensitive to sleptons production $m_{T2} > 90 \text{ GeV}$, $m_{T2} > 110 \text{ GeV}$	3 SR: W($\rightarrow l, \nu$): m _{ll} p _{T,ll} m _{T2} cuts for light / heavier charginos					
Main bkgd	WW production (decaying leptonically)	+ top production					
Bkgd /CR	WW CR : Z veto, different flavor leptons (no Z/γ^* + jets) $t\bar{t}/top$ CR: Z veto, no m _{T2} cut ZV CR: Z and same flavor leptons	WW CRs: $\mathbf{E}_{T}^{\text{miss,rel}}$ cut inverted $t\bar{t}/top$ CR : at least 1 <i>b</i> -jet					

Two lepton (e, μ) analysis - Results

One lepton, 2 *b*-jets analysis **NEW!**

Observed and expected 95% CL limit contours for chargino and neutralino production

Decay via sleptons

100% BR \Rightarrow very strong exclusion

Decay via gauge bosons

ATLAS-CONF-2013-035

Exclusion limited by W and Z BR

SUSY Electroweak production - summary

SUSY 3rd generation squark and Electroweak production ¹⁵

Conclusions

Claire David - ICNFP 2013

Conclusions

	Model	e, μ, τ, γ	Jets	E ^{miss}	∫£ dt[fl	b ⁻¹]	Mass	limit		Reference
3rd gen. squarks direct production	$ \begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\ell}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\ell}_1^\pm \\ \tilde{t}_1 \tilde{t}_1(\text{light}), \tilde{t}_1 \rightarrow b \tilde{\ell}_1^\pm \\ \tilde{t}_1 \tilde{t}_1(\text{light}), \tilde{t}_1 \rightarrow b \tilde{\ell}_1^\pm \\ \tilde{t}_1 \tilde{t}_1(\text{medium}), \tilde{t}_1 \rightarrow b \tilde{\ell}_1^0 \\ \tilde{t}_1 \tilde{t}_1(\text{medium}), \tilde{t}_1 \rightarrow b \tilde{\ell}_1^\pm \\ \tilde{t}_1 \tilde{t}_1(\text{medium}), \tilde{t}_1 \rightarrow t \tilde{\ell}_0^0 \\ \tilde{t}_1 \tilde{t}_1(\text{heavy}), \tilde{t}_1 \rightarrow t \tilde{\ell}_1^0 \\ \tilde{t}_1 \tilde{t}_1(\text{heavy}), \tilde{t}_1 \rightarrow t \tilde{\ell}_1^0 \\ \tilde{t}_1 \tilde{t}_1(\text{netural GMSB}) \\ \tilde{t}_1 \tilde{t}_1(\text{medium}) = Z \end{split}$	0 2 e, µ (SS) 1-2 e, µ 2 e, µ 2 e, µ 0 1 e, µ 0 0 m 2 e, µ (Z) 3 e, µ (Z)	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b tomo-jet/c-t 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	61 61 61 61 61 61 61 61 61 61 61 61 61 6	110 <mark>-167 GeV</mark> 130-220 GeV 90-200 GeV	100-620 GeV 275-430 GeV 225-525 GeV 150-580 GeV 200-610 GeV 320-660 GeV 500 GeV	$\begin{array}{l} m(\tilde{\xi}_{1}^{0}) < 90 \ \text{GeV} \\ m(\tilde{\xi}_{1}^{\pm}) = 2 \ m(\tilde{\xi}_{1}^{0}) \\ m(\tilde{\xi}_{1}^{0}) = 55 \ \text{GeV} \\ m(\tilde{\xi}_{1}^{0}) = 55 \ \text{GeV} \\ m(\tilde{\xi}_{1}^{0}) = m(\tilde{t}_{1}) - m(\mathcal{W}) - 50 \ \text{GeV}, \ m(\tilde{t}_{1}) << m(\tilde{\xi}_{1}^{\pm}) \\ m(\tilde{\xi}_{1}^{0}) = 0 \ \text{GeV} \\ m(\tilde{\xi}_{1}^{0}) = 10 \ \text{GeV} \\ m(\tilde{\xi}_{1}^{0}) = 150 \ \text{GeV} \\ \end{array}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$ \begin{array}{c} \tilde{\ell}_{1,\mathrm{R}} \tilde{\ell}_{1,\mathrm{R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{0}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{0}^{0} \rightarrow \tilde{\ell}_{1} \nu \tilde{\ell}_{1} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{1} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{0}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{0}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{array} $	2 e, µ 2 e, µ 2 τ 3 e, µ 3 e, µ 1 e, µ	0 0 - 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	$ \hat{\tilde{\ell}} = \begin{bmatrix} \tilde{\tilde{\ell}} & & \\ \tilde{\chi}_{1}^{\pm} & & \\ \chi$	85-3 180- 3 285	15 GeV 125-450 GeV 330 GeV 600 GeV 15 GeV GeV	$\begin{split} m(\tilde{\ell}_{1}^{0}) = 0 \text{ GeV} \\ m(\tilde{\ell}_{1}^{0}) = 0 \text{ GeV} \\ m(\tilde{\ell}_{1}^{0}) = 0 \text{ GeV}, m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\ell}_{1}^{\pm}) + m(\tilde{\ell}_{1}^{0})) \\ m(\tilde{\ell}_{1}^{0}) = 0 \text{ GeV}, m(\tilde{\tau}, \tilde{\nu}) = 0.5(m(\tilde{\ell}_{1}^{\pm}) + m(\tilde{\ell}_{1}^{0})) \\ m(\tilde{\ell}_{1}^{\pm}) = m(\tilde{\ell}_{2}^{0}), m(\tilde{\ell}_{1}^{0}) = 0, m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\ell}_{1}^{\pm}) + m(\tilde{\ell}_{1}^{0})) \\ m(\tilde{\ell}_{1}^{\pm}) = m(\tilde{\ell}_{2}^{0}), m(\tilde{\ell}_{1}^{0}) = 0, \text{ sleptons decoupled} \\ m(\tilde{\ell}_{1}^{\pm}) = m(\tilde{\ell}_{2}^{0}), m(\tilde{\ell}_{1}^{0}) = 0, \text{ sleptons decoupled} \end{split}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093

All ATLAS SUSY results here: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

Backup slides

Direct sbottom production

$b_1 \to b \tilde{\chi}$	1 -	\rightarrow	$b\tilde{\chi}_{\pm}^{0}$

1308.2631

Control
regions

Signal regions

Description	Signal Regions			
Description	SRA	SRB		
Event cleaning	Common to	all SR.		
Lepton veto	No e/μ after overlap removal with	ith $p_{\rm T} > 7(6)$ GeV for $e(\mu)$		
$E_{\rm T}^{\rm miss}$	$> 150 { m ~GeV}$	$> 250 { m ~GeV}$		
Leading jet $p_{\mathrm{T}}(j_1)$	$> 130 { m ~GeV}$	$> 150 { m ~GeV}$		
Second jet $p_{\mathrm{T}}(j_2)$	> 50 GeV,	$> 30 { m ~GeV}$		
Third jet $p_{\rm T}(j_3)$	veto if $> 50 \text{ GeV}$	$> 30 { m ~GeV}$		
$\Delta \phi({m p}_{ m T}^{ m miss}, j_1)$	-	> 2.5		
b-tagging	leading 2 jets	2nd- and 3rd-leading jets		
	$(p_{\rm T} > 50 \text{ GeV}, \eta < 2.5)$	$(p_{\rm T}>30~{\rm GeV}, \eta <2.5)$		
	$n_{b ext{-jets}} = 2$			
$\Delta \phi_{\min}$	> 0.4	> 0.4		
$E_{\rm T}^{\rm miss}/m_{\rm eff}(k)$	$E_{\rm T}^{\rm miss}/m_{\rm eff}(2)>0.25$	$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}(3) > 0.25$		
$m_{ m CT}$	> 150, 200, 250, 300, 350 GeV	-		
$H_{\mathrm{T},3}$	-	$< 50 { m ~GeV}$		
m_{bb}	$> 200 { m ~GeV}$	-		

CRA_1L	CRA_SF	CRA_DF	
One e or μ	$e^{\pm}e^{\mp}$ or $\mu^{\pm}\mu^{\mp}$	$e^{\pm}\mu^{\mp}$	
Veto additional le	pton candidates $(p_{\rm T}(e) > 7 \text{ GeV } p_{\rm T}(\mu))$	> 6 GeV	
Only two	o reconstructed jets with $p_{\rm T} > 50~{\rm GeV}$	7	
$p_{\rm T}(j_1) > 130~{\rm GeV}$	$p_{\rm T}(j_1) > 50 { m ~GeV}$	$p_{\rm T}(j_1)>130~{\rm GeV}$	
$p_{\rm T}(j_2) > 50~{ m GeV}$	$p_{\rm T}(j_2) > 50~{ m GeV}$	$p_{\rm T}(j_2) > 50~{\rm GeV}$	
$E_{\rm T}^{\rm miss} > 100~{\rm GeV}$	$E_{\rm T}^{\rm miss}({\rm lepton-corrected}) > 100~{\rm GeV}$	$E_{\rm T}^{\rm miss} > 100~{\rm GeV}$	
Tv	we reconstructed <i>b</i> -jets $(p_{\rm T} > 50)$		
$40~{\rm GeV} < m_{\rm T} < 100~{\rm GeV}$	$75~{\rm GeV} < m_{\ell\ell} < 105~{\rm GeV}$	$m_{\ell\ell} > 50~{\rm GeV}$	
$m_{\rm CT} > 150~{\rm GeV}$	lepton $p_{\rm T} > 90~{\rm GeV}$	$m_{\rm CT} > 75~{\rm GeV}$	
_	$m_{bb} > 200 { m ~GeV}$	_	

CRB_1L	CRB_SF			
One e or μ	$e^{\pm}e^{\mp}$ or $\mu^{\pm}\mu^{\mp}$			
Veto additional lepton cano	didates $(p_{\rm T}(e) > 7 \text{ GeV} p_{\rm T}(\mu) > 6 \text{ GeV})$			
Only three reconstructed jets with $p_{\rm T} > 30~{\rm GeV}$				
$p_{\rm T}(j_1)>130~{\rm GeV}$	$p_{\rm T}(j_1) > 50~{\rm GeV}$			
$E_{\rm T}^{\rm miss}>120~{\rm GeV}$	$E_{\rm T}^{\rm miss}({\rm lepton-corrected}) > 100~{\rm GeV}$			
j_1 anti b -tag	ged; j_2 and j_3 b-tagged			
$40~{\rm GeV} < m_{\rm T} < 100~{\rm GeV}$	$75~{\rm GeV} < m_{\ell\ell} < 105~{\rm GeV}$			
_	Lepton $p_{\rm T} > 90~{\rm GeV}$			
$H_{\rm T,3} < 50~{ m GeV}$				

September 4

Claire David - ICNFP

Direct sbottom production

 $\tilde{b}_1 \to b \tilde{\chi}_1^0$

1308.2631

Channel	CRA_1L	CRA_SF	CRA_DF						
Observed events	136	68	76						
H	Fitted background events								
Total SM	136 ± 12	68 ± 8	76 ± 9						
Top production	92 ± 17	10.2 ± 1.4	75 ± 9						
Z production	0.42 ± 0.12	57 ± 8	$0.07^{+0.11}_{-0.07}$						
W production	40 ± 20	< 0.1	0.07 ± 0.03						
Others	3.8 ± 2.0	0.44 ± 0.19	0.39 ± 0.14						
	MC expected	d events							
Top production	100	11.0	82						
Z production	0.46	63	0.08						
W production	48	< 0.1	0.08						
Others	3.8	0.44	0.39						

	Channel	CRB_1L	CRB_SF
	Observed events	350	29
	Fitted b	ackground eve	nts
	Total SM	350 ± 19	29 ± 5
	Top production	323 ± 24	11.2 ± 1.4
	Z production	0.25 ± 0.12	17 ± 6
	W production	26 ± 16	< 0.1
	Others	1.1 ± 0.5	0.72 ± 0.27
	MC e	expected events	S
	Top production	293	10.2
	Z production	0.38	25
Claire David ·	W production	25	< 0.1
	Others	1.1	0.72

Direct sbottom production

$\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$

Results

Channel	SRA, $m_{\rm CT}$ selection						
	150 GeV	200 GeV	250 GeV	300 GeV	350 GeV		
Observed	103	48	14	7	3	58	
Total SM	92 ± 12	38 ± 6	15.3 ± 2.7	5.8 ± 1.2	2.6 ± 0.6	50 ± 9	
Top production	11.3 ± 1.8	2.5 ± 1.4	0.45 ± 0.25	< 0.01	< 0.01	34 ± 7	
Z production	64 ± 10	28 ± 5	11.1 ± 2.1	4.7 ± 0.9	2.0 ± 0.4	8 ± 3	
W production	12 ± 6	4.6 ± 2.5	2.0 ± 1.1	1.0 ± 0.5	0.48 ± 0.27	5 ± 4	
Others	4.3 ± 1.5	3.3 ± 1.3	1.8 ± 0.6	0.12 ± 0.11	$0.10^{+0.12}_{-0.10}$	1.5 ± 0.7	
Multijet production	0.21 ± 0.21	0.06 ± 0.06	0.02 ± 0.02	< 0.01	< 0.01	0.2 ± 0.2	

Signal Regions	Bkg. estimate	Obs. data	95% CL u		ipper limit	
			on BSM event yield		on $\sigma_{ m vis}$ (fb)	
			expected	observed	expected	observed
SRA ($m_{\rm CT} > 150 {\rm ~GeV}$)	92 ± 12	103	31 ⁺¹² ₋₈	39.2	$1.5^{+0.6}_{-0.4}$	1.95
SRA ($m_{\rm CT} > 200 \text{ GeV}$)	38 ± 6	48	18^{+7}_{-5}	25.9	$0.89^{+0.35}_{-0.25}$	1.29
SRA ($m_{\rm CT} > 250 \text{ GeV}$)	15.3 ± 2.7	14	$10.0^{+4.6}_{-2.9}$	9.2	$0.50^{+0.23}_{-0.14}$	0.46
SRA ($m_{\rm CT} > 300 \text{ GeV}$)	5.8 ± 1.2	7	$6.5^{+3.3}_{-2.1}$	7.6	$0.32^{+0.16}_{-0.1}$	0.38
SRA ($m_{\rm CT} > 350 {\rm ~GeV}$)	2.6 ± 0.6	3	$4.7^{+2.6}_{-1.6}$	5.2	$0.23^{+0.13}_{-0.08}$	0.26
SRB	50 ± 9	58	24+9	30.0	$1.21_{-0.35}^{+0.45}$	1.49

Gluino-mediated summary plots Gbb, Gtt, Gtb:

Direct sbottom: $\tilde{b}_1 \to b \tilde{\chi}_2^0 \to b h(bb) \tilde{\chi}_1^0$ (Atlas-conf-2013-061)

baseline selection: baseline lepton veto, $p_T^{j_1} > 90$ GeV, $E_T^{\text{miss}} > 150$ GeV, ≥ 4 jets with $p_T > 30$ GeV, **Signal regions** $\Delta \phi_{\min}^{4j} > 0.5$, $E_T^{\text{miss}}/m_{\text{eff}}^{4j} > 0.2$, ≥ 3 *b*-jets with $p_T > 30$ GeV

0-ℓ region	N jets	p_T jets [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}$ [GeV]	$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}^{\mathrm{4j}}} \mathrm{[GeV^{\frac{1}{2}}]}$
VR-0l-4j-A	≥ 4	> 30	> 150	-	< 16
VR-0l-4j-B	≥ 4	> 50	> 150	$m_{\mathrm{eff}}^{\mathrm{4j}} < 1000$	-
VR-0l-7j-A	≥ 7	> 30	> 150	$m_{\rm eff}^{\rm incl} < 1000$	-
VR-0l-7j-B	≥ 7	> 30	$150 < E_{\rm T}^{\rm miss} < 350$	$m_{\rm eff}^{\rm incl} < 1500$	-
SR-01-4j-A	≥ 4	> 30	> 200	$m_{\rm eff}^{\rm 4j} > 1000$	> 16
SR-01-4j-B	≥ 4	> 50	> 350	$m_{\rm eff}^{\rm 4j} > 1100$	-
SR-01-4j-C	≥ 4	> 50	> 250	$m_{\rm eff}^{\rm 4j} > 1300$	-
SR-01-7j-A	≥ 7	> 30	> 200	$m_{\rm eff}^{\rm incl} > 1000$	-
SR-01-7j-B	≥ 7	> 30	> 350	$m_{\rm eff}^{\rm incl} > 1000$	-
SR-0l-7j-C	≥ 7	> 30	> 250	$m_{\rm eff}^{\rm incl} > 1500$	-

	region	reducible bkg	irreducible bkg	total bkg (MC)	data
Validation	VR-01-4j-A	840 ± 120	150 ± 120	990 ± 170 (1020)	1101
regions	VR-01-4j-B	300 ± 50	60 ± 50	360 ± 70 (360)	360
Sentember 4	VR-01-7j-A	97 ± 16	36 ± 32	130 ± 40 (140)	140
September 4	VR-01-7j-B	115 ± 22	40 ± 40	160 ± 40 (170)	165

Direct sbottom: $\tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h(bb) \tilde{\chi}_1^0$

ATLAS-CONF-2013-061

Results

region	reducible bkg	irreducible bkg	total bkg (MC)	data
SR-01-4j-A	2.2 ± 1.1	0.8 ± 0.7	3.0 ± 1.3 (5.1)	2
SR-01-4j-B	0.8 ± 0.9	0.5 ± 0.5	1.3 ± 1.0 (3.9)	3
SR-0l-4j-C	1.2 ± 0.8	0.6 ± 0.6	1.8 ± 1.0 (2.5)	2
SR-01-7j-A	15.5 ± 3.4	7.0 ± 6.0	22.5 ± 6.9 (28.8)	22
SR-01-7j-B	2.3 ± 2.3	1.3 ± 1.1	3.6 ± 2.5 (6.2)	3
SR-0l-7j-C	$0\pm 0.5^{+0.5}_{-0}$	0.8 ± 0.7	$0.8 \pm {}^{+0.9}_{-0.8}$ (3.1)	1

SR	95% CL	UL on N _{BSM}	95% CL UL	on $\sigma \times A \times \varepsilon$ [fb]
JK	Observed	Expected	Observed	Expected
SR-01-4j-A	4.6 (4.3)	$5.0^{+2.0}_{-1.3}$ (5.0)	0.23	0.25
SR-01-4j-B	6.7 (6.2)	$5.0^{+1.5}_{-0.8}$ (4.5)	0.33	0.25
SR-01-4j-C	4.8 (4.6)	$4.4^{+1.7}_{-1.0}$ (4.4)	0.24	0.22
SR-01-7j-A	15.3 (14.4)	$14.6^{+6.1}_{-3.4}$ (14.6)	0.76	0.73
SR-01-7j-B	6.1 (5.7)	$6.0^{+2.3}_{-1.0}(6.0)$	0.30	0.30
SR-01-7j-C	3.9 (3.6)	$3.6^{+1.2}_{-0.5}$ (3.5)	0.19	0.18

Direct stop in: $\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^{\pm}$ $\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0$ Atlas-Conf-2013-065

Entries / 10 GeV 10⁸ Data 2012 (√s = 8 TeV) ATLAS Preliminary Standard Model Z+jets $dt = 20.3 \text{ fb}^{-1}$ 10^{7} tt ZZ,WZ b + $\tilde{\chi}_1^{\pm}$ analysis 10⁶ WW [SR, prior to $m_{\tau_2}^{b-jet}$ cut] single top 10⁵ Fake leptons tt+V $m(stop,\chi^{\pm},\chi^{0}) = (300, 150, 100) \text{ GeV}$ 10^{4} $m(stop,\chi^{\pm},\chi^{0}) = (300, 100, 50) \text{ GeV}$ $m(\text{stop},\chi^{\pm},\chi^{0}) = (300,100,0) \text{ GeV}$ 10³ 10² 10 10⁻¹ Data / MC 1.5 0.5 0 50 100 150 200 250 300 350 400 m_{T2}^{b-jet} [GeV]

September 4

Direct stop in: $\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^{\pm}$

Results

channel	SR
Observed events	31
Total (constrained to CRT, CRZ) expected background events	26 ± 6
Fitted <i>tī</i> events	14 ± 4
Fitted $Z\gamma^* \rightarrow ee, \mu\mu$ +jets events	$0.23^{+0.30}_{-0.23}$
Expected $Z\gamma^* \rightarrow \tau\tau$ +jets events	0.80 ± 0.21
Expected Wt events	9 ± 4
Expected WW events	$0.01^{+0.34}_{-0.01}$
Expected $t\bar{t} + V$ events	0.46 ± 0.16
Expected WZ, ZZ events	$0.08^{+0.09}_{-0.08}$
Expected events with fake leptons	1.8 ± 0.9
Fit input, expectation $t\bar{t}$	12 ± 5
Fit input, expectation $Z\gamma^* \rightarrow ee, \mu\mu$ +jets	0.15 ± 0.15
Signal channel $\langle \epsilon \sigma \rangle_{obs}^{95}$ [fb] S_{obs}^{95} [events]	S_{\exp}^{95} [events] CL_B $p(s=0)$

 $\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0$

 16^{+6}_{-5}

0.76

SR

19.5

0.96

0.27

Direct stop in: $\tilde{t}_1 \rightarrow b + \tilde{\chi}_1^{\pm}$

 $\tilde{t}_1 \rightarrow t + \tilde{\chi}$

ATLAS-CONF-2013-065

	channel	SR ₁ ^{DF}	SR ₂ ^{DF}	SR ₃ DF	SR_4^{DF}	SR ₅ ^{DF}	SR_6^{DF}	SR ₇ DF
Results	Observed events	9	3	12	5	3	2	1
	Total (constrained) bkg events	4.7 ± 2.0	2.5 ± 1.9	11 ± 5	6.3 ± 2.5	1.0 ± 0.8	$0.33^{+1.1}_{-0.33}$	1.6 ± 1.4
	Fitted tt events	3.9 ± 1.9	2.2 ± 1.9	8 ± 4	4.1 ± 2.3	$0.2^{+1.0}_{-0.2}$	$0.0^{+1.0}_{-0.0}$	$0.1^{+0.6}_{-0.1}$
	Expected $t\bar{t} + V$ events	0.49 ± 0.21	0.13 ± 0.06	1.0 ± 0.4	0.85 ± 0.35	0.41 ± 0.15	0.18 ± 0.07	0.24 ± 0.10
	Expected Wt events	$0.00^{+0.09}_{-0.00}$	0.0	0.6 ± 0.6	0.4 ± 0.4	0.0	0.0	0.0
	Expected WW events	$0.28^{+0.6}_{-0.28}$	$0.06^{+0.08}_{-0.06}$	$0.7^{+1.2}_{-0.7}$	$0.8^{+0.9}_{-0.8}$	$0.32^{+0.5}_{-0.22}$	$0.10^{+0.26}_{-0.10}$	0.49 ± 0.19
	Expected $ZW + ZZ$ events	0.06 ± 0.06	$0.05^{+0.06}_{-0.05}$	0.09 ± 0.09	$0.09^{+0.11}_{-0.09}$	0.05 + 0.05	$0.05^{+0.06}_{-0.05}$	$0.02^{+0.03}_{-0.02}$
	Expected Z events	0.0	0.0	0.0	0.0	0.0	0.0	$0.7^{+1.5}_{-0.7}$
	Expected events with fake leptons	$0.00^{+0.28}_{-0.00}$	$0.03^{+0.10}_{-0.03}$	$0.00^{+0.30}_{-0.00}$	$0.00^{+0.27}_{-0.00}$	$0.00^{+0.25}_{-0.00}$	$0.00^{+0.25}_{-0.00}$	$0.00^{+0.31}_{-0.00}$
	Fit input, expectation <i>tī</i>	4.0 ± 2.2	2.3 ± 1.9	9 ± 5	4.2 ± 2.6	$0.2^{+0.6}_{-0.2}$	$0.0^{+1.1}_{-0.0}$	$0.1^{+0.6}_{-0.1}$
							0.0	

Monojet-like control regions	$W(\rightarrow e\nu)$ +jets	$W(\rightarrow \mu \nu)$ +jets	$Z/\gamma^* (\rightarrow \mu^+ \mu^-)$ +jets
Observed events (20.3 fb ⁻¹)	8707	13703	1916
SM prediction (post-fit)	8710 ± 95	13700 ± 122	1920 ± 44
Fitted $W(\rightarrow ev)$	6230 ± 144	0.3 ± 0.2	
Fitted $W(\rightarrow \mu \nu)$	40 ± 17	11420 ± 310	2.4 ± 1.4
Fitted $W(\rightarrow \tau \nu)$	1470 ± 54	950 ± 192	0.6 ± 0.4
Fitted $Z(\rightarrow \nu \bar{\nu})$	16 ± 16	3.4 ± 2.2	
Fitted $Z/\gamma^* (\rightarrow e^+ e^-)$	0.01 ± 0.04	_	-
Fitted $Z/\gamma^* (\rightarrow \mu^+ \mu^-)$	2.4 ± 1.4	270 ± 14	1830 ± 51
Fitted $Z/\gamma^* (\rightarrow \tau^+ \tau^-)$	114 ± 8	40 ± 27	2.7 ± 1.6
Expected top	620 ± 77	770 ± 94	34 ± 4
Expected dibosons	210 ± 107	250 ± 126	50 ± 23
Expected multijets	<u></u>	<u> </u>	_
SM prediction (pre-fit)	9786	15688	2137
Fit input $W(\rightarrow ev)$	7084	0.3	-
Fit input $W(\rightarrow \mu \nu)$	46	13232	2.8
Fit input $W(\rightarrow \tau \nu)$	1675	1080	0.7
Fit input $Z(\rightarrow \nu \bar{\nu})$	18	3.9	-
Fit input $Z/\gamma^* (\rightarrow e^+ e^-)$	0.01	_	-
Fit input $Z/\gamma^* (\rightarrow \mu^+ \mu^-)$	2.7	306	2051
Fit input $Z/\gamma^* (\to \tau^+ \tau^-)$	129	41	3.0
Fit input top	616	770	34
Fit input dibosons	214	253	46
Fit input multijets		-	-

Charm-tagged control regions	$W(\rightarrow \mu \nu)$ +jets	$W(\rightarrow ev)$ +jets	tī	$Z/\gamma^* (\rightarrow \mu^+ \mu^-)$ +jets
Observed events (20.3 fb ⁻¹)	1060	485	685	28
SM prediction (post-fit)	1060 ± 32	485 ± 22	685 ± 26	28 ± 5
Fitted $W(\rightarrow ev)$		120 ± 54	4.0 ± 2.2	
Fitted $W(\rightarrow \mu \nu)$	270 ± 110	0.1 ± 0.1	5.0 ± 2.5	0.09 ± 0.07
Fitted $W(\rightarrow \tau \nu)$	27 ± 13	17 ± 7	15 ± 9	<u>-</u>
Fitted $Z(\rightarrow \nu \bar{\nu})$	0.03 ± 0.01	1.3 ± 0.4	21 ± 7	<u> </u>
Fitted $Z/\gamma^* (\rightarrow e^+ e^-)$	_	-	-	-
Fitted $Z/\gamma^* (\rightarrow \mu^+ \mu^-)$	9.0 ± 2.5	-	-	22 ± 5
Fitted $Z/\gamma^* (\rightarrow \tau^+ \tau^-)$	8.0 ± 3.4	1.8 ± 0.8	0.5 ± 0.3	-
Fitted tī	660 ± 110	310 ± 52	560 ± 35	4.3 ± 0.8
Fitted tī+V	6.1 ± 1.1	2.9 ± 0.5	5.0 ± 0.3	0.4 ± 0.1
Fitted single top	56 ± 9	28 ± 5	48 ± 3	_
Expected dibosons	24 ± 4	8.2 ± 1.4	1.4 ± 0.4	1.4 ± 0.2
Expected multijets	-	_	28 ± 15	-
SM prediction (pre-fit)	1023	487	658	24
Fit input $W(\rightarrow ev)$	_	132	4.4	
Fit input $W(\rightarrow \mu \nu)$	262	0.1	4.7	0.09
Fit input $W(\rightarrow \tau \nu)$	30	19	17	_
Fit input $Z(\rightarrow \nu \bar{\nu})$	0.02	1.0	17	_
Fit input $Z/\gamma^* (\rightarrow e^+ e^-)$	-	-	-	-
Fit input $Z/\gamma^* (\rightarrow \mu^+ \mu^-)$	7.3	-	-	18
Fit input $Z/\gamma^*(\rightarrow \tau^+\tau^-)$	8.5	2.0	0.5	<u> </u>
Fit input tī	631	295	534	4.1
Fit input $t\bar{t}+V$	5.9	2.8	4.8	0.4
Fit input single top	54	27	46	_
Fit input dibosons	24	8.2	1.4	1.4
Fit input multijets	10 		28	-

Signal Region		M1		C1
Observed events (20.3 fb ⁻¹)		30793		25
SM prediction		29800 ± 900		29 ± 7
$W(\rightarrow e\nu)$		2700 ± 420		0.5 ± 0.3
$W(\rightarrow \mu \nu)$		2900 ± 330		0.8 ± 0.4
$W(\rightarrow \tau \nu)$		6600 ± 300		7 ± 4
$Z(\rightarrow \nu \bar{\nu})$		15600 ± 900		10 ± 5
$Z/\gamma^* (\rightarrow e^+ e^-)$		—		-
$Z/\gamma^* (\rightarrow \mu^+ \mu^-)$		50 ± 28		0.01 ± 0.01
$Z/\gamma^*(\rightarrow \tau^+\tau^-)$		80 ± 24		0.09 ± 0.04
top		700 ± 86		7 ± 3
dibosons		900 ± 420		2 ± 2
multijets		340 ± 340		
Signal channel	$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]	$S_{\rm obs}^{95}$	S_{exp}^{95}	CL_B

Signal channel	$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]	$S_{\rm obs}^{95}$	S_{exp}^{95}	CL_B
M1	136	2770	2060^{+780}_{-570}	0.82
C1	0.7	13	14_{-4}^{+5}	0.45

Direct stop in charm + LSP:

 $\tilde{t} \to c \tilde{\chi}_1^0$

ATLAS-CONF-2013-068

Signal regions

	SR- <i>m</i> _{T2,90}	SR- <i>m</i> _{T2,110}	SR-WWa	SR-WWb	SR-WWc	
lepton flavour	e^+e^-, μ^+	$\mu^-, e^{\pm}\mu^{\mp}$		$e^{\pm}\mu^{\mp}$		
$p_{\mathbf{T}}^{\ell 1}$	T_2 —			> 35 GeV		
$p_{\mathrm{T}}^{\ell 2}$	-			> 20 GeV		
$m_{\ell\ell}$	Zv	veto	< 80 GeV	< 130 GeV		
$p_{T,\ell\ell}$	-		> 70 GeV	< 170 GeV	< 190 GeV	
$\Delta \phi_{\ell\ell}$	-			< 1.8 rad		
$E_{\rm T}^{\rm miss,rel}$	> 40) GeV	> 70 GeV	_	_	
m_{T2}	> 90 GeV	> 110 GeV		> 90 GeV	> 100 GeV	

Control regions

						\tilde{z}^0
SR-WWc	SR-WWb SF	SR-WWa	SR- <i>m</i> _{T2,110}	SR- <i>m</i> _{T2,90}	SR	<i>x</i> ₁ -
			·		WW CR	$\tilde{\chi}_1^0$
	$e^{\pm}\mu^{\mp}$		$^{\pm}\mu^{\mp}$	e [±]	lepton flavour	'ℓ
			veto	Z	$m_{\ell\ell}$	
	< 1.8 rad			-	$\Delta \phi_{\ell\ell}$	
	0 GeV —) GeV	> 40	$E_{\rm T}^{\rm miss,rel}$	
eV	< 90 GeV		0 GeV	50-9	m_{T2}	
	26	50 			Top CR	67
	≥ 1		: 1	≥	b-tagged jets	
	≥ 1		2	2	signal jets	
	$e^{\pm}\mu^{\mp}$		$\mu^-, e^{\pm}\mu^{\mp}$	e^+e^-, μ^+	lepton flavour	
	< 130 GeV	< 80 GeV	veto	Z	mee	
: 190 GeV	< 170 GeV < 1	> 70 GeV		-	$p_{T,\ell\ell}$	
	< 1.8 rad			-	$\Delta \phi_{\ell\ell}$	
		> 70 GeV) GeV	> 40	$E_{\rm T}^{\rm miss, rel}$	
100 GeV	> 90 GeV > 1	_	<u></u>	-	m_{T2}	
					ZV CR	57
	not defined		$, \mu^{+}\mu^{-}$	e^+e^-	lepton flavour	
			elect	Zs	$m_{\ell\ell}$	
) GeV	> 40	$E_{\rm T}^{\rm miss,rel}$	
			> 110 GeV	> 90 GeV	m_{T2}	
	≥ 1 ≥ 1 $e^{\pm}\mu^{\mp}$ < 130 GeV < < 170 GeV < < 1.8 rad > 90 GeV > not defined	< 80 GeV > 70 GeV > 70 GeV	$ \frac{1}{2} 1$	$e^{+}e^{-}, \mu^{+}$ $Z = 2$ $e^{+}e^{-}, \mu^{+}$ $Z = 2$ $e^{+}e^{-}, \mu^{-}$ $Z = 2$ 2 2 2 2 2 2 2 2 2	<i>b</i> -tagged jets signal jets lepton flavour $m_{\ell\ell}$ $PT,\ell\ell$ $\Delta\phi_{\ell\ell}$ $E_{\rm T}^{\rm miss,rel}$ $m_{\rm T2}$ $ZV {\rm CR}$ lepton flavour $m_{\ell\ell}$ $E_{\rm T}^{\rm miss,rel}$ $m_{\rm T2}$	-

September 4

<u>Results</u>:

Direct lepton Scenario

Chargino to slepton scenario

Septem	ber	4
--------	-----	---

SR- <i>m</i> _{T2,90}	e^+e^-	$e^{\pm}\mu^{\mp}$	$\mu^+\mu^-$	all
Observed	15	19	19	53
Background total	16.6 ± 2.3	20.7 ± 3.2	22.4 ± 3.3	59.7 ± 7.3
WW	9.3 ± 1.6	14.1 ± 2.2	12.6 ± 2.0	36.1 ± 5.1
ZV (V = W or Z)	6.3 ± 1.5	0.8 ± 0.3	7.3 ± 1.7	14.4 ± 3.2
Тор	$0.9^{+1.1}_{-0.9}$	5.6 ± 2.1	2.5 ± 1.8	8.9 ± 3.9
Higgs	0.11 ± 0.04	0.19 ± 0.05	0.08 ± 0.04	0.38 ± 0.08
Fake	$0.00^{+0.18}_{-0.00}$	$0.00^{+0.14}_{-0.00}$	$0.00^{+0.15}_{-0.00}$	$0.00^{+0.28}_{-0.00}$
Signal expectation	0.00	0.00	0.00	0.00
$(m_{\tilde{\ell}}, m_{\tilde{\chi}_1^0}) = (191, 90) \text{ GeV}$	21.6	0	21.6	43.2
$(m_{\tilde{\ell}}, m_{\tilde{\chi}_1^0}) = (251, 10) \text{ GeV}$	12.2	0	12.5	24.7
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (350, 0) \text{ GeV}$	11.7	16.6	10.5	38.8
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (425, 75) \text{ GeV}$	4.3	6.7	4.4	15.4
Observed $\sigma_{\rm vis}^{95}$ (fb)	0.44	0.51	0.47	0.81
Expected $\sigma_{\rm vis}^{95}$ (fb)	$0.50^{+0.22}_{-0.15}$	$0.57^{+0.25}_{-0.17}$	$0.58^{+0.25}_{-0.17}$	$1.00^{+0.41}_{-0.28}$
SR- <i>m</i> _{T2,110}	e^+e^-	$e^{\pm}\mu^{\mp}$	$\mu^+\mu^-$	all
Observed	4	5	4	13
Background total	6.1 ± 2.2	4.4 ± 2.0	6.3 ± 2.4	16.9 ± 6.0
WW	2.7 ± 1.5	3.6 ± 2.0	2.9 ± 1.6	9.1 ± 4.9
ZV (V = W or Z)	2.7 ± 1.4	0.2 ± 0.1	3.4 ± 1.8	6.3 ± 3.3
Тор	0.7 ± 0.7	0.6 ± 0.4	0.0 ± 0.0	1.3 ± 1.0
Higgs	0.05 ± 0.03	0.12 ± 0.04	0.05 ± 0.02	0.22 ± 0.05
Fake	$0.00^{+0.09}_{-0.00}$	$0.00^{+0.13}_{-0.00}$	$0.00^{+0.12}_{-0.00}$	$0.00^{+0.28}_{-0.00}$
Signal expectation				
$(m_{\tilde{\ell}}, m_{\tilde{\chi}_1^0}) = (191, 90) \text{ GeV}$	12.3	0	12.0	24.3
$(m_{\tilde{\ell}}, m_{\tilde{\chi}_1^0}) = (251, 10) \text{ GeV}$	10.5	0	11.2	21.7
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (350, 0) \text{ GeV}$	9.5	14.0	8.7	32.2
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (425, 75) \text{ GeV}$	3.7	1.1	3.8	8.5
Observed $\sigma_{\rm vis}^{95}$ (fb)	0.27	0.35	0.28	0.54
Expected $\sigma_{\rm vis}^{95}$ (fb)	$0.33^{+0.16}_{-0.10}$	$0.33^{+0.16}_{-0.09}$	$0.33^{+0.16}_{-0.10}$	$0.62^{+0.23}_{-0.16}$

<u>Results</u>:

Chargino to W scenario

	SR-WWa	SR-WWb	SR-WWc
Observed	123	16	9
Background total	117.9 ± 14.6	13.6 ± 2.3	7.4 ± 1.5
Тор	15.2 ± 6.6	2.7 ± 1.1	1.0 ± 0.7
WW	98.6 ± 14.6	10.2 ± 2.1	5.9 ± 1.3
ZV (V = W or Z)	3.4 ± 0.8	$0.26^{+0.31}_{-0.26}$	0.29 ± 0.14
Higgs	0.76 ± 0.14	0.21 ± 0.06	0.10 ± 0.04
fake	$0.02^{+0.33}_{-0.02}$	$0.26^{+0.30}_{-0.26}$	$0.12^{+0.17}_{-0.12}$
Signal expectation		5 I B 2	
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (100, 0) \text{ GeV}$	31	N/A	N/A
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (140, 20) \text{ GeV}$	N/A	8.2	N/A
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^{0}}) = (200, 0) \text{ GeV}$	N/A	N/A	3.3
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (110, 113) \text{ GeV}$	18	4.3	N/A
Observed σ_{vis}^{95} (fb)	1.94	0.58	0.43
Expected $\sigma_{\rm vis}^{95}$ (fb)	$1.77^{+0.66}_{-0.49}$	$0.51^{+0.21}_{-0.15}$	$0.37^{+0.18}_{-0.11}$

	SRA	SRB	CR1	CR2	VR0	VR1	VR2
Number of <i>b</i> -tagged jets	2	2	1	2	0	1	2
$m_{\rm T}~({\rm GeV})$	100-130	> 130	> 100	40-80	> 100	40-100	80-100

Results

	bb		
	SRAh	SRBh	
Observed	4	2	
Background estimate			
tī	2.8 ± 1.7	1.0 ± 0.5	
W + jets	0.7 ± 0.4	0.3 ± 0.2	
Single top	$1.5^{+1.6}_{-1.3}$	$0.5^{+0.5}_{-0.5}$	
Other	0.2 ± 0.1	0.3 ± 0.1	
Total	5.2 ± 2.4	2.0 ± 0.8	
Signal prediction			
(130, 0) GeV	6.5	0.2	
(225, 0) GeV	1.9	4.1	
Observed σ_{vis}^{95} (Asymptotic)	0.29 fb	0.22 fb	
Expected S_{exp}^{95} (Asymptotic)	$6.7^{+3.1}_{-1.9}$	$4.6^{+2.5}_{-1.5}$	
Observed $\sigma_{\rm vis}^{95}$ (Pseudo-experiments)	0.31 fb	0.22 fb	
Expected S_{exp}^{95} (Pseudo-experiments)	$6.8^{+2.7}_{-1.4}$	$4.4^{+1.8}_{-0.8}$	

 $105 < m_{_{bb}} < 125 \text{ GeV}$