Precision electroweak measurements at SuperB with polarised beam

(on behalf of the SuperB Collaboration)

36th International Conference on High Energy Physics 6 July 2012

SuperB:

 $\mathcal{L}=10^{36}$ cm⁻²s⁻¹, E_{cm}~10GeV, asymmetric e⁺e⁻ collider flavour factory approved to be built by CabibboLab on the Univ. Roma-2 AAAA Tor Vergata campus

- SuperB is the only e^+e^- high- \mathcal{L} B-factory with a polarised beam: has a unique, and rich, precision electroweak program
- Left-Right Asymmetries (A_{LR}) yield measurements of unprecedented precision of the neutral current vector couplings (g_v) to each of five fermion flavours, f:
 - beauty (D)
 - $g_V \text{ beauty (D)} \\ \text{charm (U)} \quad \text{Re call: } g_V^f \text{ gives } \theta_W \text{ in SM} \begin{cases} g_A^f = T_3^f \\ g_V^f = T_3^f 2Q_f \sin^2 \theta_W \end{cases}$

 - muon
 - electron

SuperB:

For each of the fermion flavours, SuperB provides:

- 1. Precise determination of the weak mixing angle, $\sin^2\theta_W$ precise (most precise available for b, c, τ , μ)
- 2. Most precise study of the running of $\sin^2\theta_W$: probes TeV scale
- 3. First-time precision parity violation measurements with $e^+e^-E_{cm} \sim 10 \text{GeV}$
 - unique probe of potential low energy "dark" (or "hidden") sector new gauge bosons

At lowest order, the electroweak Standard Model is extensively descriptive with only three input parameters:

- $G_{F, M_Z, \alpha}$
- Within SM can interpret as precision constraints on M_W and the weak mixing angle, $\sin^2\theta_W$
- Deviation from these constraints is a signal for new physics, but higher order corrections require:

 $\Delta \alpha_{h}^{(5)} \text{ (had. vac. pol. corrections)}_{\substack{\gamma, ZW \\ \gamma, ZW \\$

J.M. Roney - EW Programme at SuperB

$$\inf_{MS} \text{ particular for } \sin^2 \theta_{W} \\
\sin^2 \theta_{MS}(M_Z) = 0.23101 + 0.00969 \left(\frac{\Delta \alpha_h^{(5)}}{0.02767} - 1 \right) - 0.00277 \left[\left(\frac{m_t}{178 \text{ GeV}} \right) \right]$$

+ 0.0004908 $\log\left(\frac{m_H}{100 \text{ GeV}}\right)$ + 0.0000343 $\left(\log\left(\frac{m_H}{100 \text{ GeV}}\right)\right)^2$

(using parameterization of hep-ph/0203224, hep-ph/0411179 for the MSbar renormalization scheme)

Note LEP/SLC use:
$$\sin^2 \theta_{eff}^{lept}$$

 $\sin^2 \theta_{eff}^{lept}(M_Z) \sim \sin^2 \theta_{\overline{MS}}(M_Z) + 0.00028$

SuperB

- 1

Existing tension in data on the Z-Pole:

Existing tension in data on the Z-Pole:

For a 125GeV Higgs,

Physics Report Vol 427, Nos 5-6 (2006) ALEPH, OPAL, L3, DELPHI, SLD

Existing tension in data on the Z-Pole:

For a 125GeV Higgs,

-0.3 -0.32 -0.34 -0.34 -0.36 -0.54 -0.52 -0.5 -0.54 -0.52 -0.5 -0.48 g_{Ab}

> Physics Report Vol 427, Nos 5-6 (2006) ALEPH, OPAL, L3, DELPHI, SLD

 $g_{Rb} = (g_{Vb} - g_{Ab})/2$ is 3σ from SM

SuperB is the only facility in foreseeable future that will be able to experimentally address this 30 deviation

•Measure difference between cross-sections with lefthanded beam electrons and right-handed beam electrons •At ~10GeV, polarised e- beam yields product of the neutral axial-vector coupling of the electron and vector coupling of the final-state fermion via $Z-\gamma$ interference:

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_F s}{4\pi\alpha Q_f} \right) g_A^e g_V^f (Pol)$$
$$\propto T_3^f - 2Q_f \sin^2 \theta_W$$
$$\langle Pol \rangle = 0.5 \left\{ \left(\frac{N_R^{e^-} - N_L^{e^-}}{N_R^{e^-} + N_L^{e^-}} \right)_R - \left(\frac{N_R^{e^-} - N_L^{e^-}}{N_R^{e^-} + N_L^{e^-}} \right)_L \right\}$$

J.M. Roney - EW Programme at SuperB

•Same technique as A_{LR} measurement performed by SLD at the Z-pole used to get the single most precise measurement of $\sin^2\theta_{eff}^{lept} = 0.23098 \pm 0.00026$

•SuperB will have a $\sin^2\theta_{eff}^{lept}$ error of ±0.00024 with 70% electron beam polarisation and 75 ab⁻¹ of data with tau-pairs and mu-pairs assuming lepton universality and 0.5% uncertainty on *<Pol>*

Supei

•Same technique as A_{LR} measurement performed by SLD at the Z-pole used to get the single most precise measurement of $\sin^2\theta_{eff}^{lept} = 0.23098 \pm 0.00026$

•SuperB will have a $\sin^2\theta_{eff}^{lept}$ error of ±0.00024 with 70% electron beam polarisation and 75 ab⁻¹ of data with tau-pairs and mu-pairs assuming lepton universality and 0.5% uncertainty on *<Pol>*; higher precision if electrons are also included

Supei

Polarisation in SuperB

- inject vertically polarised electrons into the Low Energy Ring (LER -> electron ring)
 - use polarised electron source similar to SLC source
- Rotate spin to longitudinal before IP, and then back to vertical after IP using solenoids
 - solenoids scale in strength with energy, hence use LER for polarized beam
- Expect ~70% polarisation with 80% polarised source
- As polarisation is flipped in a random, but known, manner, detector systematic effects will cancel
- Use Compton polarimeter to measure longitudinal polarisation with <1% precision
- Can also measure beam polarisation to ~0.5% via tau polarisation forward-backward asymmetry

Tau Polarisation as Beam Polarimeter:

$$P_{z'}^{(\tau-)}(\theta, P_e) = -\frac{8G_F s}{4\sqrt{2}\pi\alpha} \operatorname{Re}\left\{\frac{g_V^l - Q_b g_V^b Y_{1S,2S,3S}(s)}{1 + Q_b^2 Y_{1S,2S,3S}(s)}\right\} \left(g_A^{\tau} \frac{|\vec{p}|}{p^0} + 2g_A^e \frac{\cos\theta}{1 + \cos^2\theta}\right) + \left(P_e \frac{\cos\theta}{1 + \cos^2\theta}\right)$$

- Dominant term is the polarisation forward-backward asymmetry (A^{pol}_{FB}) whose coefficient is the beam polarization
- Measure tau polarization as a function of scattering angle,
 θ, for the separately tagged beam polarisation states
- Because it's a forward-backward asymmetry it doesn't use information we'd want to use for new physics studies & note EW contribution is small

Tau Polarisation as Beam Polarimeter:

Advantages:

- Measures beam polarization at the IP: biggest uncertainty in Compton polarimeter measurement is the uncertainty in the transport of the polarization from the polarimeter to the IP.
- It automatically incorporates a luminosity-weighted polarization measurement
- If positron beam has stray polarization, it's effect is automatically included
- Experience from OPAL (at LEP) using only $\tau > \pi v$ indicates a 0.2% on systematic error on the A^{pol}_{FB} is achievable, translates into 0.5% error on the beam polarisation
- Experience from BaBar indicates that the statistical error on A^{pol}_{FR} will be negligible University of Victoria

Fermion flavour	σ (nb) eff %	Number Selected events (billions)	$\frac{SM}{g_V}_{(M_z)}$	A _{LR} 70% Pol	g _v f Total Error (%)	Sin²θ _W (M _z) Total Error
beauty	1.1 (95%)	38	-0.3437 ± .0001	-0.013	0.5	0.0026
charm	1.3 (30%)	29	+0.1920 ±.0002	-0.003	0.5	0.00076
tau	0.92 (25%)	17	-0.0371 ±.0003	-3x10 ⁻⁴	2.3	0.00043
muon	1.15 (54%)	46	-0.0371 ±.0003	-3x10 ⁻⁴	1.5	0.00027

15

b-quark coupling at SuperB

- SuperB is in a unique position to experimentally address the existing 3σ discrepancy between the g_R of the b-quark and the SM prediction
- At SuperB no QCD corrections for the b-quark coupling -> smaller systematic errors
 - At LEP QCD corrections were required hadronization effects, hard gluons, etc
 - An advantage at SuperB over a high energy machine, e.g. Z-factory, is that these corrections do not exist: we are coupling to pseudoscalars with no hadronization

Comparisons with present neutral current vector coupling uncertainties Physics Report Vol 427, Nos 5-6 (2006), ALEPH, OPAL, L3, DELPHI, SLD

tau:	±0.0010	cf SuperB ±0.0009
muon:	± 0.0023	cf SuperB: ±0.0005

LEP/SLC: Lepton g_V = -0.03753± 0.00037

SuperB error will be ± 0.00047 combining tau and muon Using electrons at large angles will improve on this

ŚuperÈ

Comparisons with present neutral current vector coupling uncertainties Physics Report Vol 427, Nos 5-6 (2006), ALEPH, OPAL, L3, DELPHI, SLD

c-quark: SuperB ~7 times more precise **b-quark:** SuperB ~5 times more precise

18

SuperB at 10GeV probes both high and low energy scales

- Measurements of $\sin^2\theta_{eff}^{lepton}$ of using lepton pairs of comparable precision to that obtained by LEP/SLD, except at 10.58GeV
 - sensitive to Z' > TeV scale; unique position to probe Z' that only couple to leptons: complementary to direct Z' searches at LHC which couple to both quarks and leptons
- highest precision test neutral current vector coupling universality (~2%)
- As it provides the most precise measurements for charm and beauty:
 - probes both heavy quark phenomenology and Up vs Down

SuperB at 10GeV probes both high and low energy scales

- Scenarios for new physics include the presence of a 'hidden' or 'dark' sector which is weakly coupled to the SM and which have its own gauge boson and Higgs sector but at lower energy.
- SuperB provides a means to search for Dark Sector neutral gauge bosons and is the only means available for masses between the $\rm M_B$ and $\rm 2xM_B$
- Note that using ISR from the un-polarised beam particles, can also probe parity violating processes in e⁺e⁻ collisions at lower energies, but with lower precision

20

Summary

- The CabibboLab's SuperB project on the University of Rome-2 Tor Vergata campus is designed to have $\mathcal{L}=10^{36}$ cm⁻²s⁻¹ and electron beams with 70% polarisation
- This opens a unique window on precision electroweak physics
- SuperB will measure the b, charm, tau and muon weak neutral current vector couplings with the highest precision of any experiment
- Will yield $\sin^2\theta_W$ measurements with a precision comparable to those at the Z-pole
- As these precision measurements are made at 10.58GeV using interference with the γ, SuperB is sensitive to new physics at both TeV scales and in a lower energy 'dark sector'

Additional slides

SuperB

22

Polarisation in SuperB

Spin Rotator location for Beam Polarization

Interaction Region

23

Estimates of Polarisation Systematic errors from Compton Polarimeter... arXiv:1009.6178

Table 16.4: Systematic errors expected for the polarization measurement.

Item	δP/P
Laser Polarization	<0.1%
Background uncertainty	<0.25%
Linearity of phototube response	<0.25%
Uncertainty in dP (Difference between the luminosity weighted polarization and the	
Compton IP polarization. Includes uncertainties due to beam energy and direction	
uncertainties.)	<0.4%
Uncertainty in asymmetry analyzing power	~0.3%
Total Systematic Error	< 1.0%

SuperB Overview

- Use a broad set of measurements to observe physics beyond the Standard Model and to elucidate its nature
- Precision measurements
 - new physics enter in loops
 - interference \Rightarrow asymmetries
- Rare/Forbidden (in SM) decays
- Probe beyond the TeV scale with precision measurements
- Probe lower energy scale new physics with small couplings – such as the dark or hidden sectors

SuperB Overview

- Next generation e⁺e⁻ collider Flavour factory:
 - Primarily will operate at the $\Upsilon(4S) (\rightarrow BB)$, but with ability to run on $\Upsilon(1, 2, \text{ or } 3S)$ and above the $\Upsilon(4s)$ and for SuperB at charm threshold.
- Asymmetry e⁺e⁻ collider with luminosity ~100× PEP-II/KEKB, L=10³⁶cm⁻²s⁻¹, but with comparable beam currents and power.
 - somewhat lower asymmetry, $\beta \gamma = 0.28$ vs 0.56
- For SuperB e- (low energy) beam will be longitudinally polarised ~70%
- Complements LHC program, both of ATLAS, CMS as well as LHCb

SuperB Overview

- Test CKM at 1% level
 - CPV in B decays from new physics (non-CKM)
- B-recoil technique for B->K(*)ll, B->τν, B->D*τν
- τ physics: lepton flavour violations, g-2, EDM, CPV
- With polarised beam: Precision EW physics
- Many other topics:
 - Y(5S) physics, CPV in Charm, ISR radiative return, spectroscopy...
- Physics programme complementary to LHC
 - If LHC finds NP, precision flavour input essential
 - If LHC finds no NP, high statistics B and τ decays are unique way of probing >TeV scale physics

Recent publications from proponents of e^+e^- Super Flavour Factories

- SuperB 2010 Progress Reports:
 - Physics arXiv:1008.1541
 - Detector arXiv:1007.4241
 - Accelerator arXiv:1009.6178
- Physics at Super B Factory (Belle-II + theorists)
 arXiv:1002.5012

PDG 2010: HIGH-ENERGY COLLIDER PARAMETERS: e^+e^- Colliders

29

	KEKB (KEK)	PEP-II (SLAC)	SuperB (Italy)	SuperKEKB (KEK)
Maximum beam energy (GeV)	e ⁻ : 8.33 (8.0 nominal) e ⁺ : 3.64 (3.5 nominal)	$e^{-}: 7-12$ (9.0 nominal) $e^{+}: 2.5-4$ (3.1 nominal) (nominal $E_{\rm cm} = 10.5 \text{ GeV}$)	$e^{-}: 4.2$ $e^{+}: 6.7$	$e^-: 7$ $e^+: 4$
Luminosity (10^{30} cm ⁻² s ⁻¹)	21083	12069 (design: 3000)	1.0×10^6	8×10^5
Time between collisions (μs)	0.00590 or 0.00786	0.0042	0.0042	0.004
Full crossing angle (μ rad)	$\pm 11000^{\dagger}$	0	± 33000	± 41500
Energy spread (units 10^{-3})	0.7	e^{-}/e^{+} : 0.61/0.77	e^-/e^+ : 0.73/0.64	e^{-}/e^{+} : 0.58/0.84
Bunch length (cm)	0.65	e^-/e^+ : 1.1/1.0	0.5	e^{-}/e^{+} : 0.5/0.6
Beam radius (µm)	H: 124 (e ⁻), 117 (e ⁺) V: 0.94	H: 157 V: 4.7	H: 8 V: 0.04	e^{-} : 11 (H), 0.062 (V) e^{+} : 10 (H), 0.048 (V)
Free space at interaction point (m)	+0.75/-0.58 (+300/-500) mrad cone	± 0.2 , $\pm 300 \text{ mrad cone}$	± 0.35	e^- : +1.20/ - 1.28, e^+ : +0.78/ - 0.73 (+300/-500) mrad cone
Luminosity lifetime (hr)	continuous	continuous	continuous	continuous
Turn-around time (min)	continuous	continuous	continuous	continuous

PDG 2010: HIGH-ENERGY COLLIDER PARAMETERS: e^+e^- Colliders

	KEKB (KEK)	PEP-II (SLAC)	SuperB (Italy)	SuperKEKB (KEK)
Injection energy (GeV)	$e^{-}/e^{+}: 8/3.5$	2.5-12	$e^{-}/e^{+}: 4.2/6.7$	$e^{-}/e^{+}:7/4$
Transverse emittance $(10^{-9}\pi \text{ rad-m})$	e^{-} : 24 (57 [*]) (H), 0.61 (V) e^{+} : 18 (55 [*]) (H), 0.56 (V)	$e^-: 48 (H), 1.5 (V)$ $e^+: 24 (H), 1.5 (V)$	$e^{-}: 2.5 (H), 0.006 (V)$ $e^{+}: 2.0 (H), 0.005 (V)$	5 (H), 3 (V)
β^* , amplitude function at interaction point (m)	e^{-} : 1.2 (0.27 [*]) (H), 0.0059 (V) e^{+} : 1.2 (0.23 [*]) (H), 0.0059 (V)	$e^-: 0.50 (H), 0.012 (V)$ $e^+: 0.50 (H), 0.012 (V)$	e^{-} : 0.032 (H), 0.00021 (V) e^{+} : 0.026 (H), 0.00025 (V)	$e^-: 0.025 (H), 3 \times 10^{-4} (V)$ $e^+: 0.032 (H), 2.7 \times 10^{-4} (V)$
Beam-beam tune shift per crossing (units 10 ⁻⁴)	e^- : 1020 (H), 900 (V) e^+ : 1270 (H), 1290 (V)	e^{-} : 703 (H), 498 (V) e^{+} : 510 (H), 727 (V)	20 (H), 950 (V)	e^{-} : 12 (H), 807 (V) e^{+} : 28 (H), 893 (V)
RF frequency (MHz)	508.887	476	476	508.887
Particles per bunch (units 10 ¹⁰)	e^-/e^+ : 4.7/6.4	e^-/e^+ : 5.2/8.0	e^-/e^+ : 5.1/6.5	e^-/e^+ : 6.53/9.04
Bunches per ring per species	1585	1732	978	2500
Average beam current per species (mA)	e^{-}/e^{+} : 1188/1637	e^-/e^+ : 1960/3026	e^-/e^+ : 1900/2400	e^-/e^+ : 2600/3600

30

SuperB

PDG 2010: HIGH-ENERGY COLLIDER PARAMETERS: e^+e^- Colliders

	KEKB (KEK)	PEP-II (SLAC)	SuperB (Italy)	SuperKEKB (KEK)
Beam polarization (%)	_	_	> 80	_
Circumference or length (km)	3.016	2.2	1.258	3.016
Interaction regions	1	1	1	1
Magnetic length of dipole (m)	e^-/e^+ : 5.86/0.915	e^-/e^+ : 5.4/0.45	e^{-}/e^{+} : 0.9/5.4	e^-/e^+ : 5.9/4.0
Length of standard cell (m)	$e^{-}/e^{+}:75.7/76.1$	15.2	40	$e^-/e^+:75.7/76.1$
Phase advance per cell (deg)	450	e^{-}/e^{+} : 60/90	360 (V), 1080 (H)	450
Dipoles in ring	$e^-/e^+: 116/112$	e^-/e^+ : 192/192	e^-/e^+ : 186/102	e^-/e^+ : 116/112
Quadrupoles in ring	$e^-/e^+:452/452$	e^-/e^+ : 290/326	e^-/e^+ : 290/300	$e^-/e^+: 466/460$
Peak magnetic field (T)	$e^-/e^+: 0.25/0.72$	$e^-/e^+: 0.18/0.75$	$e^-/e^+: 0.52/0.25$	$e^-/e^+: 0.22/0.19$

B Physics at the $\Upsilon(4S)$

- A. New Physics in CP violation
 - 1. ΔS measurements
- B. Theoretical aspects of rare decays
 - 1. New physics in $B \to K^{(*)} \nu \bar{\nu}$ decays
 - 2. $\bar{B} \to X_s \gamma$ and $\bar{B} \to X_s \ell^+ \ell^-$
 - 3. Angular analysis of $B \rightarrow K^* l^+ l^-$
 - 4. $\bar{B} \to X_d \gamma$ and $\bar{B} \to X_d \ell^+ \ell^-$
- C. Experimental aspects of rare decays
 - 1. $B \rightarrow K^{(*)}\nu\overline{\nu}$
 - 2. $B \to \ell \nu$ and $B \to \ell \nu \gamma$
 - 3. Experimental aspects of $\bar{B} \rightarrow X_s \gamma$
 - 4. Inclusive and exclusive $b \rightarrow s\ell^+\ell^-$
 - 5. More on $B \to X_{s/d} \ell^+ \ell^-$ with a hadron tag
- D. Determination of $|V_{ub}|$ and $|V_{cb}|$
 - 1. Inclusive Determination of $|V_{ub}|$
 - 2. Inclusive Determination of $|V_{cb}|$
- E. Studies in Mixing and CP Violation in Mixing
 - 1. Measurements of the mixing frequency and *CP* asymmetries
 - 2. New Physics in mixing
 - 3. Tests of CPT
- F. Why measure γ precisely (and how)?
- G. Charmless hadronic B decays
- H. Precision CKM

Super Flavour Factory Physics Program Summary

- B Physics at the $\Upsilon(5S)$
 - 1. Measurement of B_s Mixing Parameters
 - 2. Time Dependent *CP* Asymmetries at the $\Upsilon(5S)$
 - 3. Rare Radiative B_s Decays
 - 4. Measurement of $B_s \rightarrow \gamma \gamma$
 - 5. Phenomenological Implications

Electroweak neutral current measurements

Spectroscopy

- A. Introduction
- B. Light Mesons
- C. Charmonium
- D. Bottomonium
 - 1. Regular bottomonium
 - 2. Exotic bottomonium
- E. Interplay with other experiments

Direct Searches

- A. Light Higgs
- B. Invisible decays and Dark Matter
- C. Dark Forces

Super Flavour Factory Physics Program Summary

τ physics

- A. Lepton Flavor Violation in τ decay Predictions from New Physics models LFV in the MSSM LFV in other scenarios SuperB experimental reach
- B. CP Violation in τ decay
- C. Measurement of the τ electric dipole moment
- D. Measurement of the $\tau~g-2$
- E. Search for second-class currents

33

Charm Physics

A. On the Uniqueness of Charm

B. $D^0 - \overline{D}^0$ Oscillations

- 1. Experimental Status
- 2. Combination of measurements and CPV
- 3. Measurements of strong phases
- 4. Theoretical Interpretation
- 5. Measuring x_D and y_D at SuperB
- Projections for mixing measurements at SuperB
- Estimated sensitivity to CPV from mixing measurements
- C. CP Violation
 - 1. Generalities
 - 2. SM Expectations
 - 3. Experimental Landscape
 - Littlest Higgs Models with T Parity A Viable Non-ad-hoc Scenario
- D. Rare Decays
 - 1. $D^0 \rightarrow \mu^+ \mu^-, \gamma \gamma$

2.
$$D \rightarrow l^+ l^- X$$

- E. Experimental possibilities for rare decay searches at SuperB 1. $D \rightarrow l^+l^-X$
- F. A case for Running at the $D\overline{D}$ threshold?

Super Flavour Factory Physics Program Summary

Complementary with LHCb

	Belle or BaBar	SuperB or Belle II	LHCb
	~ 0.5 ab ⁻¹	50 ab⁻¹	$10 {\rm ~fb^{-1}}$
Δ <mark>S(</mark> φK _S)	0.22	0.029	0.14
ΔS(η'K _S)	0.11	0.020	
_{βs} from S(J/ψφ)			0.01
S(Κ*γ)	0.36	0.03	
S (ργ)	0.68	0.08	
$\Delta B/B(B \rightarrow \tau_V)$	3.5σ	3%	
$B_s \rightarrow \mu\mu$	•	•	$5\sigma @ 6 \text{ fb}^{-1}$
$\tau \rightarrow \mu \gamma $ [×10 ⁻⁹]	<45	<8	
τ → μμμ [×10 ⁻⁹]	<209	<1	
α / ϕ_2	11 ⁰	1 ⁰	4.5°
γ / φ ₃	16°	2 ⁰	2.4°

Advantage:

LHCb

• Modes where the final states are charged only.

35

SuperB

•

•
$$B_c$$
, Λ_b

B factories

- Modes with $\gamma,\,\pi^0$.
- \bullet Modes with ν .
- τ decays.
- $K_{\rm S}$ vertex.

