Search for Quark Substructure in 7 TeV *pp* Collisions with the ATLAS Detector

Frank Berghaus

SUPERVISOR: Michel Lefebvre

University of Victoria

June 12, 2012

- The LHC provides counter-rotating proton beams each at 3.5 TeV (2010 - 2011)
- Beams intersect in ATLAS causing collisions of guarks (and/or gluons)

- Decay products of collisions are recorded by ATLAS
- Pseudo-rapidity η is the measure of longitudinal angle:

$$\eta = -\ln \tan \left(\theta / 2 \right)$$

- Differences in pseudo-rapidity are invariant under longitudinal boost
- Rapidity (y) of massless particles

Quark Compositeness

• Are quarks fundamental particles or composite objects?

- Constituents are generally called preons
- Preons may reveal themselves at an energy scale Λ
- Expect to see the effects of composite nature if $\sqrt{\hat{s}}$ is sufficiently high
 - At lower energies quarks appear point-like
- Search for deviation in dijet cross-section from QCD prediction
 - A 4-fermion contact interaction should become evident for an observation of quark compositeness
 - If data agrees well with QCD set a limit on Λ
- Aside: Composite nature could also be observed by finding a quark resonance

Quark Contact Interactions (CI)

- Effects of contact interactions should appear if $\sqrt{\hat{s}}$ is sufficiently large
- If $\Lambda > \sqrt{s}$ interactions between constituents are suppressed, with quarks appearing point-like \rightarrow dominant contribution to cross section from 4-fermion contact term
- 4-fermion contact term in Lagrangian

$$\mathcal{L}_{qqqq}\left(\Lambda
ight)=rac{\xi g^{2}}{2\Lambda^{2}}ar{\Psi}_{q}^{L}\gamma^{\mu}\Psi_{q}^{L}ar{\Psi}_{q}^{L}\gamma_{\mu}\Psi_{q}^{L}$$

- $g^2/4\pi = 1, \Psi$ are the left handed quarks
- $\xi = +1$ (-1) is destructive (constructive) interference with QCD
- Exclusion limits change by \sim 1 % depending on the choice of ξ

Observable: χ

Sensitive Observables

• QCD at LO looks like Rutherford scattering in the centre-of-mass frame:

$$rac{d\hat{\sigma}}{d\Omega}\simrac{1}{\sin^4{(\Theta/2)}}$$

- Contact interactions are expected to yield a more isotropic spectrum
- Useful angular variable in hadron collider experiment is χ :

$$\chi = e^{|y_1 - y_2|} = \frac{1 + \cos\Theta}{1 - \cos\Theta}$$

- y_1 is the rapidity of the leading (in p_T) jet
- y_2 is the rapidity of the sub-leading (in p_T) jet
- Invariant under Lorentz boosts along the beam (z)

Observable: χ

Expected Distribution

• Rutherford scattering (QCD):

$$rac{d\hat{\sigma}}{d\Omega}\simrac{1}{\sin^4{(\Theta/2)}}
ightarrowrac{d\hat{\sigma}}{d\chi}\sim 1$$

• Isotropic scattering (CI):

$$rac{d\hat{\sigma}}{d\Omega}\sim 1
ightarrow rac{d\hat{\sigma}}{d\chi}\sim rac{1}{(1+\chi)^2}$$

- Higher order QCD predicts more events at low χ
- Can test NLO QCD using events at low dijet mass

Distribution

Data Distributions

- 2010 data $\mathcal{L} = 36 \text{ pb}^{-1}$
- Low χ implies large scattering angle
- Data and MC prediction are normalized per m_{ii} bin
- Offset each m_{ii} bin for display
- QCD and CI prediction is corrected to NLO using k-factors derived from QCD
- NLO calculations for CI have recently become available [5]

Likelihood Function

• Counting events in bins of m_{jj} and χ so binned Poisson Likelihood:

$$\mathcal{L}(\mathbf{n}|\Lambda) = \prod_{j=0}^{N_{bins}} \left(\frac{\mu_j(\Lambda)^{n_j}}{n_j!} \cdot e^{-\mu_j(\Lambda)} \right)$$

- n_j is the number of recorded events in bin j
- $\mu_j(\Lambda)$ is the number of events predicted for bin *j* at CI scale Λ
- Shape only analysis: The MC is normalized to contain the same number of events as the data in each m_{jj} bin
- Since we only have MC simulation for some discrete points in Λ fit:

$$\mu_{j}(\Lambda) \sim \underbrace{a_{0}}_{QCD} + \underbrace{a_{1}\Lambda^{-4}}_{CI} + \underbrace{a_{2}\Lambda^{-2}}_{Interference}$$

Test Statistics

Maximum likelihood ratio

1

$$Q(\Lambda) = -2 \ln \left(rac{L(\mathbf{n}|\Lambda)}{L(\mathbf{n}|\hat{\Lambda})}
ight)$$

• $\hat{\Lambda}$ is the most likely value of Λ found by minimizing $-2 \ln L(\mathbf{n}|\Lambda)$

where n stands for the data recorded or pseudo-experiments

Analysis Me

Methodology

p-Value for Q (Maximum Likelihood Ratio)

- Create pseudo-experiments by drawing Poisson random numbers in each bin centred on the MC-prediction for $\Lambda = \infty$
- Fill likelihood distribution with *Q* from each pseudo-experiment
- Determine the fraction of pseudo-experiments with Q greater than the data

p-Value from ATLAS data: 0.95

Q($\Lambda = \infty$ TeV)

Methodology

Definition of Confidence Limits

Extend the idea of the p-value to be computed from our prediction at some Λ [6]:

$$CL_{s+b}(\Lambda) = P_{\text{QCD+CI}}(Q(\Lambda) \ge Q_{\text{data}}(\Lambda))$$

- Previous ATLAS exclusion limit was set at CL_{s+b} < 0.05 (the 95 %)</p> exclusion limit)
- A more conservative approach corrects for the QCD likelihood distribution assuming Λ :

$$CL_{s}(\Lambda) = rac{P_{ ext{QCD+CI}}(\mathcal{Q}(\Lambda) \geq \mathcal{Q}_{ ext{data}}(\Lambda))}{1 - P_{ ext{QCD}}(\mathcal{Q}(\Lambda) \leq \mathcal{Q}_{ ext{data}}(\Lambda))}$$

CMS used this definition in their recent paper

Analysis

Results

Λ Limit using CL_s with Q

Systematic Effects

- Experimental
 - Jet Energy Scale ($\sim 0.1\%$ change to CL_s)
 - Could cause excess of events at high ii
 - Jet p_T resolution (~ 0.1% change to CL_s)
 - Minimal bin-to-bin migration in m_{ii}
- Theoretical:
 - Factorization (μ_f) and renormalization (μ_r) scale choice (\sim 1.3% change to CL_s)
 - Dominant effect
 - Parton distribution function errors ($\sim 0.2\%$ change to CL_s)
- Angular observable minimizes the effect of all of these uncertainties
- Systematic effects are included through Bayesian integration

Errors

Effect on Limits

ATLAS Work In Progress

	CL_s		CL_{s+b}	
Effect	Obs [TeV]	Exp [TeV]	Obs [TeV]	Exp [TeV]
No Systematics	5.36	5.31	5.60	5.48
MC Statistics	5.36	5.31	5.59	5.49
Jet p_T Resolution	5.37	5.31	5.60	5.49
Jet Energy Scale	5.37	5.31	5.60	5.49
$\mu_{\rm f}/\mu_{\rm r}$ Scale Choice	5.29	5.21	5.54	5.40
PDF Fit Errors	5.37	5.32	5.60	5.50
All ¹	5.29	5.20	5.52	5.41

¹Assuming effects are independent

Errors

Previous Limits

with $\xi = -1$

		Limits [TeV]			
Experiment	\sqrt{s} [TeV]	$\mathcal{L} [\mathrm{fb}^{-1}]$	observed	expected	Stat
ATLAS	7	4.8	7.8	8.7	CL_{s+b}
CMS	7	2.2	10.5	9.7	CL_s
D0	1.96	0.7	2.82	2.75	binned χ^2
CDF ²	1.96	0.106	1.4	-	binned χ^2

- All limits based on χ and m_{ii} [1, 2, 3, 4]
- ATLAS also performed measurement using the centrality ratio finely binned in m_{ii} to get a 95 % CL_{s+b} exclusion of 7.6 TeV (expected 8.2 TeV)

²CDF paper is from 1996, while D0's is from 2009

 An exclusion limit for quark compositeness has been obtained from the 2010 data-set

 $\Lambda > 5.29$ TeV at 95% *CLs* 7 TeV Collisions $\mathcal{L} = 36$ pb⁻¹

Accounted For:

- Jet energy scale uncertainty
- Jet p_T resolution
- Factorization and renormalization scale uncertainty
- PDF fit errors
- Statistical limitations of simulated events

Event Cleaning and Selection

- GRL: Require LHC stable beam, good conditions for the Inner detector and calorimeters
- Using single jet triggers on efficiency plateau
- Cleaning cuts:
 - One primary vertex with at least five tracks
 - All jets pass quality cuts
- Selection Cuts
 - Leading jet $p_T > 60 \text{ GeV}$
 - Sub-leading jet $p_T > 30 \text{ GeV}$
 - Dijet rapidity separation $|y^*| = |(y_1 y_2)/2| < 1.7$
 - Dijet boost $|\bar{y}| = |(y_1 + y_2)/2| < 1.1$

Data-set

Total Data For Analysis

m _{ii} Bi	in [TeV] Periods A-E Periods F-I		TeV] Periods A-E		F-I
mḯn	max	L1 Item	\mathcal{L} [pb ⁻¹]	EF Item	\mathcal{L} [pb ⁻¹]
.52	.8	J30	2.00	j50_jetNoEF	0.25
.8	1.2	J55	3.11	j77_jetNoEF	6.46
1.2	1.6	J55	3.11	j95_NoAlg	33.17
1.6	2.0	J55	3.11	j95_NoAlg	33.17
2.0	∞	J55	3.11	j95_NoAlg	33.17

ATLAS Work In Progress

Trigger selection guarantees ~100 % efficiency in each *m_{jj}* bin
Total 2010 data: ~36 pb⁻¹

Test Statistics

Likelihood ratio (reference to most probable)

$$Q(\Lambda) = -2 \ln \left(rac{L(\mathbf{n}|\Lambda)}{L(\mathbf{n}|\hat{\Lambda})}
ight)$$

 Â is the most likely value of Λ found by minimizing -2 ln L(n|Λ) Likelihood ratio (reference to QCD)

$$q(\Lambda) = -2 \ln \left(rac{L(\mathbf{n}|\Lambda)}{L(\mathbf{n}|\infty)}
ight)$$

• $\Lambda = \infty$ implies the likelihood of QCD given the data

• where **n** stands for the data recorded or pseudo-experiments

Appendix

Exclusion Limits

A Limit using CL_{s+b} with Q

A Limit using CL_{s+b} with q

- Using 2010 ATLAS data $\mathcal{L} = 36 \text{ pb}^{-1}$
- Using test statistic

$$q = -2 \ln rac{L(\mathbf{n}|\Lambda)}{L(\mathbf{n}|\infty)}$$

- Observed 95 %
 CL_{s+b} limit = 5.85 TeV
- Expected 95 %
 CL_{s+b} limit = 5.70 TeV

A Limit using CL_s with q

- Using 2010 ATLAS data $\mathcal{L} = 36 \text{ pb}^{-1}$
- Using test statistic

$$q = -2 \ln rac{L(\mathbf{n}|\Lambda)}{L(\mathbf{n}|\infty)}$$

- Observed 95 %
 CL_s limit = 5.54 TeV
- Expected 95 % *CLs* limit = 5.47 TeV

Previous Limits

with $\xi = +1$

		Limits [TeV]			
Experiment	\sqrt{s} [TeV]	$\mathcal{L} [\mathrm{fb}^{-1}]$	observed	expected	Stat
ATLAS	7	_	_	_	CL_{s+b}
CMS	7	2.2	7.5	7.0	CL_s
D0	1.96	0.7	2.84	2.76	binned χ^2
CDF ³	1.96	0.106	1.6	-	binned χ^2

ATLAS currently has no MC simulation to make this measurement

³CDF paper is from 1996, while D0's is from 2009

Appendix PDF Fits

QCI Simulation Fits Residuals

F. Berghaus (UVic)

Appendix

Systematics

Factorization/renormalization Scale Choice

- Large (~ 20%) variation across χ
- Dominant effect
- Prior:
 - μ_r and μ_f picked from $\frac{1}{r}$ between 0.5 and 2.0 each

PDF Fit Error

- Errors fully correlated across χ
- Large (~ 20%) effect absorbed by normalization
- Variation of error across χ is \sim 4%
- Prior:
 - significance of PDF error follows Gaussian
 - Use same sign error bars to absorb asymmetry

Summary

Table to Calculated Exclusion Limits

ATLAS Work In Progress					
Stat	Q = -2	$\ln \frac{L(\mathbf{n} \Lambda)}{L(\mathbf{n} \hat{\Lambda})}$	$q = -2 \ln rac{L(\mathbf{n} \Lambda)}{L(\mathbf{n} \Lambda = \inf)}$		
	obs [TeV]	exp [TeV]	obs [TeV]	exp [TeV]	
CL _{s+b}	5.60	5.48	5.85	5.70	
CL_s	5.36	5.31	5.54	5.47	

• As presented above

Bibliography I

The ATLAS Collaboration

"Search for New Phenomena in Dijet Mass and Angular Distributions"

47th Rencontres de Moriond on Electroweak Interactions and Unified Theories ATLAS-CONF-2012-038

- S. Chatrchyan et al. [CMS Collaboration],

"Search for quark compositeness in dijet angular distributions from pp collisions at sqrt(s) = 7 TeV," JHEP **1205**, 055 (2012) [arXiv:1202.5535 [hep-ex]]

 F. Abe *et al.* [CDF Collaboration],
 "Measurement of dijet angular distributions at CDF," *Phys. Rev. Lett.* **77**, 5336 (1996)

Bibliography II

V. M. Abazov et al. [D0 Collaboration],

"Measurement of dijet angular distributions at $s^{**}(1/2) = 1.96$ -TeV and searches for quark compositeness and extra spatial dimensions,"

Phys. Rev. Lett. 103, 191803 (2009)

J. Gao *et al*

"Next-to-leading QCD effect on the quark compositeness search at the LHC" *Phys. Rev. Lett.* **106**, 142001 (2011)

T. Junk

"Confidence level computation for combining searches with small statistics"

Nuclear Instruments and Methods 434, Pages 435-443 (1999)

Bibliography III

- M. Cacciari and G. P. Salam, Phys. Lett. B **641**, 57 (2006) [hep-ph/0512210].
- S. Catani and M. H. Seymour, Nucl. Phys. B **485**, 291 (1997) [Erratum-ibid. B **510**, 503 (1998)] [arXiv:hep-ph/9605323].
- T. Carli, D. Clements, A. Cooper-Sarkar, C. Gwenlan, G. P. Salam, F. Siegert, P. Starovoitov and M. Sutton, Eur. Phys. J. C 66, 503 (2010) [arXiv:0911.2985 [hep-ph]].