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ABSTRACT

Distributed coordination of multi-agent systems (MASs) has been widely studied
in various emerging engineering applications, including connected vehicles, wireless
networks, smart grids, and cyber-physical systems. In these contexts, agents make
the decision locally, relying on the interaction with their immediate neighbors over the
connected communication networks. The study of distributed coordination for the
multi-agent system (MAS) with constraints is significant yet challenging, especially in
terms of ubiquitous uncertainties, the heavy communication burden, and communi-
cation delays, to name a few. Hence, it is desirable to develop distributed algorithms
for the constrained MAS with these practical issues. In this dissertation, we develop
the theoretical results on robust distributed model predictive control (DMPC) algo-
rithms for two types of control problems (i.e., formation stabilization problem and
consensus problem) of the constrained and uncertain MAS and apply robust DMPC
algorithms in applications of cooperative marine vehicles.

More precisely, Chapter 1 provides a systematic literature review, where the
state-of-the-art DMPC for formation stabilization and consensus, robust MPC, and
MPC for motion control of marine vehicles are introduced. Chapter 2 introduces
some notations, necessary definitions, and some preliminaries. In Chapter 3, we
study the formation stabilization problem of the nonlinear constrained MAS with un-
certainties and bounded time-varying communication delays. We develop a min-max
DMPC algorithm with the self-triggered mechanism, which significantly reduces the
communication burden while ensuring closed-loop stability and robustness. Chapter
4 investigates the consensus problem of the general linear MAS with input constraints
and bounded time-varying delays. We design a robust DMPC-based consensus pro-
tocol that integrates a predesigned consensus protocol with online DMPC optimiza-
tion techniques. Under mild technical assumptions, the estimation errors propagated
over prediction due to delay-induced inaccurate neighboring information are proved
bounded, based on which a robust DMPC strategy is deliberately designed to achieve
robust consensus while satisfying control input constraints. Chapter 5 proposes a
Lyapunov-based DMPC approach for the formation tracking control problem of co-
operative autonomous underwater vehicles (AUVs) subject to environmental distur-
bances. A stability constraint leveraging the extended state observer-based auxiliary
control law and the associated Lyapunov function is incorporated into the optimiza-
tion problem to enforce the stability and enhance formation tracking performance. A
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collision-avoidance cost is designed and employed in the DMPC optimization problem
to further guarantee the safety of AUVs. Chapter 6 presents a tube-based DMPC
approach for the platoon control problem of a group of heterogeneous autonomous
surface vehicles (ASVs) with input constraints and disturbances. In particular, a
coupled inter-vehicle safety constraint is added to the DMPC optimization problem;
it ensures that neighboring ASVs maintain the safe distance and avoid inter-vehicle
collision. Finally, we summarize the main results of this dissertation and discuss some
potential directions for future research in Chapter 7.
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Chapter 1

Introduction

1.1 Distributed Coordination of Multi-Agent Sys-
tems

1.1.1 Overview

Multi-agent systems (MASs) have received considerable attention in the past two
decades, mainly because they play essential roles in broad industrial applications, in-
cluding connected vehicles, sensor networks, smart grids, and cyber-physical systems.
Generally speaking, a multi-agent system (MAS) consists of a team of agents/sub-
systems, where agents work together to achieve a common objective. In this context,
effective coordinated control algorithms are critical for the MAS; the existing al-
gorithms can be classified into two categories, namely, centralized and distributed
coordination, as shown in Figure 1.1. In centralized coordination, a central controller
collects the information of all agents and computes control inputs of all agents, which
has been extensively studied for the MAS [38,144], see Figure 1.1a. These approaches
typically have high communication and computational requirements, which are un-
suitable for the practical MAS in the real world. In distributed coordination, on the
other hand, each agent calculates its control inputs based on the information locally
available and the information from its neighbors, where the centralized controller is
removed, as demonstrated in Figure 1.1b. In particular, the distributed coordina-
tion control problem becomes challenging when the MAS is subject to constraints.
However, many large-scale complex systems, such as transportation systems, smart
grids, constrained processes systems, wireless sensor networks, and multi-robot sys-
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tems, raise computational and communication issues. For such systems, distributed
model predictive control (DMPC) is one of the appealing control methods owing to
its computational efficiency, superior control performance, and the ability to deal
with explicit constraints systematically [119]. Some comprehensive survey papers on
DMPC for MASs and their applications have been reported; see [9, 97, 104, 125] and
references therein. We provide an overview of DMPC concerning different control
tasks as follows.

(a) Centralized coordination (b) Distributed coordination

Figure 1.1: Illustration of centralized and distributed coordination for MASs.

1.1.2 DMPC for stabilization of the MAS

The MAS’s stabilization (also referred to as formation stabilization) problem is a
control problem in which agents are cooperatively controlled to a desired constant
setpoint. An extensive literature on DMPC algorithms for solving this problem has
emerged in the past twenty years. Loosely speaking, a classification of existing DMPC
algorithms can be made according to the coupling source, namely DMPC with coupled
cost, coupled constraints, and coupled dynamics.

1.1.2.1 DMPC with coupled cost

In this class, the cooperation component among agents is introduced in an optimiza-
tion problem via the coupled cost function (1.1), as explored in [19], where each agent
optimizes a locally coupled objective function Vi(xi, xj, ui)

Vi(xi, xj, ui) =
∑
j∈Ni

`i(xi, xj, ui) + V f
i (xi), (1.1)
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where xj denotes the neighboring state information of agent j, j ∈ Ni, ui denotes the
control input, `i(xi, xj, ui) is the coupled stage cost function and V f

i (xi) is the local
terminal cost function, with Ni being the neighbor set of agent i.

Results from the cost-coupled DMPC have been employed to stabilize the con-
strained MAS. For example, the DMPC approach has been developed for the continuous-
time nonlinear MAS [19], where a compatibility constraint is designed to bound the
deviation between the actual and assumed states. Consequently, the original opti-
mization problem is decomposed into a set of smaller size optimization problems,
and the assumed neighboring state sequence is utilized for solving these optimiza-
tion problems in parallel. In [123], a similar control problem of dynamically de-
coupled linear dynamics is formulated. The authors in [102, 153, 182] employ the
DMPC framework for the discrete-time nonlinear MAS with dynamically decoupled
dynamics and the shared control objective. In addition, DMPC algorithms have been
extended to address some practical issues, e.g., the communication delays [26,62], un-
certainties [64, 152], and heavy communication load [100, 163]. Particularly, DMPC
algorithms find numerous applications of MASs such as connected vehicles [89, 182],
cooperative marine vehicles [160], and interconnected microgrids [34].

1.1.2.2 DMPC with coupled constraints

Regarding the system constraints, most of the aforementioned DMPC algorithms may
not be feasible for the MAS with global coupled constraints as in (1.2c). However, this
type of constraint plays an essential role in many practical applications, including, for
instance, controlling a group of vehicles while avoiding collisions and preserving con-
nectivity. It is noted that the main challenge lies in the guarantee of the satisfaction
of coupled constraints in a distributed fashion.

xi ∈ Xi, i = 1, 2, . . . ,M, (1.2a)
ui ∈ Ui, i = 1, 2, . . . ,M, (1.2b)

M∑
i=1

(Ψx
i xi + Ψu

i ui) ≤ 1, (1.2c)

where xi and ui are the system state and the control input, respectively. Xi ⊂ Rni ,
Ui ⊂ Rmi are the local constraint sets of state and control input of agent i, i =
1, 2, . . . ,M , respectively. Ψx

i ∈ Rp×ni and Ψu
i ∈ Rp×mi are matrices used to define the

globally coupled constraints, with 1 being the all-one vector of proper dimensions.
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In [123], a DMPC algorithm is developed for the dynamically decoupled MAS
with coupled constraints; only one agent calculates the locally optimal control in-
puts and updates the system states at each time instant. As reported in [145, 147],
all agents with coupled constraints are optimized jointly in a cooperative set, which
may have a strong requirement on the communication networks. Another direction
for coupled constraints [158, 159] that achieves global optimality is to distributively
solve the dual optimization problem, where dual variables related to the coupled con-
straints are treated as consensus variables in the distributed optimization problem.
In addition, distributed optimization algorithms, such as the alternating direction
multiplier method [158] and push-sum dual gradient algorithm [45], are adopted to
solve the dual problem of the DMPC optimization problem in a distributed fash-
ion. Considerable efforts have been devoted to exploring more efficient and tractable
computation of the solution to the constraint-coupled DMPC optimization problem.
For example, accelerated gradient methods using dual decomposition are leveraged to
solve the DMPC optimization problem [29, 159]. A recent paper designs the DMPC
method for the MAS with stochastic communication noises and global constraints,
in which the noisy distributed ADMM strategy is developed to calculate the control
inputs within the finite number of iterations [59].

1.1.2.3 DMPC with coupled dynamics

Note that the MAS with coupled system dynamics widely exists in many practical
applications, e.g., chemical processes [88]. A DMPC algorithm is developed for the
formation stabilization problem of the linear constrained MAS with coupled dynam-
ics in [139]; the DMPC algorithm is extended to control the nonlinear MAS with
coupled dynamics [17]. In these implementations, agents solve local optimization
problems based on neighbor-to-neighbor communication. In addition to these results,
the authors in [86, 87] propose Lyapunov-based iterative DMPC algorithms for the
nonlinear MAS with coupled inputs, where a stability constraint derived from an aux-
iliary control law is imposed on the local DMPC optimization problem to guarantee
the closed-loop stability. In [13, 157], the DMPC scheme with a time-varying termi-
nal set is proposed for the dynamically coupled MAS to achieve a less conservative
result. For the nonlinear MAS, an event-triggered DMPC method is proposed for the
dynamically coupled MAS in [85], in which the coupling term is regarded as bounded
external disturbances. Other DMPC methods for the MAS with coupled dynamics
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along this line include [10,42,90,93,124,162].

1.1.3 DMPC for consensus of the MAS

Compared with the formation stabilization of the MAS, DMPC algorithms for the
consensus problem have not been studied extensively. In the consensus problem of
the MAS, it is desired that agents agree on a common unknown static or dynamic
value. Previous works on DMPC for consensus of the MAS include [7, 11, 23, 28, 37,
47, 49, 66, 68, 71, 102, 154, 155, 174, 175]. In [23], a DMPC-based consensus protocol is
proposed for the MAS with single and double integrator dynamics over time-varying
networks. The geometric properties of the optimal path for each agent are exploited
to analyze the consensus convergence. On the basis of the above technique, a con-
tractive constraint is designed and then incorporated into the MPC problem for the
MAS with double integrator dynamics to achieve consensus. The authors of [175]
present an analytical DMPC solution to the unconstrained average consensus prob-
lem and derive the feasible range of the sampling interval for the sampled-data MAS.
In [7], a DMPC-based consensus framework with adjustable prediction horizon is
developed to solve the consensus problem of the discrete-time MAS with double inte-
grator dynamics, input constraints, and switching communication topologies. [66,71]
investigate consensus problems for the first-order MAS and general linear MAS. An
explicit consensus protocol is derived from the unconstrained DMPC problem based
on local and neighboring information, where a necessary and sufficient consensus
condition is provided. Later, the work [68] studies the optimal consensus problem
for the linear MAS with semi-stable and unstable dynamics and control input con-
straints. Because of the heavy communication burden and external disturbances, the
self-triggered DMPC [174] and output-feedback DMPC [11] are developed for ad-
dressing these practical issues of the constrained MAS, respectively. Recently, the
unconstrained consensus problem of the asynchronous MAS with single and double
integrator dynamics is solved via DMPC in [154]. The control inputs and consensus
states are determined by solving the optimization problem in a distributed manner.
The authors further extend this method for the general linear MAS in [155]. In this
scheme, a consensus manifold is introduced such that the final consensus state and
input sequence are regarded as augmented decision variables of the DMPC optimiza-
tion problem. The output consensus problem of the heterogeneous discrete-time MAS
subject to state and control input constraints is considered in [37]. Based on the idea
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of tracking MPC in [79], the combination of tracking cost and consensus cost in the
overall cost function is beneficial to achieving consensus. It is worth emphasizing that
the aforementioned studies either focus on simple integrator dynamics [7, 23, 154] or
consider unconstrained consensus problems [66, 71, 175]. A detailed comparison be-
tween existing DMPC-based consensus algorithms is summarized in Table 1.1.

Table 1.1: An overview of existing DMPC-based consensus algorithms.

Method Constraint types System dynamics Robustness
[23] Unconstrained Single and double integrators –
[102] State and input constraints Linear and nonlinear systems –
[175] Unconstrained Single integrators –
[7] Input constraints Single and double integrators –
[71] Unconstrained Linear system –
[68] Input constraints Linear system –
[28] State and input constraints Nonlinear system –
[37] State and input constraints Linear system –
[11] Input constraints Linear and nonlinear systems Min-max DMPC
[155] Unconstrained Linear system –

1.2 Robust MPC

1.2.1 Overview

As discussed in the last section, many decent DMPC algorithms have been developed
for the constrained MAS. Due to the ubiquitous existence of external disturbances
and parametric uncertainties in practice, the closed-loop stability of the systems may
not be guaranteed. MPC for the uncertain system aims to steer the states to the
neighborhood of the desired setpoint and ensure the satisfaction of state and control
constraints for all realizations of uncertainties. Several robust MPC schemes have
been proposed to handle this challenging problem, such as min-max MPC and tube-
based MPC. The robust stability of such systems has been studied by using the input-
to-state stability, and input-to-state practical stability theory [43, 137]. Examples of
the use of the input-to-state stability and input-to-state practical stability theory for
robust MPC can be found in [55,94].

Consider a discrete-time nonlinear system with uncertainties

x(k + 1) = f(x(k), u(k), w(k)), (1.3)
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where w(k) ∈ W ⊆ Rw denotes the disturbance input. It is assumed that the
disturbance w(k) lies in a compact set W which contains the origin in its interior
and may depend on the state and input W = {w | ‖w‖ ≤ γ(‖x‖) + ρ(µ)}, where
γ(·) and ρ(·) are K functions for all x ∈ X and u ∈ U , and the constant µ describes
the persistent disturbance. In the following, a brief review of different robust MPC
methods is provided.

1.2.2 Nominal MPC with inherent robustness

Typically, nominal MPC ignores the disturbances of the system in the optimization
problem. The nominal system is described by

x̄(k + 1) = f(x̄(k), µ̄(k), 0), k ≥ 0, (1.4)

in which x̄π̄(k, x(0)) denotes the solution of the system in (1.4) at time k with the
initial state x(0) and the control policy π̄ = {µ̄(0), µ̄(1), . . . , µ̄(N − 1)}. And the
nominal cost function is defined as

VN(x̄(0), π̄) =
N−1∑
k=0

`(x̄(k), µ̄(k)) + Vf (x̄(N)), (1.5)

where N is the prediction horizon, `(x̄(k), µ̄(k)) denotes the stage cost function and
Vf (x̄(N)) denotes the terminal cost function. For the nominal MPC, the optimization
problem is formulated as

P̄N : V 0
N(x̄) = min

π̄∈U
VN(x̄(0), π̄), s.t. (1.4), x̄(k) ∈ X , µ̄(k) ∈ U . (1.6)

It is of interest to analyze under which conditions nominal MPC can guarantee
the robustness with respect to specific classes of disturbances. Under the optimal
control policy π̄∗, the closed-loop stability of the uncertain system in (1.3) can be
obtained if the disturbances are arbitrarily small [31], and the nominal system in (1.4)
inherits the robust stability under the fundamental assumption that the presence of
the uncertainties does not cause any loss of feasibility [126]. In [173], the authors show
that the constrained nonlinear system under nominal MPC is input-to-state stable
if the system is subject to sufficiently small additive disturbances. In contrast to
the analysis of the inherent robustness of the nominal MPC for linear systems, novel
nominal MPC schemes are further extended for hybrid and nonlinear systems [56,115].
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1.2.3 Min-max MPC

Under suitable conditions, nominal MPC has inherently robust stability; however, in
the presence of state and control input constraint, the robustness margin may be suf-
ficiently small or even nonexistent. Alternatively, min-max MPC can simultaneously
handle parametric uncertainties and external disturbances and yield good control
performance.

Different from the aforementioned nominal cost function (1.5), the worst case cost
function is defined as follows:

VN(x(0), π) = max
w∈W
{
N−1∑
k=0

`(x(k), µ(k)) + Vf (x(N))}, (1.7)

where x(k) is the system state at time k and π := {µ(0), µ(1), . . . , µ(N − 1)} is the
control policy. The cost function (1.7) is maximized concerning the worst-case real-
izations of all admissible uncertainties, which yields a min-max optimization problem

PN : V 0
N(x) = min

π∈U
VN(x(0), π), s.t. (1.3), x(k) ∈ X , µ(k) ∈ U , w(k) ∈ W . (1.8)

The open-loop min-max MPC scheme is proposed in [95] for the nonlinear sys-
tem. The maximum cost function is further minimized with respect to the control
sequence for the worst-case realizations. The open-loop min-max MPC approach is
computationally easier than the feedback min-max MPC approach, but the feedback
mix-max MPC approach has a larger region of attraction [78]. In [55], the feedback
min-max MPC is proposed for the constrained nonlinear systems with parametric
uncertainties and external disturbances. It is shown that the nonlinear system under
the feedback min-max is input-to-state practical stable (ISpS), and the optimization
problem is solved via dynamic programming. The linear system case is considered
in [57]. In [116], a novel min-max MPC scheme for the nonlinear system is proposed,
where an explicit robustness bound of the closed-loop system is derived based on the
ISpS conditions. In [60], the min-max MPC is proposed for the constrained nonlin-
ear networked control systems with uncertainties and network-induced constraints.
In [177], a systematic min-max model predictive tracking control strategy is proposed
for the industrial processes with actuator saturation and unknown disturbances. To
further reduce the communication cost while ensuring the desired level of control per-
formance, a self-triggered min-max MPC is proposed for the constrained nonlinear
system with both parametric uncertainties and external disturbances [83].
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Compared with the nominal MPC scheme, min-max MPC theoretically has better
robustness but is computationally expensive, limiting its application in many practical
scenarios. However, the development of the advanced optimization algorithms and
the lower cost of the hardware with powerful computation resources may enable the
min-max MPC approach to be widely used [170].

1.2.4 Tube-based MPC

The constraint tightening MPC and tube-based MPC are developed in order to
achieve a better trade-off between the control performance and the computation com-
plexity. Constraint tightening approaches, as stated in [92, 101, 122], are computa-
tionally efficient. Two novel implementable nominal MPC frameworks with tightening
robustness constraints are proposed to ensure the robust stability of nonlinear sys-
tems in [52, 61]. However, the constraint sets generally shrink drastically due to the
uncertainties increasing with the prediction horizon. In contrast, tube-based MPC
approaches reduce the online computational burden and exploit both the online con-
trol action and the offline feedback control law [8, 99]. The optimal control actions
generated by solving a finite-horizon constrained optimization problem steer the nom-
inal system to the origin. The feedback control law keeps the actual system states in
a tube that centers on the nominal optimal state.

In contrast to the min-max MPC approach, the conventional nominal cost function
and nominal dynamics are used in the tube-based MPC optimization problem. The
disturbances are taken into consideration, yielding the tightened state and control
input constraints

x̄(k) ∈ X 	 Ω, µ̄(k) ∈ U 	KΩ, (1.9)

where X and U denote the state constraint and control constraint, respectively; x̄
is the nominal state, Ω denotes the disturbance invariant set, K is the offline feed-
back control gain, and 	 denotes the set subtraction. For the tube-based MPC, the
optimization problem is formulated as

P ′N : V 0
N(x̄) = min

π̄∈U
VN(x̄(0), π̄), s.t. (1.4), (1.9), (1.10)

which generates the optimal nominal control sequence π̄∗ := {µ̄∗(0), µ̄∗(1), . . . , µ̄∗(N−
1)}, and the control input applied to the actual system (1.3) is designed as u(k) =
µ̄∗(k) +K(x(k)− x̄(k)).
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Tube MPC that reduces the online computation burden has been widely studied
in, for example, [8,54,99,117] for linear systems and in [98,143,150,172] for nonlinear
systems. In [54, 99], a tube-based MPC is proposed for the linear systems with
additive disturbances, where the rigid tube is calculated offline. The authors in
[117,118] develop the homothetic tube and elastic tube-based MPC for the uncertain
linear systems to further reduce conservatism by computing the dynamic tube online,
thereby enlarging the feasible region. For nonlinear systems, it is challenging to find
a local stabilization feedback control law. Tube-based MPC for nonlinear systems
with additive disturbances is studied in [98,172], in which the controller has a similar
structure as the linear systems, i.e., the optimal nominal control action is generated
by calculating the constrained MPC optimization problem and the offline ancillary
feedback control law is generated by solving another optimization problem. The
extension to the uncertain nonlinear MAS is reported in [106]. Tube-based MPC is
also extended to address the tracking control problem of the constrained unicycle
robots with additive disturbances in [143].

1.3 Autonomous Marine Vehicles

1.3.1 Overview

The ocean covers about 72% of the earth’s surface, but most of the area has not
yet been explored. There is an increasing demand for cutting-edge technology and
advanced equipment to explore the ocean for different applications, such as ocean
transportation, resource exploration, and emergency operation support. These in-
creasing demands have stimulated the research interest in autonomous marine me-
chanical systems that integrate electronics, mechanics, and control software. A variety
of advanced control strategies have been developed for autonomous marine vehicles
(AMVs), including autonomous surface vehicles (ASVs) and autonomous underwater
vehicles (AUVs) [25,133]. Among these control approaches, MPC is a well-established
control scheme, and it has distinct features to cope with physical constraints while
optimizing the control performance. In this section, we focus on the motion control
problems of AMVs, such as dynamic positioning, and trajectory tracking control from
the perspective of MPC. Several representative motion control problems of AMVs are
stated as follows.

1) Dynamic positioning: The AMV is required to maintain the prespecified posi-
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tion and heading autonomously with installed thrusters.

2) Path following: The AMV is required to follow a feasible predefined path with
desired speed and orientation.

3) Trajectory tracking: The AMV is driven to track a spatial and temporal trajec-
tory with a specific time requirement.

4) Cooperative control: The AMVs are required to cooperatively complete a specific
control task, such as formation tracking control.

1.3.2 MPC for AMVs

1.3.2.1 Dynamic positioning and path following

Dynamic positioning: The dynamic positioning control is a representative control task
for marine applications; see the survey paper [138] and the references therein. For the
AMV, it is desired to steer the heading to the desired angle and reduce the roll angle
under complex marine environments. Early work on MPC for marine vehicles mainly
studies the angle stabilization problem and adopts the 1-DoF dynamical system model
[114,151]. A novel disturbance compensating MPC method is developed to handle the
constraint violation, the disturbances, and the feasibility issues of the ASV heading
control problem in [74]. The dynamic positioning using MPC is studied in [148],
considering the dynamic thruster capability, the reduction of energy consumption,
and the improved control performance. In order to avoid the complex terminal set
design, the authors in [130] study dynamic positioning of the AUV and impose a
Lyapunov-based constraint into the MPC optimization problem to guarantee the
closed-loop stability. More recently, robust dynamic positioning using robust MPC
has been studied for the ASV with parametric uncertainties and external disturbances
in [16,181].
Path following: Much effort has been devoted to the path following problem of AMVs
[133,134]. However, the control performance may degrade due to various constraints
on states and inputs. In [75], the path following problem of ASVs with roll constraints
has been solved by using MPC. Further, a multi-objective MPC method is proposed
for the AUV considering the flexibility of adjusting the vehicle’s velocity. On the
other hand, MPC has been adopted for the fully-actuated marine vehicles [75, 131]



12

and underactuated marine vehicles [48,72,107,112,176]. The robust MPC is employed
to solve the path following problem of the AMV with disturbances in [176].

1.3.2.2 Trajectory tracking and cooperative control

Trajectory tracking: Another classic control problem of AMVs is trajectory track-
ing [91,133]. The unpredictable sea environment, highly nonlinear system dynamics,
and various constraints lead to technical difficulties in developing the trajectory track-
ing controller. In [167], a neurodynamic optimization-based MPC method is proposed
for the tracking control of underactuated vessels, in which a single-layer recurrent
neural network is used to solve the formulated quadratic programming problem. A
nonlinear MPC method is presented to address the trajectory tracking problem of
ASVs in the presence of ocean currents in [33]. For the real-time implementation
of AUVs, a modified Ohtsuka’s continuation/generalized minimal residual algorithm
has been developed to solve the nonlinear MPC optimization problem [127]. The au-
thors in [128] further decompose the original MPC optimization problem into several
smaller size subproblems and then solve them in a distributed manner. This method
significantly alleviates the heavy computational burden. A unified MPC scheme to
jointly handle the path planning and trajectory tracking control problem for the AUV
is proposed in [129]. The conventional MPC employs the terminal cost and terminal
set to ensure the closed-loop stability, which is hard to design for the AUV with non-
linear dynamics. A Lyapunov-based stability constraint is designed and imposed into
the MPC optimization problem. The robust MPC method is developed for the tra-
jectory tracking problem of the AMV with external disturbances in [35,36,178]. Since
the challenges with the practical implementation, such as accurate system dynamics,
algorithm deployment, and code debugging, make the experiment hard to verify. The
researchers generally verify the theoretical results with simulation studies instead of
experiments. Recently, the experiment tests on the trajectory tracking task of the
underactuated ASV under the nonlinear MPC algorithm are provided [77].
Cooperative control: DMPC algorithm that applies to cooperative AMVs has be-
come an important research topic. In [180], a distributed predictive path following
controller is proposed for multiple waterborne automated guided vessels. The alter-
nating direction method of multiplier is employed to accelerate the convergence rate
of the DMPC optimization problem. Moreover, this method is extended as robust
DMPC to deal with external disturbances. The authors apply the DMPC method to
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solve the formation tracking control problem of multiple underactuated AUVs [69].
A Lyapunov-based DMPC method is designed to achieve the formation tracking of
cooperative AUVs with environmental disturbances while ensuring collision avoidance
during the operational period [160]. Due to the limited communication bandwidth
among AUVs, an offline quantization design and an online DMPC algorithm with
quantization are proposed to solve these issues. The communication burden is al-
leviated by using the event-triggered based DMPC method in [40]. Especially, the
authors apply DMPC algorithms for the heterogeneous ASV platoon to improve the
efficiency of waterborne transport in [5, 161].

1.4 Organization and Contributions

Applications: Robust DMPC for 
formation tracking and platooning of 
marine robots
(Chapter 5 and Chapter 6)

Theory: Robust DMPC for 
stabilization and consensus of the 
MAS 
(Chapter 3 and Chapter 4)

Figure 1.2: Organization of this dissertation.

As illustrated in Figure 1.2, Chapters 3 and 4 present two theoretical results,
including robust DMPC for the formation stabilization problem and the consensus
problem of the constrained MAS with uncertainties; Chapters 5 and 6 develop
DMPC algorithms for cooperative marine vehicles under uncertainties. The disserta-
tion outline and main contributions are summarized as follows.

• In Chapter 2, we review some preliminaries and introduce notations that are
useful throughout this dissertation.

• In Chapter 3, we study the formation stabilization problem of the asyn-
chronous nonlinear MAS subject to parametric uncertainties, external distur-
bances, and bounded time-varying communication delays. A self-triggered min-
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max DMPC approach is proposed to handle these practical issues. At triggering
instants, each agent solves a local min-max optimization problem based on local
system states and predicted system states of neighbors, determines its next trig-
gering instant, and broadcasts its predicted state trajectory to its neighbors. As
a result, the communication load is greatly alleviated while retaining robustness
and comparable control performance compared to periodic DMPC algorithms.
In order to handle time-varying delays, a novel consistency constraint is incor-
porated into each local optimization problem to restrict the deviation between
the newest predicted states and previously broadcast predicted states. Conse-
quently, each agent can utilize previously predicted states of its neighbors to
achieve cooperation in the presence of time-varying delays and asynchronous
communication induced by the distributed triggered scheduler. The proposed
algorithm’s recursive feasibility and MAS’s closed-loop stability at triggering
time instants are proven. Finally, numerical simulations are conducted to verify
the efficiency of the proposed control method.

• In Chapter 4, we consider the consensus problem of the general linear discrete-
time MAS with input constraints and time-varying communication delays. We
propose a robust DMPC consensus protocol that integrates the offline consensus
design with online DMPC optimization to exploit their respective advantages.
One feature of this approach is that each agent is equipped with an offline con-
sensus protocol, which is a priori designed, depending only on the estimated
states of its immediate neighbors. Under mild technical assumptions, the esti-
mation errors propagated over time due to inaccurate neighboring information
is proved bounded, based on which a robust DMPC strategy is deliberately
designed to achieve robust consensus while guaranteeing the satisfaction of con-
straint on control inputs. Moreover, it is shown that, with the suitably designed
cost function and constraints, the feasibility of the associated optimization prob-
lem can be recursively ensured. We further provide the consensus convergence
result of constrained MAS in the presence of bounded varying delays. Finally,
two numerical examples are given to verify the effectiveness of the proposed
distributed consensus algorithm.

• In Chapter 5, we investigate the formation tracking problem of a group of
AUVs with the ocean current disturbances. A distributed Lyapunov-based
model predictive controller (DLMPC) is designed such that AUVs can keep
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the desired formation while tracking the reference trajectory, despite the pres-
ence of external disturbances. The DLMPC inherits the stability and robustness
of the extended state observer (ESO) based auxiliary control law and invokes
online optimization to improve the formation tracking performance of the multi-
AUV system. The closed-loop stability of the multi-AUV system is guaranteed
by the stability constraint that utilizes the ESO-based auxiliary controller and
the associated Lyapunov function. Furthermore, the inter-AUV collision avoid-
ance is achieved by incorporating well-designed artificial potential field-based
cost term in the formation tracking cost function. Extensive simulations on
AUVs are carried out, demonstrating the proposed method’s superior control
performance and robustness.

• In Chapter 6, we propose to apply a robust distributed model predictive pla-
tooning control approach for a group of heterogeneous ASVs with the input
constraint and bounded external disturbances. The control input for each ASV
is composed of two parts: the optimal nominal control input and the ancil-
lary control input. The optimal nominal control input is generated by solving
a DMPC problem based on the state information of itself and its neighbors.
The offline ancillary control law ensures that the actual system state trajectory
evolves in a hyper-tube centered along the optimal nominal state trajectory.
A coupled inter-vehicle safety constraint is designed in the DMPC optimiza-
tion problem to guarantee inter-ASV collision avoidance. Theoretical results
on the feasibility of the proposed robust DMPC algorithm are provided, and
the closed-loop systems are proved to be input-to-state stable (ISS). Numerical
simulations are performed to illustrate the theoretical results.

• In Chapter 7, we summarize the work in this dissertation and present several
potential future research directions.
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Chapter 2

Preliminaries

This chapter presents main notations used in the dissertation, the communication
model for the MAS, and some definitions and properties from control theory.

2.1 Notations

The symbols R≥0, N≥m and N[m,n] denote the sets of nonnegative real numbers, the
integers greater than or equal to m and integers in the interval [m,n], respectively. Rn

and Rm×n represent the n-dimensional Euclidean space and the set of all m× n real
matrices, respectively. For x ∈ Rn, ‖ · ‖ denotes the Euclidean norm, ‖ · ‖∞ denotes
the infinity norm, ‖x‖P :=

√
xTPx denotes the weighted Euclidean norm, where P

is positive definite. [xT
1 , . . . , x

T
n ]T is written as col(x1, . . . , xn). The superscript ‘T’

represents the transposition. Given two sets X ,Y ⊆ Rn, the set operation X\Y is
defined as X\Y := {x | x ∈ X , x /∈ Y}. The set addition is defined by X ⊕ Y :=
{x + y | x ∈ X , y ∈ Y}, the set subtraction is X 	 Y := {x ∈ Rn | x⊕ Y ⊆ X}, and
the set multiplication is KX := {Kx | x ∈ X}, with K ∈ Rm×n. The Minkowski sum
of multiple sets is given by X1 ⊕ X2 ⊕ · · · ⊕ XM := ⊕M

i=1Xi. The distance between
the state x and the set Y is defined as |x|Y := infy∈Y ‖x − y‖. IM ∈ RM×M denotes
the identity matrix. diag(C1, C2, . . . , CM) represents a block diagonal matrix with
main diagonal block matrix Ci, i = 1, 2, . . . ,M . λ̄(P ) and λ(P ) denote the largest
and smallest eigenvalues of the matrix P , respectively. For matrices C ∈ Rm×n,
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D ∈ Rp×q, the Kronecker product is denoted by

C ⊗D =


c11D · · · c1nD

... . . . ...
cm1D · · · cmnD

 .

x(t) denotes the state x at time t, and x(k|t) denotes the predicted state at future
time t+ k determined at time t.

2.2 Communication Model

In this dissertation, a weighted graph G = {V , E} is used to describe the commu-
nication network of the MAS, where V := {1, 2, . . . ,M} denotes the vertex set and
E := {(i, j) | i, j ∈ V , i 6= j} denotes the edge set. The neighbor set of agent i is
denoted by Ni := {j ∈ V | (i, j) ∈ E , i 6= j} and the number of agents in Ni is
denoted as |Ni|. Let A = [aij] ∈ RM×M be the adjacency matrix of G with j ∈ Ni,
aij = 1/|Ni| and aij = 0 otherwise; aii = ∑M

j=1 aij = 1 for all i 6= j. The Laplacian
matrix of the weighted graph G is L = IM −A.

2.3 Stability Theory

Here we review some stability definitions and properties of the discrete-time system
[44,119]. The stability properties of the continuous-time system can be found in [50].

Consider a discrete-time perturbed nonlinear system

x+ = f(x,w), (2.1)

in which the state x lies in X ⊂ Rn, the disturbance w lies in W ⊂ Rw, and x+ is
the successor state. The function f : Rn × Rw → Rn is assumed to be continuous.
Let φ(t, x(0), w(t)) denote the solution of the difference function in (2.1) at time t,
t ∈ N≥0.

Definition 2.1 (K function). A function α : R≥0 → R≥0 belongs class K if it is
continuous and strictly increasing, with α(0) = 0; β : R≥0 → R≥0 belongs to class K∞
if it is a class K function and unbounded (i.e., β(x) → ∞ as x → ∞). A function
γ : R≥0 × N≥0 → R≥0 belongs class KL if it is continuous and if, for t ∈ N≥0,
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γ(·, t) is a class K function and for x ∈ R≥0, γ(x, ·) is nonincreasing and satisfies
limt→∞ γ(x, t) = 0. A function σ : R → R≥0 belongs to class PD (i.e., positive
definite) if it is continuous, zero at zero, and positive everywhere else.

Set invariance plays an important role in control, and several forms of sets are
introduced below.

Definition 2.2 (Positive invariant set). A set Ω is positive invariant for the system
x+ = f(x), if x ∈ Ω implies x+ ∈ Ω.

Definition 2.3 (Robust positive invariant set). A set Ω is robust positive invariant
for the perturbed system in (2.1), if x ∈ Ω implies x+ ∈ Ω for all w ∈W.

Definition 2.4 (Robust control invariant set). A set Ω is robust control invariant
for the system x+ = f(x, u, w), if x ∈ Ω, there exists an admissible control input u
such that x+ ∈ Ω for all w ∈W.

Definition 2.5 (`-step robust stabilizable set). A set X`(Ω) is `-step robust stabiliz-
able for the system x+ = f(x, u, w), if ∀x ∈ X`(Ω), there exists an admissible control
input u such that the system can be steered into Ω in ` steps for all w ∈ W, with
` ∈ N≥0.

Note that the above definition implies that X`(Ω) = {x ∈ X | ∃u ∈ U such
that f(x, u,W) ⊆ X`−1(Ω)}, with f(x, u,W) := {f(x, u, w) | ∀w ∈ W}. In addition,
X0(Ω) = Ω.

In what follows, some properties from the Lyapunov theory are provided to estab-
lish the stability or robust stability of the constrained system under uncertainty.

Definition 2.6 (Lyapunov function). A function V : Rn → R≥0 is a Lyapunov
function for the system x+ = f(x) with x ∈ X and a positive invariant set Ω ⊂ X, if
there exist functions α1(·), α2(·) ∈ K∞ and α3(·) ∈ PD such that for all x ∈ Rn,

α1(|x|Ω) ≤ V (x) ≤ α2(|x|Ω),
V (f(x))− V (x) ≤ −α3(|x|Ω).

Theorem 2.1 (Asymptotic stability). If the system x+ = f(x) admits a Lyapunov
function V (·) with α3(·) ∈ K∞, then it is asymptotically stable.
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Definition 2.7 (ISS). The system in (2.1) is said to be ISS if there exist a KL
function β(·, ·) and a K function γ(·) such that, for each x ∈ X, and each disturbance
sequence wt = {w(0), w(1), . . . , w(t− 1)},

|φ(t, x(0),wt)| ≤ β(|x(0)|, t) + γ(|wt|∞),

where |wt|∞ := sup0≤s≤t|w(t)| and φ(t, x(0),wt) is the solution at time t.

Definition 2.8 (ISS-Lyapunov function). A function V : Rn → R≥0 is an ISS-
Lyapunov function for the system in (2.1) if there exist K∞ functions α1(·), α2(·), α3(·)
and a K function σ(·) such that for all x ∈ X and w ∈W

α1(|x|) ≤ V (x) ≤ α2(|x|),
V (x+)− V (x) ≤ −α3(|x|) + σ(|w|).

Lemma 2.1 (ISS-Lyapunov function implies ISS). Suppose that there exists a con-
tinuous ISS-Lyapunov function V (·) for the system in (2.1). Then the system is ISS.

Definition 2.9 (ISpS). The system in (2.1) is said to be ISpS, if there exists a KL
function β(·, ·), a K function γ(·) and a nonnegative constant c0, such that for any
initial state x(0) ∈ X and any disturbance sequence wt, the solution φ(t, x(0),wt)
exists and satisfies

|φ(t, x(0),wt)| ≤ β(|x(0)|, t) + γ(|wt|∞) + c0.

Definition 2.10 (ISpS-Lyapunov function). A function V : Rn → R≥0 is an ISpS-
Lyapunov function for the system in (2.1) if there exist K∞ functions α1(·), α2(·), α3(·),
a K function σ(·) and constants c1, c2 ∈ R≥0 such that for all x ∈ X and w ∈W

α1(|x|) ≤ V (x) ≤ α2(|x|) + c1,

V (x+)− V (x) ≤ −α3(|x|) + σ(|w|) + c2.

Lemma 2.2 (ISpS-Lyapunov function implies ISpS). Suppose that there exists a
continuous ISpS-Lyapunov function V (·) for the system in (2.1). Then the system is
ISpS.
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Chapter 3

Self-Triggered Min-Max DMPC for
Multi-Agent Systems with
Uncertainties and Time-Varying
Communication Delays

3.1 Introduction

In this chapter, we study the formation stabilization control problem of the MAS
with the heavy communication burden, the time-varying communication delays, and
uncertainties. For solving this problem, we propose a self-triggered min-max DMPC
method that is distributed among agents.

Generally speaking, the periodically distributed control algorithms for the MAS
require all agents to synchronously communicate with their neighbors at each sam-
pling instant, which may lead to an undesirable communication burden and nontrivial
energy consumption. Alternatively, the aperiodically distributed control method is
an attractive solution to alleviate the communication burden among the MAS while
guaranteeing the comparable control performance, in which the system states are
only updated and transmitted to neighbors at triggering instants [15]. Based on dif-
ferent triggering mechanisms, the aperiodic DMPC methods in existing literature can
be mainly classified into two categories: event-triggered [32, 53, 73, 85, 183], and self-
triggered DMPC [100, 156, 174]. Compared with the event-triggered algorithms, the
requirement of the continuous check of the controlled system and predesigned trigger-
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ing conditions at each sampling instant are removed in the self-triggered DMPC algo-
rithms. However, these communication-efficient DMPC algorithms may result in the
asynchronous information transmission among agents, which may degrade the control
performance or even destroy the closed-loop stability [58]. The authors in [100] pro-
pose a co-design self-triggered DMPC method for the linear MAS with asynchronous
communication. To be specific, the previously broadcast predicted sequence is used to
estimate current optimal states; however, the estimation errors induced by the asyn-
chronous communication are ignored. Other promising DMPC methods for the dis-
tributed coordination problem of the asynchronous MAS can be found in [41,87,183].
On the other hand, the delay-free communication networks of the MAS, assumed in
the literature mentioned above, are impractical. Understandably, the time-varying
communication delays may prevent the MAS from reaching the control objective due
to neighbors’ inaccurate information. Some efforts have been devoted to overcoming
this drawback, e.g., [20,61,62,140]. Notably, most of the abovementioned works only
concentrate on one of these communication issues while ignoring others. Simulta-
neously addressing these issues of the constrained MAS remains a challenging and
open problem, especially for the uncertain constrained MAS with nonlinear dynam-
ics. Considering this, in this chapter, we propose a self-triggered min-max DMPC
method for the distributed formation stabilization problem of the asynchronous MAS
with uncertainties, the heavy communication burden, and varying delays. The main
contributions of this work are summarized in the following:

• A self-triggered min-max DMPC method is proposed for the dynamically decou-
pled asynchronous nonlinear MAS subject to parametric uncertainties, external
disturbances, and bounded time-varying delays. In this scheme, the distributed
self-triggered scheduler significantly reduces the communication burden and the
frequency of solving the DMPC optimization problem.

• A new consistency constraint that restricts the deviation between the currently
optimal predicted states and the previously broadcast predicted states is incor-
porated into the local optimization problem. Consequently, agents can achieve
cooperation in the presence of time-varying communication delays. Further-
more, the proposed algorithm for the asynchronous MAS is proved to be recur-
sively feasible, and the closed-loop systems with time-varying delays are proved
to be ISpS at triggering instants.
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3.2 Problem Formulation

3.2.1 Basic setup

Consider an MAS consisting of M dynamically decoupled nonlinear systems. The
discrete-time dynamics of agent i takes the following form

xi(t+ 1) = f(xi(t), ui(t), di(t)), t ∈ N≥0, (3.1)

in which xi(t), ui(t) and di(t) denote, respectively, the system state, the control input
and the uncertainty. Agent i is subject to the state and control input constraints

xi(t) ∈ Xi, ui(t) ∈ Ui,

where the state constraint set Xi ⊂ Rn is closed and the control input set Ui ⊂ Rm is
compact. The disturbance di = [wi, vi]T is bounded, i.e., di ∈ Di ⊂ Rd; Di := Wi×Vi,
with the external disturbance wi ∈ Wi ⊂ Rw and the parametric uncertainty vi ∈
Vi ⊂ Rv; its upper bound is given by d̄ := maxdi∈Di ‖di‖. Wi and Vi are compact and
contain the origin in their interiors. The function f : Rn×Rm×Rd → Rn is assumed
to be differentiable and satisfies f(0, 0, 0) = 0. In the following, an assumption is
made on the system in (3.1).

Assumption 3.1. There exist constants ν, ξ ∈ R≥0 such that the conditions

‖f(x, u, d)− f(y, u, d)‖ ≤ ν‖x− y‖,

and
‖f(x, u, d)− f(x, u, d′)‖ ≤ ξ‖d− d′‖,

hold for all x, y ∈ Xi, u ∈ Ui, d, d′ ∈ Di, i ∈ V.

Assumption 3.1 implies that the system dynamics in (3.1) is Lipschitz contin-
uous; it helps to quantify a bound on the deviation between the currently optimal
predicted states and the assumed predicted states, which will be specified in Lemma
3.1.

Let tik, k ∈ N≥0 be the triggering instant of agent i, i ∈ V . The sampling instant
sequence is denoted as {tik}. At the triggering instant tik, agent i measures the lo-
cal system states, receives its neighbors’ predicted state sequences, and applies the
calculated control inputs to update the system states.
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Definition 3.1. The MAS in (3.1) is said to be synchronous if for i, j ∈ V, {tik} =
{tjk}, i.e., tik = tjk, ∀k ∈ N≥0. The MAS in (3.1) is said to be asynchronous if for
i, j ∈ V , i 6= j, {tik} is independent of {tjk}, i.e, agents may not update their system
states at the same time.

Note that it is hard to synchronize the sampling and control instants for the spa-
tially separated MAS. Thus, the asynchronous MAS will be discussed in this chapter.
If sampling periods are arbitrarily large, it is hard to guarantee the MAS’s stability
property without new measurements. Hence, an upper bound of the sampling pe-
riod is assumed to exist. For the MAS, the local sampling time tik, i ∈ V and the
communication delay τ ijk satisfy the following assumption.

Assumption 3.2. For agent i, i ∈ V, the local sampling instant tik and the commu-
nication delay τ ijk , k ∈ N≥0, satisfy: 1) 1 ≤ tik+1 − tik ≤ H̄; 2) 0 < τ ijk ≤ τ̄ ; 3) There
is no disordering transmission among agents, where H̄ ∈ N≥0 and τ̄ ∈ N≥0 denote
the maximum admissible sampling interval and the maximum communication delay,
respectively.

3.2.2 Asynchronous communication with varying delays

S3

S2

S1

𝑡"#

𝑡"$

𝑡"%

𝑡$# 𝑡%# 𝑡##
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Figure 3.1: An asynchronous MAS with three agents (S1, S2 and S3).

As illustrated in Figure 3.1, each agent is allowed to asynchronously receive and
broadcast the predicted system state sequence with a global time stamp tk. The
distributed self-triggered scheduler determines local triggering instants (denoted by
the dots in the top three lines). The bottom line represents the global time instants.
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At time tik, agent i, i ∈ V receives its neighbors’ predicted state sequence xbj(t
j
k), j ∈

Ni, and then broadcasts the newest predicted state sequence xbi(·|tik) to its neighbors.
The newest broadcast states of agent i at tik is constructed as

xbi(s|tik) =
x
∗
i (s|tik), s ∈ N[0,N),

0, s ∈ N[N,Hi∗(ti
k
)+τ̄+N ],

(3.2)

where x∗i (s|tik) denotes the optimal predicted system state and H i∗(tik) ∈ N[1,H̄] de-
notes the optimal triggering interval at tik. The calculation of x∗i (s|tik) and H i∗(tik)
will be introduced in Section 3.3.

Remark 3.1. Note that all agents are cooperatively stabilized towards their separate
terminal sets, which share the same setpoint. Hence, the tail of the broadcast predicted
states of agent i, i ∈ V can be supplemented with zero as in (3.2). By choosing
reasonable weighting matrices of the cost function and the terminal control law, the
third inequality in Assumption 3.2 holds for the MAS.

Now we describe the bounded time-varying communication delays for the asyn-
chronous MAS. Let xbj(t

ij
k ) represent the newest message broadcast by agent j, j ∈ Ni

at tijk , where tijk := max{tjk ∈ N≥0 | tjk < tik}. The communication delays are catego-
rized into the following two cases:
Case 1: 0 ≤ τ ijk ≤ tik − t

ij
k , i.e., the newest message xbj(t

ij
k ) of agent j is received by

agent i at tik;
Case 2: tik−t

ij
k < τ ijk ≤ τ̄ , i.e., the newest message xbj(t

ij
k ) cannot be received by agent

i at tik, therefore, agent i can only utilize the message xbj(t
ij
k−1) broadcast at previous

triggering instants, which includes the neighbor j’s state sequence xbj(s|t
ij
k−1), s ∈

N[0,Hi∗(tij
k−1)+τ̄+N ].

Based on the above cases, the predicted state sequence xj(tik) of the neighbor
j ∈ Ni used in the local distributed optimization problem Pi of agent i in the next
section can be constructed as

xj(tik) := {xbj(0|tik), xbj(1|tik), · · · , xbj(N − 1|tik)}. (3.3)

3.2.3 Problem formulation

Our objective is to design a robust DMPC method for the nonlinear constrained MAS
with uncertainties and bounded time-varying communication delays, such that all
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agents are cooperatively stabilized. Furthermore, we aim to develop a distributed self-
triggered scheduler under this control framework to reduce the communication burden
and the frequency of solving the corresponding distributed optimization problem.

3.3 Self-Triggered Min-Max DMPC

This section presents the min-max DMPC optimization problem. Furthermore, a
distributed self-triggered scheduler for the nonlinear asynchronous MAS with bounded
varying communication delays is designed.

3.3.1 Min-max DMPC optimization problem

3.3.1.1 The objective function design

At time tik, each agent receives its neighbors’ newest predicted state sequence xbj(·|t
j
k),

j ∈ Ni defined in (3.2) and (3.3). Then, the following objective function is formulated
for the DMPC optimization problem

J
Hi(tik)
i,N (xi(tik),x−i(tik),ui(tik),di(tik))

=
Hi(tik)−1∑
s=0

1
~i
Li(xi(s|tik), x−i(s|tik), ui(s|tik), di(s|tik))

+
N−1∑

s=Hi(ti
k
)
Li(xi(s|tik), x−i(s|tik), ui(s|tik), di(s|tik)) + Fi(xi(N |tik)),

in which N is the prediction horizon, H i(tik) denotes the triggering interval, ui(tik) =
{ui(0|tik), . . . , ui(N − 1|tik)} and di(tik) = {di(0|tik), . . . , di(N − 1|tik)}. The parame-
ter ~i > 1 makes a trade-off between the control performance (with respect to the
optimal value of the objective function) and the communication load (in terms of
the average sampling rate). x−i(tik) = {xi1(tik), . . . ,xini (t

i
k)} denotes the collection

of the predicted state sequence of agent i’s neighbors, with iq ∈ Ni, q ∈ N[1,ni],
x−i(s|tik) := {xbi1(s|tik), . . . , xbini (s|t

i
k)}, s ∈ N[0,N ].

The local stage cost function of agent i, i ∈ V is designed as

Li(xi(s|tik), x−i(s|tik), ui(s|tik), di(s|tik))
=‖xi(s|tik)‖2

Qi
+ ‖ui(s|tik)‖2

Ri
+
∑
j∈Ni
‖xi(s|tik)− xj(s|tik)‖2

Qij
,
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in which the weighting matrices Qi and Qij are symmetric and positive definite; Ri

is symmetric and positive definite. Intuitively, the coupling cost term ‖xi(s|tik) −
xj(s|tik)‖2

Qij
, j ∈ Ni makes agents to achieve cooperation. The local terminal cost

function is designed as
Fi(xi(N |tik)) = ‖xi(N |tik)‖2

Pi
,

where the weighting matrix Pi is symmetric and positive definite.

Assumption 3.3. For agent i, i ∈ V, the local decoupled terminal set Ωi ⊆ Xi is
an RPI set with a local feedback controller κi(xi(t)) ∈ Ui, t ∈ N≥0. There exist a K
function σi(·) and a constant c4 ∈ R≥0 such that

Fi(xi(t+ 1))− Fi(xi(t)) ≤ −Li(xi(t), x−i(t), κi(xi(t)), di(t)) + εi,

where εi = σi(‖wi(t)‖) + c4, x−i(t) = 0, for all xi(t) ∈ Ωi and di(t) ∈ Di.

When xi(N |tik) ∈ Ωi, from the definition of xbj(·|t
j
k) in (3.2), we know that the

states of its neighbors xj(N |tik) = xj(N + tik − t
j
k|t

j
k) = 0, j ∈ Ni. Assumption 3.3

is valid, and a similar assumption for the single system can be found in [116].

3.3.1.2 The distributed min-max MPC optimization problem

At time tik, agent i solves the following min-max DMPC optimization problem Pi

min
ui(s|tik)

{
max

di(s|tik)∈Di
{J̄Hi

i,N(xi(tik),x−i(tik), ui(s|tik), di(s|tik))},

such that xi(H i|tik) ∈ XN−Hi

i (Ωi),∀di(s|tik) ∈ Di

}
s.t. xi(s+ 1|tik) = f(xi(s|tik), ui(s|tik), di(s|tik)),

xi(0|tik) = xi(tik), (3.4a)
ui(s|tik) ∈ Ui, (3.4b)
xi(s|tik) ∈ Xi, (3.4c)
‖xi(s|tik)− xbi(s+ tik − tik−1|tik−1)‖ ≤ ∆i, (3.4d)

where the triggering interval H i(tik) is abbreviated as H i in the following, s ∈ N[0,Hi),
Ωi := {xi ∈ Xi | ‖xi‖Pi ≤ ρi, ρi ∈ R≥0} is the terminal set, ∆i ∈ R≥0 is a design
parameter and V Hi

i,N (xi(tik),x−i(tik)) denotes the optimal value of the objective function
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of the DMPC optimization Pi.

J̄H
i

i,N(xi(tik),x−i(tik), ui(s|tik), di(s|tik))

=
Hi−1∑
s=0

1
~i
Li(xi(tik), x−i(s|tik), ui(s|tik), di(s|tik))

+ Vi,N−Hi(xi(H i|tik), x−i(H i|tik)),

with
Vi,`(xi(s|tik), x−i(s|tik))

= min
µi,`(s|tik)∈Ui

{
max

di(s|tik)∈Di
{Li(xi(s|tik), x−i(s|tik), µi,`(s|tik), di(s|tik))

+ Vi,`−1(f(xi(s|tik), µi,`(s|tik), di(s|tik)), x−i(s+ 1|tik))},
such that xi(s|tik) ∈ X`

i(Ωi),
f(xi(s|tik), µi,`(s|tik), di(s|tik)) ⊆ X`−1

i (Ωi),
‖xi(s|tik)− xbi(s+ tik − tik−1|tik−1)‖ ≤ ∆i

}
,

(3.5)

where Vi,0(xi(N |tik)) = Fi(xi(N |tik)) and X`
i(Ωi) denotes the `-step robustly stabiliz-

able set of agent i, ` = N − s. Solving the optimization problem Pi yields the op-
timal control sequence u∗i (tik) := {u∗i (0|tik), . . . , u∗i (H i − 1|tik), µ∗i,`(s|tik), . . . , µ∗i,1(N −
1|tik)} and the optimal disturbance sequence d∗i (tik) = {d∗i (0|tik), d∗i (1|tik), . . . , d∗i (N −
1|tik)}, where u∗i (s|tik), s ∈ N[0,Hi) denotes the optimal open-loop control input and
µ∗i,`(s|tik), s ∈ N[Hi,N) denotes the optimal feedback control law generated by solving
(3.5) via dynamic programming.

Remark 3.2. For the asynchronous MAS with uncertainties and bounded time-varying
communication delays, agent i, i ∈ Nj may sample its local system states and broad-
cast its predicted states multiple times during the period [tjk, t

j
k+1]. In this case, the

constraint (3.4d), which restricts the deviation between the current predicted states
and previously predicted states at the same future time instant, is used to ensure the
closed-loop stability. A similar constraint is exploited for the synchronous MAS over
the delay-free communication networks [19].

3.3.2 Distributed self-triggered scheduler

A distributed self-triggered scheduler is designed to generate a local triggering instant
sequence {tik}. The triggering condition is constructed based on the local system
states and the newest neighbors’ predicted state sequences. Motivated by [83], the
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distributed self-triggered scheduler for agent i is designed as

tik+1 = tik +H i∗(tik),
H i∗(tik) = max{H i ∈ N[1,H̄] | V Hi

i,N (xi(tik),x−i(tik))
≤ V 1

i,N(xi(tik),x−i(tik))},

(3.6)

where ti0 = 0, H i∗(tik) denotes the maximum triggering interval of agent i at time
tik. H i∗(tik) will be abbreviated as H i∗ hereafter. Applying the first H i∗ open-loop
control inputs umpc

i (tik) := u∗i (s|tik), s ∈ N[0,Hi∗) to the system (3.1) yields the following
closed-loop system

xi(tik + s+ 1) = f(xi(tik + s), u∗i (s|tik), di(tik + s)). (3.7)

and dai (tik) = {(di(tik), di(tik + 1), . . . , di(tik + H i∗ − 1)} is the actual disturbance se-
quence.

Remark 3.3. Note that the self-triggered scheduler (3.6) for the decoupled MAS is
distributed, which is consistent with the min-max DMPC optimization problem Pi. In
other words, based on the local measurements and the neighboring latest broadcasting
predicted state sequences, the self-triggered scheduler determines the next triggering
instant, and solving the DMPC optimization problem generates the optimal control
inputs.

3.3.3 Self-triggered asynchronous min-max DMPC algorithm

The overall self-triggered asynchronous min-max DMPC algorithm for the MAS is
summarized in Algorithm 1.
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Algorithm 1 Self-triggered asynchronous min-max DMPC
Require: For agent i, i ∈ V , the weighting matrices Qi, Qij, Ri and Pi; the prediction

horizon N , the terminal set Ωi, the design parameter ∆i, the initial state xi(tik)
and other related parameters. Set k = 0, tik = 0, H i(tik) = 1, xbi(·|tik) = 0.

1: while The control action is not stopped do
2: Sample the system state xi(tik);
3: Receive the newest predicted state sequence of neighbors xbj(t

ij
k ), j ∈ Ni;

4: Construct the state sequence xj(tik) as in (3.3);
5: Let H i(tik) = 1, solve Pi to generate u∗i (tik) and V 1

i,N , then set H i(tik) = H̄;
6: Solve Pi in (3.4) to generate u∗i (tik) and V Hi

i,N ;
7: if the inequality V Hi

i,N > V 1
i,N is satisfied then

8: H i(tik) = H i(tik)− 1; Go to Step 6;
9: else

10: Generate the optimal triggering interval H i∗ = H i(tik) and V Hi∗
i,N ;

11: end if
12: Broadcast the predicted state sequence xbi(tik) as in (3.2) to its neighbors;
13: Apply control input umpc

i (tik) to agent i;
14: tik+1 = tik +H i∗, k = k + 1;
15: end while

Note that the distributed optimization problem Pi is solved without considering
the constraint (3.4d) in the initialization step. Besides, for agent i, the predicted
states of neighbors are assumed to be zeros over the period [ti0, ti0 +N ], and the
communication delay at ti0 is zero, i.e., τ ij0 = 0.

3.4 Theoretical Analysis

This section shows that the proposed self-triggered min-max DMPC algorithm is
recursively feasible, and the closed-loop MAS under the proposed algorithm is ISpS
at triggering instants.

A technical lemma is presented before proceeding to the feasibility analysis.

Lemma 3.1. Suppose that Assumptions 3.1 and 3.2 are satisfied. If the optimiza-
tion problem Pi is feasible at tik, and the condition

∆i ≥ max{νN−1−H̄ φ̄, ρi/λ(P 1/2
i )} (3.8)
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holds, with φ̄ = 2∑H̄+tik−t
i
τ

s=0 νsξd̄ and tiτ ∈ [tik − H̄, tik]. Then, it holds that

‖x̃i(s|tik+1)− xbi(tik+1 + s− tik|tik)‖ ≤ ∆i, (3.9)

with s ∈ N[0,N ], t
i
k+1 = tik +H i∗.

Proof. For s ∈ N[N−Hi∗,N ], it follows from (3.2) that xbi(tik+1 + s− tiτ |tiτ ) = 0, and we
have

‖x̃i(s|tik+1)− xbi(tik+1 + s− tiτ |tiτ )‖ = ‖x̃i(s|tik+1)‖.

Using the condition in (3.8), one obtains ‖x̃i(s|tik+1)‖ ≤ ρi/λ(P 1/2
i ) ≤ ∆i.

When s = 0, by Assumption 3.1, we get

‖x̃i(0|tik+1)− xbi(tik+1 − tiτ |tiτ )‖
=‖f(xi(tik+1 − 1), u∗i (tik+1 − 1− tiτ |tiτ ), di(tik+1 − 1))
− f(x∗i (tik+1 − 1− tiτ |tiτ ), u∗i (tik+1 − 1− tiτ |tiτ ), d∗i (tik+1 − 1− tiτ |tiτ ))‖
≤ν‖xi(tik+1 − 1)− x∗i (tik+1 − 1− tiτ |tiτ )‖+ ξ‖di(tik+1 − 1)− d∗i (tik+1 − 1− tiτ |tiτ )‖
≤ν‖xi(tik+1 − 1)− x∗i (tik+1 − 1− tiτ |tiτ )‖+ 2ξd̄.

Then, using xi(tiτ ) = xbi(0|tiτ ), we have

‖x̃i(0|tik+1)− xbi(tik+1 − tiτ |tiτ )‖ ≤ 2
tik+1−t

i
τ∑

s=0
νsξd̄ = φ.

Next, we establish the upper bound of ‖x̃i(s|tik+1) − xbi(tik+1 + s − tik|tik)‖ for s ∈
N(0,N−Hi∗)

‖x̃i(s|tik+1)− xbi(tik+1 + s− tiτ |tiτ )‖
=‖f(x̃i(s− 1|tik+1), u∗i (tik+1 + s− 1− tiτ |tiτ ), d∗i (tik+1 + s− 1− tiτ |tiτ ))
− f(x∗i (tik+1 − 1− tiτ |tiτ ), u∗i (tik+1 − 1− tiτ |tiτ ), d∗i (tik+1 − 1− tiτ |tiτ ))‖
≤ν‖x̃i(s− 1|tik+1)− x∗i (tik+1 + s− 1− tiτ |tiτ )‖,
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which implies

‖x̃i(N −H i∗ − 1|tik+1)− xbi(tik+1 +N −H i∗ − 1− tiτ |tiτ )‖
≤νN−1−Hi∗‖x̃i(0|tik+1)− xbi(tik+1 − tiτ |tiτ )‖
≤νN−1−Hi∗

φ

≤νN−1−H̄ φ̄.

Based on the condition ∆i ≥ max{νN−1−H̄ φ̄, ρi/λ(P 1/2
i )}, we have

‖x̃i(s|tik+1)− xbi(tik+1 + s− tiτ |tiτ )‖ ≤ ∆i.

Then the inequality (3.9) holds, thereby concluding the proof.

Following the idea in [78], we provide the following lemma to show the monotonic-
ity property of the value function for the optimization problem Pi, which serves as a
sufficient condition for the closed-loop stability.

Lemma 3.2. Suppose that Assumption 3.3 holds. Then,

Vi,`+1(xi(t), x−i(t))− Vi,`(xi(t), x−i(t))
≤max

di
{Vi,`(xi(t+ 1), x−i(t+ 1))− Vi,`−1(xi(t+ 1), x−i(t+ 1))},

(3.10)

where t ∈ N≥0, ∀xi(t) ∈ X`
i(Ωi), ∀xj(t) ∈ X`

j(Ωj), j ∈ Ni, ∀di ∈ Di. In addition, we
have that

Vi,`(xi(t), x−i(t))− Vi,`−1(xi(t), x−i(t)) ≤ εi

and
Vi,`(xi(t), x−i(t)) ≤ Vi,0(xi(t)) + `εi.

Proof. For simplicity, let xi denote xi(t) and x+
i denote xi(t + 1) in the following.

Since xi ∈ Ωi, xj ∈ Ωj, j ∈ Ni, Vi,0(xi) = Fi(xi), by Assumption 3.3, it follows

Vi,1(xi, x−i)− Vi,0(xi)
≤max

di
{Li(xi, x−i, κi(xi), di) + Vi,0(x+

i )− Vi,0(xi)}

= max
di
{Li(xi, x−i, κi(xi), di) + Fi(x+

i )− Fi(xi)}

≤εi.

(3.11)
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When xi ∈ X`
i(Ωi), agent i satisfies x+

i = f(xi, µ∗i,`, di). For the agent j, j ∈ Ni,
it can be observed that the transmitted state sequence in (3.2) satisfies xj ∈ X`

j(Ωj),
and x+

j = f(xj, µ∗j,`, dj). Moreover,

Vi,`+1(xi, x−i)− Vi,`(xi, x−i)
= max

di

{
Li(xi, x−i, µ∗i,`+1, di) + Vi,`(f(xi, µ∗i,`+1, di), x+

−i)
}

−max
di

{
Li(xi, x−i, µ∗i,`, di) + Vi,`−1(f(xi, µ∗i,`, di), x+

−i)
}

≤max
di

{
Li(xi, x−i, µ∗i,`, di) + Vi,`(f(xi, µ∗i,`, di), x+

−i)
}

−max
di

{
Li(xi, x−i, µ∗i,`, di) + Vi,`−1(f(xi, µ∗i,`, di), x+

−i)
}

≤max
di

{
Vi,`(x+

i , x
+
−i)− Vi,`−1(x+

i , x
+
−i)
}
.

(3.12)

By induction, one gets Vi,`(xi, x−i)− Vi,`−1(xi, x−i) ≤ εi. By summing up inequalities
(3.11) and (3.12), one that the inequality Vi,`(xi, x−i) ≤ Vi,0(xi) + `εi holds.

Lemma 3.3. For the min-max DMPC optimization problem Pi in (3.4), it holds that

V 1
i,N(xi(tik),x−i(tik)) ≤ Vi,N(xi(tik),x−i(tik)),

in which

Vi,N(xi(tik),x−i(tik))
=Ji,N(xi(tik),x−i(tik),u∗i (tik),d∗i (tik))

=
N−1∑
s=0

Li(x∗i (s|tik), x−i(s|tik), u∗i (s|tik), d∗i (s|tik)) + Fi(x∗i (N |tik)).

The proof of Lemma 3.3 can follow the idea in [83], so it is omitted here. The
recursive feasibility and the closed-loop stability of the perturbed MAS with the
proposed algorithm are presented in what follows.

Theorem 3.1. Suppose that Assumptions 3.1, 3.2 and 3.3 hold, and the op-
timization problem Pi is feasible at the initial time ti0. 1) Then, by application of
Algorithm 1, the optimization problem Pi is recursively feasible at time tik, k ∈ N≥1,
if the condition in Lemma 3.1 holds. 2) Furthermore, the closed-loop uncertain
MAS with the self-triggered min-max DMPC strategy is ISpS at triggering instants.

Proof. 1) Feasibility: For agent i, i ∈ V , by assumption, there is a feasible solution
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for the optimization problem Pi at tik and the recursive feasibility for all subsequent
triggering instants is proven by induction. The optimal control input sequence ob-
tained at tik is u∗i (tik) := {u∗i (0|tik), . . . , u∗i (H i∗− 1|tik), µ∗i,`(H i∗|tik), . . . , µ∗i,1(N − 1|tik)}.
The first H i∗ open-loop control inputs are implemented to the system in (3.1). At time
tik+1, a candidate control input sequence ũi(tik+1) := {ũi(0|tik+1), ũi(1|tik+1), . . . , ũi(N−
1|tik+1)} is constructed as

ũi(s|tik+1) =
µ
∗
i,`(H i∗ + s|tik), s ∈ N[0,N−Hi∗),

κi(x̃i(s|tik+1)), s ∈ N[N−Hi∗,N).
(3.13)

Then the corresponding system states become

x̃i(s+ 1|tik+1) = fi(x̃i(s|tik+1), ũi(s|tik+1), d∗i (s+H i∗|tik)), (3.14)

where x̃i(0|tik+1) = xi(tik+1). From Assumption 3.3 and the optimal feedback control
inputs calculated at the previous time instant tik, we have ũi(s|tik+1) ∈ Ui, s ∈ N[0,N),
the control input constraint (3.4b) is satisfied. The remainder of recursive feasibility
is to prove that the state constraint is satisfied. For s ∈ N[0,N−Hi∗], we have the
candidate state x̃i(s|tik+1) ∈ XN−Hi∗−s

i (Ωi) ⊂ Xi; then, for s ∈ N(N−Hi∗,N ], under the
terminal controller κi(x̃i(s|tik+1)) given in Assumption 3.3, the system state always
belongs to the robust invariant set Ωi. Thus, the system state constraint (3.4c) is
fulfilled. From Lemma 3.1, the feasibility of the constraint (3.4d) is guaranteed.
The recursive feasibility of the proposed algorithm is established.
2) Stability: To prove the closed-loop stability, we need to show that the opti-
mal value function V Hi∗

i,N is an ISpS Lyapunov function at triggering instants. Since
the stage cost function Li for agent i, i ∈ V is quadratic and matrices Qi, Qij are
positive definite, it can be derived that Li ≥ αL(‖xi(tik)‖), where αL(‖xi(tik)‖) =
λ(Qi)‖xi(tik)‖2 is a K∞ function. Then we obtain V Hi∗

i,N ≥ αL(‖xi(tik)‖). The sim-
ilar way to establish the upper bound of V Hi∗

i,N is adopted here [78, 83]. Define
a set Bi,r = {xi ∈ Rn | ‖xi‖ ≤ ri} ⊆ Ωi. Due to the compactness of Xi and
Ui, the optimal value of the min-max DMPC cost function is upper bounded, i.e.,
V Hi∗
i,N (xi(tik),x−i(tik)) ≤ V̄i,N . If xi(tik) ∈ Ωi, by Assumption 3.3 and Lemma 3.2,

one has
Fi(xi(s+ 1|tik))− Fi(xi(s|tik))
≤− Li(xi(s|tik), x−i(s|tik), κi(xi(s|tik)), di(s|tik)) + εi.

(3.15)
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By summing up (3.15) from s = 0 to N , we get

N−1∑
s=0

Li(xi(s|tik), x−i(s|tik), κi(xi(s|tik)), di(s|tik)) + Fi(xi(N |tik)) ≤ Fi(xi(tik)) +Nεi,

where Fi(xi(tik)) = Fi(xi(0|tik)).
If the distributed triggering condition (3.6) is satisfied, i.e., V Hi∗

i,N (xi(tik),x−i(tik)) ≤
V 1
i,N(xi(tik),x−i(tik)). In the view of the definition of the terminal cost function, we

have Fi(xi(tik)) ≤ ᾱF (‖xi(tik)‖), where ᾱF (‖xi(tik)‖) = λ(Pi)‖xi(tik)‖2 is a K∞ func-
tion. Then,

V Hi∗

i,N (xi(tik),x−i(tik))
≤V 1

i,N(xi(tik),x−i(tik))
≤Vi,N(xi(tik),x−i(tik))
≤ᾱF (‖xi(tik)‖) +Nεi.

(3.16)

The second inequality follows from the fact in Lemma 3.3. If xi(tik) ∈ XN
i (Ωi)\Ωi, it

implies that ᾱF (‖xi(tik)‖) ≥ ᾱF (ri), where XN
i (Ωi) is the N -step robustly stabilizable

set of agent i. And thus

V Hi∗

i,N (xi(tik),x−i(tik)) ≤ V̄i,N
ᾱF (‖xi(tik)‖)

ᾱF (ri)
≤ θiᾱF (‖xi(tik)‖) +Nεi, (3.17)

where θi = max{1, V̄i,N
ᾱF (ri)}.

At time tik, the sequence of optimal control policies u∗i (tik) for the problem Pi can
steer xi(tik) of agent i, i ∈ V to the terminal set Ωi in N steps under the disturbance
sequence d∗i (tik) = {d∗i (0|tik), . . . , d∗i (N − 1|tik)}. If the control inputs umpc

i (tik) and
the actual disturbance dai (tik) are applied, then agent i evolves to xi(tik+1), where
dai (tik) = {di(tik), di(tik + 1), . . . , di(tik +H i∗ − 1)}. For agent j, j ∈ Ni, the broadcast
state evolves to x∗j(H i∗|tik) with the control inputs u∗j(s|tik) and the disturbance input
d∗j(s|tik), s ∈ N[0,Hi∗). Then, it is easy to obtain

Ji,N−Hi∗(xi(tik+1),x−i(tik+1),µ∗i (tik),d′i(tik))

=JHi∗

i,N (xi(tik),x−i(tik),u∗i (tik),d′′i (tik))−
1
~i

Hi∗−1∑
s=0

Li(xi(s|tik), x−i(s|tik), u∗i (s|tik),dai (tik)),

(3.18)
where µ∗i (tik) = {µ∗i,N−Hi∗(H i∗|tik), . . . , µ∗i,1(N−1|tik)}, d′i(tik) = {d∗i (0|tik+1), . . . , d∗i (N−
H i∗− 1|tik+1)} and d′′i (tk) = {di(tik), . . . , di(tik +H i∗− 1), d∗i (0|tik+1), . . . , d∗i (N −H i∗−
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1|tik+1)}. From (3.18), we have

Ji,N−Hi∗(xi(tik+1),x−i(tik+1),µ∗i (tik),d′i(tik))
≤JHi∗

i,N (xi(tik),x−i(tik),u∗i (tik),d′′i (tik))−H i∗/~iαL(‖xi(tik)‖),
(3.19)

Further, the system state xi(tik+1) can be steered into the terminal set Ωi in N −H i∗

steps by the candidate control input ũi(tik+1). Then, it follows from the inequality
(3.19) and Assumption 3.3 that

Ji,N(xi(tik+1),x−i(tik+1), ũi(tik+1),d∗i (tik+1))
≤JHi∗

i,N (xi(tik),x−i(tik),u∗i (tik),d′′i (tik))−H i∗/~iαL(‖xi(tik)‖) +H i∗εi,
(3.20)

where d∗i (tik+1) = {d∗i (0|tik+1), . . . , d∗i (N − 1|tik+1)}.
Consider the time-varying communication delays in Case 2, i.e., tik+1 − tijk+1 <

τ ijk+1 ≤ τ̄ , the predicted states of neighbors transmitted at the previous triggering
instant x−i(tik+1) = {x−i(H i∗|tik), . . . , x−i(H i∗+N −1|tik)} will be used. Based on the
triggering condition and Lemma 3.3, we obtain

V
Hi∗(tik+1)
i,N (xi(tik+1),x−i(tik+1))

(3.6)
≤ V 1

i,N(xi(tik+1),x−i(tik+1))
≤Vi,N(xi(tik+1),x−i(tik+1))
=Ji,N(xi(tik+1),x−i(tik+1),u∗i (tik+1),d∗i (tik+1))
≤Ji,N(xi(tik+1),x−i(tik+1), ũi(tik+1),d∗i (tik+1))

(3.20)
≤ JH

i∗

i,N (xi(tik),x−i(tik),u∗i (tik),d′′i (tik))−H i∗/~iαL(‖xi(tik)‖) +H i∗εi

≤V Hi∗

i,N (xi(tik),x−i(tik))−H i∗/~iαL(‖xi(tik)‖) +H i∗εi.

(3.21)

The last inequality is derived from the fact that d′′i (tik) is not the optimal solution
of the min-max DMPC optimization problem Pi.

Consider the time-varying communication delays in Case 1, i.e., τ ijk+1 ≤ tik+1 −
tijk+1, the newest predicted states of neighbors x′−i(tik+1) = {x−i(0|tik+1), . . . , x−i(N −
1|tik+1)} will be received and used by agent i. Because of the triangle inequality and
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the consistency constraint (3.4d), we have

‖xi(s|tik+1)− xj(s|tik+1)‖
≤‖xi(s|tik+1)− xbj(H i∗ + s|tik)‖+ ‖xj(s|tik+1)− xbj(H i∗ + s|tik)‖

(3.4d)
≤ ‖xi(s|tik+1)− xbj(H i∗ + s|tik)‖+ ∆j.

(3.22)

Since xi(·|tik) ∈ Xi, there exists a constant Λi > 0 such that ‖xi(s|tik)‖ ≤ Λi,
k ∈ N≥0. Then it can be obtained that

‖xi(s|tik+1)− xj(s|tik+1)‖2
Qij

≤‖xi(s|tik+1)− xbj(H i∗ + s|tik)‖2
Qij

+ ‖xj(s|tik+1)− xbj(H i∗ + s|tik)‖2
Qij

+ 2λ̄(Qij)‖xi(s|tik+1)− xbj(H i∗ + s|tik)‖ · ‖xj(s|tik+1)− xbj(H i∗ + s|tik)‖
(3.4d)
≤ ‖xi(s|tik+1)− xbj(H i∗ + s|tik)‖2

Qij
+ 4λ̄(Qij)Λi∆j + λ̄(Qij)∆2

j .

(3.23)

Based on the triggering condition and Lemma 3.2, we obtain that

V
Hi∗(tik+1)
i,N (xi(tik+1),x′−i(tik+1))

(3.6)
≤ V 1

i,N(xi(tik+1),x′−i(tik+1))
≤Vi,N(xi(tik+1),x′−i(tik+1))
=Ji,N(xi(tik+1),x′−i(tik+1),u∗i (tik+1),d∗i (tik+1))
≤Ji,N(xi(tik+1),x′−i(tik+1), ũi(tik+1),d∗i (tik+1))

(3.23)
≤ Ji,N(xi(tik+1),x−i(tik+1), ũi(tik+1),d∗i (tik+1)) + (N −H i∗)λ̄(Qij)

∑
j∈Ni

(4Λi∆j + ∆2
j)

(3.20)
≤ JH

i∗

i,N (xi(tik),x−i(tik),u∗i (tik),d′′i (tik))−H i∗/~iαL(‖xi(tik)‖) + Ξi

≤V Hi∗

i,N (xi(tik),x−i(tik))−H i∗/~iαL(‖xi(tik)‖) + Ξi,

where Ξi = (N−H i∗)λ̄(Qij)
∑
j∈Ni(4Λi∆j +∆2

j)+H i∗εi. By now, we have shown that
the function V Hi∗

i,N (xi(tik), x−i(tik)) is an ISpS Lyapunov function. Based on Lemma
2.2, it can be concluded that the closed-loop system in (3.7) is ISpS with respect to
Ωi at triggering instants [55, Theorem 2.5]. This concludes the proof.
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3.5 Numerical Example

In this section, five simulation tests are conducted to compare the control performance
and communication load, i.e., periodic min-max DMPC (P-DMPC), self-triggered
min-max DMPC without communication delays (ST-DMPC), self-triggered min-max
DMPC with communication delays (ST-DMPC-D), periodic min-max decentralized
MPC (P-DeMPC), and self-triggered min-max decentralized MPC without communi-
cation delays (ST-DeMPC). We follow the similar simulation setup from [83]. Agent
i, i ∈ V is characterized by

x+
i,1 = xi,1 + T (xi,2),

x+
i,2 = xi,2 −

T

mi

(k′ie−xi,1xi,1 + h′ixi,2 − ui + vixi,2 − wi),

where mi = 1kg, k′i = 0.33N/m, h′i = 1.1Ns/m and the sampling period T = 0.3s.
The uncertainties are bounded by −0.1 ≤ wi ≤ 0.1, −0.15 ≤ vi ≤ 0.15. The control
input and state constraints are given by −4N ≤ ui ≤ 4N, −1.95m ≤ xi,1 ≤ 1.95m.
According to [50, Lemma 3.2 and Lemma 3.3], the local Lipschitz constants can be
calculated as ν = 1.23 and ξ = 0.42.

The prediction horizon N = 5 and the largest triggering interval H̄ = 4. The com-
munication delay is an integer, which is randomly generated on the interval [1, τ̄ ], with
τ̄=3. The weighting matrices are chosen as Qi = diag(0.6, 0.6), Qij = diag(0.5, 0.5)
and Ri = 1. The parameters ~i and ∆i are chosen as ~i = 1.1 and ∆i = 3.58. Ac-
cording to [83,94], the terminal conditions are designed as Ωi = {xi | ‖xi‖Pi ≤

√
6.0}

with Pi = [8.05, 2.90; 2.90, 3.48] and the terminal control law is chosen as κi(xi) =
[−0.87,−1.04]xi. The feedback control policy is µi(xi) = aκi(xi) + b‖xi‖2 + c, where
a, b, c ∈ R are the decision variables for the optimization problem. The actual para-
metric uncertainty and external disturbance are 0.1 sin(t/4π) and 0.15 cos(t/3π), re-
spectively. A digraph G is used described the communication network of the MAS,
with N1 = {2}, N2 = {1, 5}, N3 = {2, 4}, N4 = {3}, N5 = {2}.

The initial states of five agents are given as x1 = [1.5, 0.7]T; x2 = [−0.5,−1.1]T;
x3 = [−2.0, 0.5]T; x4 = [0.7,−1.0]T; x5 = [1.95, 0]T. Figure 3.2 depicts five agents’
states and triggering instants without communication delays under the periodic min-
max DMPC method and the proposed self-triggered min-max DMPC method. The
control inputs obtained using the periodic min-max DMPC method and the proposed
method for the asynchronous MAS are shown in Figure 3.3. The states and control
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Figure 3.2: States and triggering instants of self-triggered and periodic DMPC with-
out communication delays. Top: The displacements. Middle: The velocities. Bottom:
The triggering instants.

inputs of five agents with time-varying communication delays are shown in Figures 3.4
and 3.5, respectively. Furthermore, the comparisons using the P-DeMPC and ST-
DeMPC without communication are conducted. The corresponding results can be
seen in Figures 3.6 and 3.7. It can be seen that the DMPC methods achieve better
control performance than the decentralized MPC method.

Let µ(t) = ∑
i∈V ‖xi(t)‖2

Qi
/M denote the average stabilization error. Also, we

denote ψ(t) = ∑
i∈V

∑
j∈Ni ‖xi(t) − xj(t)‖2

Qij
/M as the difference among agents. For

the distributed MPC case, the coupling term ‖xi − xj‖Qij , i ∈ V , j ∈ Ni is involved
in the objective function. As shown in Figure 3.8 (bottom), agents with the DMPC
approaches have a better cooperation performance before reaching stabilization than
the decentralized MPC approaches. It is also shown that DMPC performs better than
the DeMPC with respect to the stabilization control performance. Additionally, the
average stabilization error and the cooperation difference of triggered DMPC/DeMPC
decrease faster than periodic DMPC/DeMPC.

To further compare the control performance and communication load, the average
sampling time and the control performance index are summarized in Table 3.1. Let
T̄ := ∑

i∈V Tsim/Msi denote the average sampling time, where si is the total triggering
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Figure 3.3: Control inputs ui of self-triggered and periodic DMPC without delays.

times of agent i during the simulation time Tsim. The control performance index is
defined by J̄ = ∑

i∈V Ji/M , Ji = ∑Tsim
t=0 ‖xi(t)‖2

Qi
+∑j∈Ni ‖xi(t)−xj(t)‖2

Qij
+‖ui(t)‖2

Ri
.

From Table 3.1, it can be seen that the total communication load of the MAS with de-
lays and without delays are significantly reduced by using the proposed self-triggered
min-max DMPC algorithm while achieving comparable control performance com-
pared with periodic min-max DMPC.

Table 3.1: Performance comparison.

Method Average sampling time Control performance index
P-DMPC 0.3000 51.3016
ST-DMPC 0.6303 52.2235
ST-DMPC-D 0.6105 51.4515
P-DeMPC 0.3000 58.3909
ST-DeMPC 0.5878 59.1528
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The triggering instants.

3.6 Conclusion

This chapter proposed a self-triggered min-max DMPC algorithm for the nonlinear
perturbed MAS with bounded time-varying communication delays. In this scheme,
agents aperiodically sampled their system states and asynchronously broadcast the
newest predicted states to neighbors based on the local triggering instants determined
by the distributed self-triggered scheduler. Hence, the overall communication load
was significantly reduced. A new consistency constraint, which forced the deviation
between the newest predicted states and the previously predicted states to lie in a
prescribed region, was incorporated into the local optimization problem. As a result,
the cooperation among agents could be achieved despite the time-varying delays and
asynchronous communication.
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Chapter 4

A Robust Distributed Model
Predictive Control Framework for
Consensus of Multi-Agent Systems
with Input Constraints and
Varying Delays

4.1 Introduction

Consensus for the MAS requires all agents to achieve an agreement of common interest
based on the local and neighboring information. To date, many decent consensus
algorithms have exhibited impressive results; see [108, 109, 121] and the references
therein. Nonetheless, reaching consensus becomes more challenging when the MAS is
subject to constraints and varying communication delays in real-world applications.
The aim of this chapter is to address the constrained consensus problem of the MAS
with bounded time-varying communication delays.
Related work. The research on the constrained consensus can be found in [80,
81, 110, 120, 166, 169, 179]. Several works study the MAS with input saturation; see,
e.g., [120, 166, 169, 179]. These solutions use hyperbolic tangent functions or the low
gain feedback technique to construct bounded consensus protocols. More recently, the
work [110] presents an output consensus scheme based on the reference governor and
the maximal constraint admissible invariable set for heterogeneous linear the MAS
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with input constraints and switching networks. For the case of the MAS subject
to state constraints, the authors of [80] design the projection algorithms based on
the projection operator theory, which attains consensus convergence while meeting
state constraints. However, most of these aforementioned algorithms cannot explicitly
optimize the consensus performance, which motivates the new consensus protocol
design for the constrained MAS.

Another powerful class of methods for solving the constrained consensus problem
is DMPC since it has remarkable advantages in handling practical constraints and
providing optimal control performance for the MAS [9]. Most of the existing results
focus on the cooperative stabilization problems of the MAS [19, 158]. Recent ad-
vances in DMPC algorithms lead to a profound interest in consensus problems, and
previous works along this line include [23, 37, 66, 71, 154, 155, 175]. In [23], an MPC-
based consensus protocol is proposed for multiple integrators over the time-varying
networks, where the geometric properties of the optimal path are used to prove the
consensus convergence. These two papers [66, 71] investigate the consensus problem
of the first-order and general linear MAS and develop explicit consensus protocols via
solving unconstrained DMPC problems. In [154], the optimal consensus problem of
the asynchronous MAS with single- and double integrator dynamics is addressed via
a DMPC-based algorithm. The authors further extend this method for the general
linear MAS in [155], in which a consensus manifold is introduced such that the final
consensus state and inputs are regarded as the augmented decision variables of the
DMPC optimization problem. It is worth emphasizing that the aforementioned stud-
ies either focus on simple integrator dynamics [7, 23, 154] or consider unconstrained
consensus problems [66,71,175]. However, the above algorithms typically require the
simultaneous computation and communication at each time instant and neglect the
transmission delays, rendering them not feasible in many practical scenarios.
Contribution. In this chapter, a robust DMPC-based consensus protocol is proposed
to ensure that the general linear constrained MAS reach consensus despite bounded
time-varying delays. The main contribution of this chapter is threefold.

• Distributed consensus protocol for the constrained MAS with delays: We pro-
pose a distributed consensus protocol for the general linear MAS with input
constraints and varying delays. Based on the inverse optimal control [39], a
consensus protocol is firstly designed offline for the unconstrained MAS with
the goal of achieving global optimality and set stability. By minimizing the
gap between the online DMPC input and the predesigned consensus input, the



45

consensus performance of the MAS is guaranteed, while satisfying control input
constraints. In contrast to existing DMPC-based consensus methods [28, 174],
the topology of communication graph is explicitly utilized in the offline consen-
sus protocol design, which facilitates the analysis of the consensus convergence.

• Robust DMPC handles delay-induced estimation errors: Most of existing DMPC-
based consensus algorithms typically require that all agents simultaneously com-
pute control inputs and exchange optimal predicted states via delay-free wireless
networks at each instant (see, e.g., [67,174]). In this work, we relax these strict
communication requirements and consider the non-simultaneous communica-
tion and computation, and delay-involved communication networks, in which
the optimal predicted states (i.e., the assumed predicted states) of each agent
broadcast at some previous time instant are used to estimate the current opti-
mal predicted states. The estimated states would inevitably induce estimation
errors that might prevent the MAS from achieving consensus. In this context,
we leverage tube-based MPC techniques [8, 99] to account for the estimation
errors. By bounding the deviation between the assumed and actual predicted
states using a properly designed estimation error set, the MAS converges to a
neighborhood of the consensus set.

• Guaranteed feasibility and consensus convergence regardless of delays: Given the
robust DMPC-based consensus protocol, conditions for preserving the recursive
feasibility are developed. Furthermore, we provide rigorous theoretical analy-
sis of the consensus convergence for the general linear constrained MAS with
bounded time-varying communication delays. Finally, two numerical examples
are provided to verify the theoretical results.

4.2 Problem Formulation

Consider M agents that are inter-connected via an undirected graph G. The system
model of agent i, i ∈ V is characterized by

xi(t+ 1) = Axi(t) +Bui(t), t ∈ N≥0, (4.1)



46

where xi(t) ∈ Rn and ui(t) ∈ Rm are the system state and control input, respectively.
Agent i, i ∈ V is subject to control input constraints, i.e.,

ui(t) ∈ Ui, t ∈ N≥0, (4.2)

in which the set Ui ⊂ Rm contains the origin.
The following definition describes the consensus of the discrete-time MAS [171].

Definition 4.1 (Consensus of the discrete-time MAS). The discrete-time MAS in
(4.1) over the fixed graph G is said to achieve consensus, if for any xi(0), i ∈ V, there
exists a consensus protocol ui(t) = κi(xi(t), x−i(t)) such that limt→+∞ ‖xi(t)−xj(t)‖ =
0, j ∈ Ni, where x−i(t) represents the collection of agent i’s neighboring states and
κi : Rn × · · · × Rn︸ ︷︷ ︸

|Ni|+1

→ Rm.

In this work, we make the standard assumption on the system dynamics and the
communication graph as follows.

Assumption 4.1. The pair (A,B) of the MAS in (4.1) is stabilizable, and the asso-
ciated communication graph G is connected.

The connectivity of the graph G implies that the eigenvalues of L satisfy λi ≥ 0,
i = 1, 2, . . . ,M [109]. In this work, the broadcast communication model is adopted
for the MAS, i.e., each agent broadcasts the information to its neighbors via the
broadcaster and receives the information from its neighbors via the receiver at each
time instant.

Let x(t) := col(x1(t), x2(t), . . . , xM(t)) and u(t) := col(u1(t), u2(t), . . . , uM(t)).
Then the system in (4.1) can be written in a compact form

x(t+ 1) = (IM ⊗ A)x(t) + (IM ⊗B)u(t), (4.3)

in which x(0) = col(x1(0), x2(0), . . . , xM(0)) is the initial state of the MAS, the aug-
mented input constraint defined by the Cartesian product of multiple control input
constraint sets is U := U1 × U2 × · · · × UM . The consensus problem under considera-
tion can be equivalently transformed a set stabilization problem subject to the control
input constraints. A consensus set is introduced for the MAS in (4.3) as

C := {x(t) ∈ RMn | x1(t) = x2(t) = · · · = xM(t)}, (4.4)
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where t ∈ N≥0. The MAS in (4.1) achieving consensus implies that the system state
x(t) reaches the consensus set C. It follows that the distance between the state x(t)
and the consensus set C becomes zero, i.e., |x(t)|C = 0.

The following lemma ( [76, Theorem 1]) provides a sufficient and necessary con-
dition for the MAS to reach consensus.

Lemma 4.1. For agent i, i ∈ V in (4.1) over a fixed communication graph G, the
consensus of the MAS can be achieved if and only if there exists a predesigned con-
sensus gain K ∈ Rm×n such that ρ(A + λiBK) < 1, where λi, i = 2, 3, . . . ,M , are
the nonzero eigenvalues of the Laplacian matrix L.

In what follows, the assumption on the predesigned consensus gainK in Lemma 4.1
is required to hold.

Assumption 4.2. There exist a feedback control matrix K and a forward invariant
set Ω such that: 1) ρ(A + BK) < 1; 2) K∑

j∈Ni aij(xi − xj) ∈ Ui, when the states
xi ∈ Ω, i ∈ V and xj ∈ Ω, j ∈ Ni.

The forward invariant set (i.e., the terminal set) will be given in Section 4.4.3.
The control objective is to design a distributed consensus protocol for the MAS in
(4.1) such that agents over wireless networks G attain:

1) Agreement: For agents i, j ∈ V , the following condition

lim
t→∞
‖xi(t)− xj(t)‖ = 0, j ∈ Ni, (4.5)

holds, which is equivalent to limt→∞ |x(t)|C = 0.

2) Constraint satisfaction: The system i, i ∈ V

xi(t+ 1) = Axi(t) +Bui(t), (4.6)

satisfies control input constraints in (4.2) for all t ∈ N≥0.

4.3 Delayed Communication among the MAS

In this section, we introduce the assumed information broadcast among the MAS over
delay-involved wireless networks.
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(a) Sequential execution [102,
123].
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Figure 4.1: Three types of implementations of DMPC algorithms for the MAS with
N1 = {2}, N2 = {1, 3}, N3 = {2}.

Most existing DMPC algorithms for MAS only consider delay-free networks, and
some of them even require stricter communication settings (e.g., simultaneous com-
munication and computation). Here, three types of DMPC schemes are presented in
Figure 4.1, including

1) Sequential execution: As shown in Figure 4.1a, agents solve local optimization
problems and communicate with their neighbors sequentially. That is, at each
time instant, only one agent calculates the optimal control inputs and broadcasts
the optimal predicted state sequence.

2) Parallel execution with simultaneous computation and communication: As pre-
sented in Figure 4.1b, at each time instant, all agents simultaneously receive
neighbors’ information, solve the optimization problems and broadcast infor-
mation to their neighbors.

3) Parallel execution with non-simultaneous computation and communication: As
depicted in Figure 4.1c, at each time instant, agents broadcast the predicted
states. But these broadcast predicted states may be used by their neighbors a
few time instants later due to the time-varying communication delays.

In contrast to sequential algorithms [102, 123], parallel DMPC algorithms [65]
provide a more efficient coordination solution for the constrained MAS in terms of
both computation and communication. Most of the existing results assume that the
communication among agents is perfect, and the information can be synchronously
exchanged as shown in Figure 4.1b (e.g., see [158]). However, it is unrealistic for agents
to calculate the optimal predicted states while exchanging them simultaneously and
instantaneously. Especially, the communication delays are unavoidable during the
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information exchange for the MAS in many practical scenarios, which may result in
the non-simultaneous parallel algorithm execution as shown in Figure 4.1c. That
is, the optimal predicted state sequence broadcast at the previous time instant t′,
t′ ∈ N[t−τ̄ ,t−1], τ̄ ∈ N≥1 (the assumed predicted state sequence) is used to estimate the
current optimal predicted state sequence at t, t ∈ N≥0. For the case with bounded
varying delays, the resulting estimation errors can be treated as external disturbances.

The assumed states of agent i at time t are constructed based on the previous
optimal predicted states at time t′, i.e.,

x̂i(k|t) =
x
∗
i (t− t′ + k|t′), k ∈ N[0,N ′],

Ax̂i(k − 1|t) +Bû(k − 1|t), k ∈ N(N ′,N ],
(4.7)

in which t′ ∈ N[t−τ̄ ,t−1], N ′ = t′+N− t, N is the prediction horizon, x∗i (·|t′) represents
the optimal state and ûi(k|t) = K

∑
j∈Ni aij(xi(k|t)− x̂j(k|t)) with k ∈ N(N ′,N ]. Note

that states x∗j(·|t′), j ∈ Ni, t′ ∈ N[t−τ̄ ,t−1] are available for agent i at time t. Let
x̂i(t) := {x̂i(k|t)}, t ∈ N≥0, k ∈ N[0,N ] be the assumed predicted state sequence of
agent i, i ∈ V at time t hereafter.

We make the following assumption on the communication delays among the MAS.

Assumption 4.3. For agent i, i ∈ V, the time-varying communication delays τ(t) ∈
N≥0 between agent i and j, j ∈ Ni, satisfy 1 ≤ τ(t) ≤ τ̄ < N , with τ(0) = 0, with
τ(0) = 0 and τ̄ being the largest communication delay.

The upper bound of the communication delays ensures that the previously broad-
cast assumed predicted states can be used to estimate the actually optimal predicted
states. For example, at time t, agent i can receive the assumed predicted state se-
quence x∗i (·|t′) from its neighbor j, j ∈ Ni broadcast at time t′ ∈ N[t−τ̄ ,t−1]. Then,
the received information will be adopted as in (4.7) to construct the current assumed
predicted state sequence at time t. On the other hand, the case of unbounded delays
can be modeled as the packet dropouts in networked control systems [63] and also the
denial-of-service attacks in cyber-physical systems [141], which is beyond the scope
of current work.

Remark 4.1. Many consensus algorithms have been proposed for the MAS with de-
lays. For example, the conditions based on special stochastic matrix properties and
extended state space are derived for discrete-time the MAS, e.g., [165], and linear
matrix inequality conditions for the continuous-time MAS, e.g., [142]. In contrast,
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the previously broadcast predicted states can be used to design the distributed con-
sensus protocol owing to the predictive mechanism of MPC. Particularly, in existing
DMPC results (e.g., [67, 174]), the assumed predicted state sequence (one-step ahead
predicted state sequence) are generally used to estimate the current optimal state se-
quence, which can be regarded as a special case of the assumed predicted state sequence
of the MAS with varying delays in (4.7), with τ(t) = 1.

Note that restricting the deviation between the current and the assumed predicted
states is necessary for the MAS to reach consensus. In particular, the current optimal
predicted state of agent i, i ∈ V is supposed to lie in a bounded neighborhood (i.e.,
the estimation error set ∆) of the assumed predicted state,

x∗i (k|t) ∈ x̂i(k|t)⊕∆, k ∈ N[0,N ], (4.8)

where ∆ := {δ ∈ Rn | ‖δ‖ < η} is symmetric and contains the origin with η > 0.
We consider a scenario where agents are subject to bounded varying communi-

cation delays. In this context, the control objective presented in Section 4.2 can be
restated as follows.

1) Robust agreement: For agents i, j ∈ V , applying the proposed distributed
consensus protocol, then

lim
t→∞
‖xi(t)− xj(t)‖ ≤ γ, j ∈ Ni, (4.9)

holds, where the invariant set R∞i := {x ∈ Rn | ‖x‖ ≤ γ} and γ > 0.

2) Constraint satisfaction: The system i, i ∈ V

xi(t+ 1) = Axi(t) +Bui(t), (4.10)

satisfies control input constraints in (4.2) for all t ∈ N≥0.

Note that using Assumption 4.2 allows us to get a minimal robust invariant set
Rk
i as k →∞ [99].

4.4 Robust DMPC-based Consensus Protocol

The robust DMPC-based consensus scheme for the MAS is illustrated in Figure 4.2,
which mainly consists of five parts: the controlled system, the robust DMPC con-
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troller, the broadcaster, the receiver and wireless communication networks. At each
time instant, the Broadcaster of agent i, i ∈ V broadcasts the assumed predicted state
sequence x̂i and the Receiver receives the assumed predicted state sequence x̂j from
agent j, j ∈ Ni via wireless communication networks.

Agent 1

Agent 2 Agent 3

System

DMPC

Broadcaster

Receiver

Pre-C

⨁

Figure 4.2: Illustration of the robust DMPC-based consensus scheme for the MAS
with N1 = {2}, N2 = {1, 3}, N3 = {2}.

4.4.1 Predesigned consensus protocol for the MAS without
delays

At time t, agent i calculates control inputs, broadcasts predicted states x̂i(t) to
its neighbor j, j ∈ Ni via the network G and updates system states xi(t). The
predesigned consensus is determined based on the relative states between local agent
and its neighbors under the assumption that the wireless network is delay-free, i.e.,

ui(t) = κi(xi(t), x−i(t)) = K
∑
j∈Ni

aij(xi(t)− xj(t)) + ci(t), (4.11)

where K ∈ Rm×n, κi(t) := −K∑
j∈Ni aij(xi(t) − xj(t)) is the predesigned consensus

input and ci(t) is the control decision variable of the robust DMPC optimization
problem in Section 4.4.3.

Remark 4.2. Note that the proposed consensus protocol (4.11) is motivated by the
well-known “pre-stabilizing” control method for the stabilization problem of the single
system in [8, 30], in which the MPC control input is given by u(t) = Kx(t) + c(t).
The feedback gain K is chosen offline for the unconstrained system to achieve some
desired properties such as LQR optimality and stability, and c(t) is calculated online.
In this work, an inverse optimal consensus protocol κi(t) is designed offline for the
unconstrained MAS in (4.1) and ci(t) is determined via solving the online optimiza-
tion problem. The resulting consensus protocol achieves the suboptimal performance
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while guaranteeing the satisfaction of control input constraints. In contrast to the
existing DMPC methods in [28, 67, 174], the topology of the communication graph is
explicitly exploited to construct the predesigned consensus protocol, which facilitates
the consensus convergence analysis of the constrained MAS.

4.4.2 Predesigned consensus protocol for the MAS with de-
lays

We now present the predesigned consensus protocol for the MAS with the time-
varying communication delays. Based on the assumed predicted states of neighbors,
the consensus protocol in (4.11) then becomes

ui(t) = K
∑
j∈Ni

aij(xi(t)− x̂j(t)) + ci(t), (4.12)

and the MAS in (4.1) under the consensus protocol in (4.12) can be written as

xi(t+ 1) = Axi(t) +BK
∑
j∈Ni

aij(xi(t)− x̂j(t)) +Bci(t). (4.13)

The overall estimation error of agent i, i ∈ V is defined as wi(t) = ∑
j∈Ni aij(x̂j(t)−

xj(t)), and it satisfies wi(t) ∈ W := {w ∈ Rn|w ∈ ⊕
j∈Ni aij∆}. In particular,

the estimation error will be treated as the disturbance in the following. Thanks to∑
j∈Ni aij = 1, it holds that W = ∆.

Under the consensus protocol (4.12), the closed-loop system in (4.13) becomes

xi(t+ 1) = Axi(t) +B(K
∑
j∈Ni

aij(xi(t)− xj(t)) + ci(t))−BKwi(t).

Remark 4.3. Existing DMPC-based consensus methods (e.g., [67, 174]) do not con-
sider the estimation errors explicitly, which may not be applicable for the practical
MAS. Because the estimation errors may prevent the MAS from achieving consen-
sus. Inspired by the tube-based MPC for the uncertain linear system in [99], one
may choose to impose the estimation error set to bound the estimation errors that are
regarded as external disturbances in this work.
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4.4.3 Design of robust DMPC for consensus

In this work, the terminal set for the MAS in (4.3) is defined as Xf := {x ∈ RMn |
‖x‖S ≤ ε2}, in which S = σL⊗S, with the positive definite weighting matrix S ∈ Rn×n

and the positive constants ε and σ. The matrix S can be chosen following the method
provided in Lemmas 6 and 7 in [68]. The terminal set X f

i for agent i, i ∈ V is given
by

X f
i := {xi ∈ Rn |

∑
j∈Ni

aijx
T
i S(xi − xj) ≤ ε2/M}. (4.14)

The cost function Ji(·) for agent i, i ∈ V is defined by

Ji(ci(t)) :=
N−1∑
k=0
‖ci(k|t)‖2

Pi
, (4.15)

where ci(t) := {ci(0|t), ci(1|t), . . . , ci(N−1|t)} denotes the control sequence generated
at time instant t and the matrix Pi is positive definite. Note that the suboptimal per-
formance can be guaranteed by minimizing the cost function in (4.15) while ensuring
the satisfaction of control input constraints.

At time t, given the current state xi(t) of agent i, i ∈ V and neighbors’ assumed
predicted state sequence x̂j(t), j ∈ Ni, the robust DMPC optimization problem Pi is
formulated as

min
ci(t)

Ji(ci(t))

s.t. xi(0|t) = xi(t), (4.16a)
xi(k + 1|t) = Axi(k|t) +Bui(k|t), (4.16b)
ui(k|t) = κ̂i(k|t) + ci(k|t), (4.16c)
ui(k|t) ∈ Ui, (4.16d)
xi(k|t) ∈ x̂i(k|t)⊕∆, (4.16e)
xi(N |t) ∈ X f

i , (4.16f)

in which k ∈ N[0,N−1] and κ̂i(k|t) := K
∑
j∈Ni aij(xi(k|t) − x̂j(k|t)). Note that

the constraint (4.16e) bounds the optimal predicted state sequence x∗i (k|t) within
a predesigned tube centered along the assumed state x̂i(k|t), k ∈ N[0,N−1]. Let
c∗i (t) := {c∗i (0|t), . . . , c∗i (N − 1|t)} be the optimal solution to the robust DMPC prob-
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lem Pi at time t. We then have the corresponding optimal control input

u∗i (k|t) = K
∑
j∈Ni

aij(x∗i (k|t)− x̂j(k|t)) + c∗i (k|t), (4.17)

where k ∈ N[0,N−1], and the optimal control sequence at time t is u∗i (t) := {u∗i (0|t), u∗i (1|
t), . . . , ui(N − 1|t)}. The resulting optimal predicted state satisfies

x∗i (1|t) = Ax∗i (0|t) +Bu∗i (0|t), (4.18)

where k ∈ N[0,N−1], x∗i (0|t) = xi(t), and the optimal predicted state sequence is
denoted by x∗i (t) := {x∗i (0|t), x∗i (1|t), . . . , x∗i (N |t)}.

At time t, applying u∗i (0|t) to the system in (4.1) yields the closed-loop system

xi(t+ 1) =Axi(t) +Bu∗i (0|t)
=Axi(t) +B(K

∑
j∈Ni

aij(x∗i (0|t)− x̂j(0|t)) + c∗i (0|t)).

And according to (4.18), one has xi(t+ 1) = x∗i (1|t).
The proposed robust DMPC-based consensus algorithm is presented as follows.

Algorithm 2 Robust DMPC-based consensus algorithm
Require: The prediction horizon N , the predesigned consensus gain K, the terminal

set X f
i , the estimation error set ∆, the weighting matrix Pi, the initial state

xi(0), the assumed state sequence x̂i(0) := {xi(0), . . . , AN−1xi(0)}, and other
parameters.

1: Broadcast the assumed predicted state sequence x̂i(0) to its neighbors j, j ∈ Ni;
2: while for agent i, the control is not stopped do
3: Measure the current system state xi(t);
4: Receive the information x̂j(t), j ∈ Ni defined in (4.7);
5: Solve the problem Pi to generate u∗i (t) and x∗i (t);
6: Broadcast x̂i(t) to agent j, j ∈ Ni;
7: Apply the control u∗i (0|t) to agent i;
8: t = t+ 1;
9: end while

Note that in Step 4 of Algorithm 2, agent i collects the assumed predicted state
sequence from its neighbors j, j ∈ Ni. The predicted state sequences of neighbors
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broadcast at the synchronous instant t′, t′ ∈ N[t−τ̄ ,t−1] as in (4.7), instead of the most
recently received predicted state sequences, will be used in Step 5 to generate the
consensus input u∗i (t).

Remark 4.4. Note that many DMPC algorithms have been developed for the for-
mation stabilization control problem of the MAS, e.g., [19]. However, they cannot
be easily extended to consensus problems since the optimal cost function may not be
directly used as Lyapunov function [23, 102]. In this case, the major difficulty when
analyzing the consensus convergence of the MAS is designing some specific conditions
such that the Lyapunov theorem holds [67, 174]. Alternatively, this work exploits the
knowledge of the communication topology to design an offline optimal consensus pro-
tocol ∑j∈Ni aijK(xi − xj) for the unconstrained MAS. Then the difference ci between
the unconstrained control input κ̂i and the control input ui is minimized, which will
be proved to be a vanishing input in Lemma 4.3.

4.5 Theoretical Analysis

In this section, we provide the theoretical analysis of the recursive feasibility and the
consensus convergence of the MAS. Before presenting the main results, the relation-
ship between the theoretical results is illustrated in Figure 4.3.

Assumption 1

Assumption 2

Assumption 3

Lemma 1

Lemma 2
Lemma 3

Lemma 4
Theorem 1

Basic assumptions Feasibility and
convergence results

Some convergence 
properties

Figure 4.3: The roadmap of the theoretical results.

4.5.1 Recursive feasibility result

In this subsection, the recursive feasibility of the robust DMPC optimization problem
will be analyzed. It is assumed that an initial feasible solution to the optimization
problem Pi exists for the given initial state xi(t), t ∈ N≥0.
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Based on the optimal predicted control sequence at time t′′, t′′ ∈ N[t+1−τ̄ ,t], a
candidate input sequence c̃i(t+ 1) at time t+ 1 is created by dropping the first t− t′′

input element and appending final t− t′′ terminal zero element of the optimal control
sequence at t′′, i.e.,

c̃i(k|t+ 1) =
c
∗
i (k|t′′), k ∈ N[1,t′′+N−t),

0, k ∈ N[t′′+N−t,N ],
(4.19)

and the corresponding control input sequence ũi(t + 1) := {ũi(0|t + 1), ũi(1|t +
1), . . . , ũi(N − 1|t+ 1)} for agent i is then constructed as

ũi(k− 1|t+ 1) = K
∑
j∈Ni

aij(x̃i(k− 1|t+ 1)− x̂j(k− 1|t+ 1)) + c̃i(k− 1|t+ 1), (4.20)

where k ∈ N[1,N ] and the corresponding system state x̃i(k|t+ 1) satisfies the following
difference equation

x̃i(k + 1|t+ 1) = Ax̃i(k|t+ 1) +Bũi(k|t+ 1), (4.21)

with the initial condition x̃i(0|t+ 1) = xi(t+ 1).
In the following lemma, we provide the conditions under which the control input

sequence defined in (4.19) and (4.20) will be a feasible solution to the robust DMPC
optimization problem Pi at time t+ 1.

Lemma 4.2. For the MAS in (4.1), suppose Assumptions 4.1, 4.2, 4.3 and the
condition in Lemma 4.1 hold. If there exist the predesigned consensus gain K, the
maximum delay τ̄ and the prediction horizon N , such that the conditions

max
k∈N[1,N′−1]

{
ρ(
k−1∑
s=0

Ak−1−s
K BK+AkK)

}
≤ 1, and max

k∈N[N′,N−1]

{
ρ(
N ′−1∑
s=0

Ak−1−s
K BK+AkK)

}
≤ 1,

(4.22)
hold, with ρ(·) denotes the spectral radius, AK := A + BK and N ′ := N − τ(t′′). If,
in addition, the robust DMPC optimization problem Pi has a feasible solution at time
t, then it admits a feasible solution at time t+ 1, t ∈ N≥0.

Proof. An initial feasible solution to the optimization problem Pi, i ∈ V is assumed
to exist at time t, t ∈ N≥0 implying that the constraint x∗i (k|t) ∈ x̂i(k|t)⊕∆ in (4.16e)
holds, i.e., x∗i (k|t) ∈ x∗i (k|t′) ⊕ ∆, with x∗i (t − t′ + k + 1|t′) = Ax∗i (t − t′ + k|t′) +
Bu∗i (t− t′ + k|t′) and t′ ∈ N[t−τ̄ ,t−1].
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Note that the previous optimal predicted states x∗j(·|t′′) of agent j, j ∈ Ni are
available for agent i, i ∈ V at time t + 1, with t′′ ∈ N[t+1−τ̄ ,t]. By (4.7), one gets
x̂j(0|t+ 1) = x∗j(t− t′′ + 1|t′′). Thus, from x̃i(0|t+ 1) = x∗i (1|t) and (4.19), it is easy
to have that

ũi(0|t+ 1)
=K

∑
j∈Ni

aij(x̃i(0|t+ 1)− x̂j(0|t+ 1)) + c̃i(0|t+ 1)

=K
∑
j∈Ni

aij(x̃i(0|t+ 1)− x̂j(t− t′′ + 1|t′′) + x̂j(t− t′′ + 1|t′′)− x̂j(0|t+ 1))

+ c̃i(0|t+ 1)
=K

∑
j∈Ni

aij(x∗i (1|t)− x̂j(t− t′′ + 1|t′′)) + c∗i (t− t′′ + 1|t′′)

+K
∑
j∈Ni

aij(x̂j(t− t′′ + 1|t′′)− x̂j(0|t+ 1))

=K
∑
j∈Ni

aij(x∗i (t− t′′ + 1|t′′)− x∗i (t− t′′ + 1|t′′) + x∗i (1|t)− x̂j(t− t′′ + 1|t′′))

+ c∗i (t− t′′ + 1|t′′) +K
∑
j∈Ni

aij(x̂j(t− t′′ + 1|t′′)− x̂j(0|t+ 1))

=u∗i (t− t′′ + 1|t′′) +K
∑
j∈Ni

aij(x̂j(t− t′′ + 1|t′′)− x∗j(t− t′′ + 1|t′′)))

+K
∑
j∈Ni

aij(x∗i (1|t)− x∗i (t− t′′ + 1|t′′)).

Since the constraint x∗i (k|t) ∈ x∗i (t − t′ + k|t′) ⊕∆ holds, one then has x∗i (k|t) ∈
x∗i (t − t′′ + k|t′′) ⊕ ∆. Let w′i(1|t) := x∗i (1|t) − x̂i(1|t) = x∗i (1|t) − x∗i (t − t′′ + 1|t′′).
From the definition of wi(k|t) = ∑

j∈Ni aij(x̂j(k|t)− x∗j(k|t)), we obtain

ũi(0|t+ 1) = u∗i (t− t′′ + 1|t′′) +Kw′i(1|t) +Kwi(t− t′′ + 1|t′′).

Applying the above control input, we have the predicted system state x̃i(1|t+ 1)
as follows

x̃i(1|t+ 1) =Ax̃i(0|t+ 1) +Bũi(0|t+ 1)
=x∗i (t− t′′ + 2|t′′) + AKw

′
i(1|t) +BKwi(t− t′′ + 1|t′′).

(4.23)
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Analogously, we have

ũi(1|t+ 1)
=K

∑
j∈Ni

aij(x̃i(1|t+ 1)− x̂j(1|t+ 1)) + c̃i(1|t+ 1)

=u∗i (t− t′′ + 2|t′′) +KBKwi(t− t′′ + 1|t′′) +Kwi(t− t′′ + 2|t′′) +KAKw
′
i(1|t),

and

x̃i(2|t+ 1)
=Ax̃i(1|t+ 1) +Bũi(1|t+ 1)
=x∗i (t− t′′ + 3|t′′) + AKBKwi(t− t′′ + 1|t′′) +BKwi(t− t′′ + 2|t′′) + A2

Kw
′
i(1|t).

Then, the state sequence candidate x̃i(k − 1|t + 1) evolves in an iterative way
according to

x̃i(k|t+ 1) =x∗i (t+ 1− t′′ + k|t′′) + AkKw
′
i(1|t) +

k−1∑
s=0

Ak−1−s
K BKwi(t+ 1− t′′ + s|t′′),

(4.24)
with k ∈ N[1,N ′). Define the variable rki (t+ 1) ∈ Rn for agent i, i ∈ V by

rki (t+ 1) :=



w′i(1|t), k = 0,
k−1∑
s=0

Ak−1−s
K BKwi(s) + AkKw

′
i(1|t), k ∈ N[1,N ′),

N ′−1∑
s=0

Ak−1−s
K BKwi(s) + AkKw

′
i(1|t), k ∈ N[N ′,N),

in which wi(s) := wi(t+ 1− t′′ + s|t′′).
Considering wi(t − t′′ + k|t′′) ∈ W , k ∈ N[1,N ′] and w′i(1|t) ∈ W , one gets the

corresponding set Rk
i

Rk
i :=



W , k = 0,
k−1⊕
s=0

Ak−1−s
K BKW + AkKW , k ∈ N[1,N ′),

N ′−1⊕
s=0

Ak−1−s
K BKW + AkKW , k ∈ N[N ′,N),

(4.25)
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with rki (t+ 1) ∈ Rk
i .

Since the condition maxk∈N[1,N−1]{ρ(∑N ′−1
s=0 Ak−1−s

K BK+AkK), ρ(∑k−1
s=0 A

k−1−s
K BK+

AkK)} ≤ 1 holds, and by (4.24) and (4.25), we get Rk
i ⊆ ∆, k ∈ N[1,N). Hence, the

constraint (4.16e) at t+ 1 is satisfied.
Let ū∗i (t−t′′+k|t′′) := K

∑
j∈Ni aij(x∗i (t−t′′+k|t′′)−x∗j(t−t′′+k|t′′))+c∗i (t−t′′+k|t′′)

be the nominal optimal control input with k ∈ N[1,N ′−1]. Due to all admissible
disturbances wi(t− t′′ + k|t′′) ∈ ∆, the nominal optimal control input satisfies ū∗i (t−
t′′+k|t′′) ∈ U i, where U i := Ui	K∆. It should be mentioned that the nominal control
input ū∗i (·|t′′) might not be implemented to the actual system, since x∗j(t− t′′+ k|t′′),
j ∈ Ni is not available for agent i, i ∈ V at time t′′. But the nominal control input is
used in the feasibility analysis here. Next, substituting (4.24) into (4.20) yields

ũi(k|t+ 1) = ū∗i (t− t′′ + k|t′′) +Krk−1
i (t+ 1), (4.26)

where k ∈ N[1,N ′]. Since the optimal control input sequence u∗i (t′′) is assumed to be
feasible at time t′′, we have ū∗i (t−t′′+k|t′′) ∈ U i, k ∈ N[1,N ′]. Additionally, rk−1

i (t+1) ∈
∆. When k ∈ N(N ′,N ], it follows from Assumption 4.2 that ũi(k − 1|t + 1) ∈ Ui.
Hence, at time t+ 1, from (4.19) and (4.20), we further obtain that

ũi(k − 1|t+ 1) ∈ Ui, (4.27)

where k ∈ N[1,N ]. This implies that the control input constraint in (4.16d) holds.
Given the initial state x̃i(0|t + 1) = xi(t + 1) and the control inputs defined in

(4.20), one gets

x̃i(N |t+ 1)
=Ax̃i(N − 1|t+ 1) +Bũi(N − 1|t+ 1)
=Ax̃i(N − 1|t+ 1) +BK

∑
j∈Ni

aij(x̃i(N − 1|t+ 1)− x̂j(N − 1|t+ 1))

=A(x∗i (t− t′′ +N |t′′) + rN−1
i (t+ 1))

+BK
∑
j∈Ni

aij(x∗i (t− t′′ +N |t′′) + rN−1
i (t+ 1)− x∗j(t− t′′ +N |t′′))

=Ax∗i (t− t′′ +N |t′′) + AKr
N−1
i (t+ 1)

+BK
∑
j∈Ni

aij(x∗i (t− t′′ +N |t′′)− x∗j(t− t′′ +N |t′′)),

(4.28)
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in which x∗i (t+ 1− t′′ + k|t′′) := Ax∗i (t− t′′ + k|t′′) + Bu∗i (t− t′′ + k|t′′), with u∗i (t−
t′′ + k|t′′) := K

∑
j∈Ni aij(x∗i (t− t′′ + k|t′′)− x∗j(t− t′′ + k|t′′)), k ∈ N[N ′,N ].

Let x̃(N−1|t+1) := col(x̃1(N−1|t+1), . . . , x̃M(N−1|t+1)) and x∗(t−t′′+N |t′′) :=
col(x∗1(t− t′′ +N |t′′), . . . , x∗M(t− t′′ +N |t′′)). Then, (4.28) can be written as

x̃(N |t+ 1)
=(IM ⊗ A+ L ⊗BK)x∗(t− t′′ +N |t′′) + (IM ⊗ (A+BK))rN−1(t+ 1),

(4.29)

where rN−1(t + 1) = col(rN−1
1 (t + 1), rN−1

2 (t + 1), . . . , rN−1
M (t + 1)) ∈ ∆, with ∆ =

{rN−1 ∈ RMn | ‖rN−1‖2 ≤ Mη2}. Let the tightened terminal set be Xf := Xf 	∆.
When x∗(t−t′′+N |t′′) ∈ Xf , Assumption 4.1 implies that (IM⊗A+L⊗BK)x∗(t−
t′′+N |t′′) ∈ Xf . The corresponding tightened terminal set for agent i, i ∈ V becomes

X f

i :=X f
i 	∆, (4.30)

with the constant η > 0 and X f
i 6= ∅.

As a result, combining the above with (4.28) and (4.29), one obtains

x̃i(N |t+ 1) ∈ X f

i + AK∆ ⊆ X f
i , (4.31)

which implies that the terminal set (4.16f) is satisfied. By now, we have shown that
c̃i(t+ 1) is a feasible solution to the robust DMPC problem Pi at time t+ 1.

Remark 4.5. When the delay bound τ̄ increases, a larger prediction horizon N is
needed to construct the assumed predicted state sequence. The resulting DMPC opti-
mization problem becomes more computationally challenging. Additionally, it is hard
to ensure the satisfaction of the condition (4.22), which may lead to an infeasible so-
lution. Therefore, one would choose suitable parameters to make a trade-off between
the delay tolerant capability and computational complexity.

Remark 4.6. Note that the state constraints must be satisfied by every optimized
sequence x∗i (k|t) in the tube x̂i(k|t)⊕∆, t ∈ N≥0. That is, the estimation errors take
values in the specified set ∆. From (4.25), a minimal robust invariant set R∞i can
be obtained following the method in [99]. Also notice that ∆ ⊂ R∞i . Here we direct
our attention to the prediction horizon N[0,N ], then replacing R∞i with Rk

i , k ∈ N[0,N ]

yields a less conservative set. Here, the predesigned consensus gain matrix K, the
communication delay bound τ̄ and the prediction horizon N should be suitably chosen
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such that the set Rk
i satisfies Rk

i ⊆ ∆. It is natural to ask if the estimation error
set ∆(t) can be time-varying. The answer is yes, and this set can be useful in more
complex situation, such as the MAS with time-varying communication graph and the
time-varying bounds on the estimation errors.

4.5.2 Consensus analysis

In this subsection, we first provide two technical lemmas, and then present the con-
vergence analysis in Theorem 4.1.

The following result on ci(t) is fundamental to the convergence analysis.

Lemma 4.3. Provided that the initial state xi(0) is feasible, the MAS in (4.1) under
the distributed consensus protocol u∗i (0|t) = K

∑
j∈Ni aij(x∗i (0|t) − x̂j(0|t)) + c∗i (0|t),

with ci(t) = c∗i (0|t), satisfies the following property:

lim
t→∞

ci(t) = 0.

Proof. To prove the convergence of ci(t) as t→∞, we introduce the following function

Vi(t) := Ji(c∗i (t)) =
N−1∑
k=0
‖c∗i (k|t)‖2

Pi
.

For the control candidate sequence c̃i(t+ 1), we have

Ṽi(t+ 1) =
N−1∑
k=0
‖c̃i(k|t+ 1)‖2

Pi
= Vi(t)− ‖c∗i (0|t)‖2

Pi
.

The control candidate sequence c̃i(t+ 1) is a feasible, but not necessarily optimal
solution of the robust DMPC optimization problem Pi at t+ 1. Hence, it follows

Vi(t+ 1) ≤ Ṽi(t+ 1) = Vi(t)− ‖c∗i (0|t)‖2
Pi
.

Furthermore, one gets

Vi(t+ 1)− Vi(t) ≤ −‖c∗i (0|t)‖2
Pi
, (4.32)

which implies the Lyapunov function Vi(t) is monotonically non-increasing as t→∞.
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Summing Vi(t+ 1)− Vi(t) in (4.32), we then have

lim
k→∞

k∑
t=0

(Vi(t+ 1)− Vi(t)) = lim
k→∞

Vi(k + 1)− Vi(0) ≤ − lim
k→∞

k∑
t=0
‖c∗i (0|t)‖2

Pi
, (4.33)

and Vi(t) as t→∞, satisfies

0 ≤ Vi(∞) ≤ Vi(0)− lim
k→∞

k∑
t=0
‖c∗i (0|t)‖2

Pi
<∞,

where Vi(∞) := limt→∞ Vi(t). Hence, it holds that

lim
t→∞
‖c∗i (0|t)‖2

Pi
= 0.

Thus, limt→∞ ‖ci(t)‖ = 0 holds. By now, we have proved that the control variable
ci(t) vanishes to zero as t→∞.

The next lemma ( [103, Lemma 7]) discussing the convergence property of the
summable convolution sequence will be used in the proof of Theorem 4.1.

Lemma 4.4. For any given scalar β ∈ (0, 1), and the summable sequence {α(t)}
satisfying limt→∞ α(t) = 0, it holds that limk→∞

∑k
t=0 β

k−1−tα(t) = 0.

Now, based on Lemmas 4.3 and 4.4, the consensus convergence analysis of the
MAS is reported as follows.

Theorem 4.1. For the system in (4.1), suppose Assumptions 4.1, 4.2, 4.3 and
the condition in Lemma 4.1 hold. Then, the robust consensus of the MAS can be
achieved under the robust DMPC consensus protocol.

Proof. Applying the optimal control input u∗i (0|t) to the MAS in (4.1) yields xi(t +
1) = Axi(t) +Bu∗i (0|t), with xi(0|t) = xi(t). Then, we know that xi(t+ 1) = x∗i (1|t).
The closed-loop MAS in (4.4.3) can be rewritten as

x(t+ 1) = (IM ⊗ A+ L ⊗BK)x(t) + (IM ⊗B)c(t) + (IM ⊗BK)w(t),

where c(t) := col(c1(t), c2(t), . . . , cM(t)). The average state of the MAS is defined by
x̄(t) := 1/M(1T⊗ In)x(t) ∈ Rn, with 1 being an all-one vector of proper dimensions.
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Then,

x̄(t+ 1)

= 1
M

(1T ⊗ A)x(t) + 1
M

(1TL ⊗BK)x(t) + 1
M

(1T ⊗B)c(t) + 1
M

(1T ⊗BK)w(t)

= 1
M

(1T ⊗ A)x(t) +Bc̄(t) +BKw̄(t)

=Ax̄(t) +Bc̄(t) +BKw̄(t),

with c̄(t) := 1/M(1T ⊗ In)c(t) and w̄(t) := 1/M(1T ⊗ In)w(t). Define further c̄(t) =
1/M((1T1) ⊗ Im)c(t) and w̄(t) = 1/M((1T1) ⊗ In)w(t). Using notation ξi(t) :=
xi(t)− x̄(t) and ξ := col(ξ1, ξ2, . . . , ξM), we have that

ξ(t+ 1)
=(IM ⊗ A+ L ⊗BK)ξ(t) + (IM ⊗B)I ′Mmc(t) + (IM ⊗BK)I ′Mnw(t).

(4.34)

with I ′Mm = IMm − 1/M((1T1)⊗ Im) and I ′Mn = IMn − 1/M((1T1)⊗ In).
Let U := [1/M,U2, . . . , UM ] ∈ RM×M be an orthogonal matrix with which UT

i L =
λiU

T
i and the Laplacian matrix can be diagonalized, that is

UTLU = diag(0, λ2, . . . , λM).

Using the property of Kronecker product, we obtain that

(UT ⊗ In)(IM ⊗ A+ L ⊗BK)(U ⊗ In) = diag(A,A+ λ2BK, . . . , A+ λMBK).

Define ξ̃(t) = col(ξ̃1(t), ξ̃2(t), . . . , ξ̃M(t)) := (UT ⊗ In)ξ(t). Then (4.34) can be
expressed as

ξ̃(t+ 1)
=diag(A,A+ λ2BK, . . . , A+ λMBK)ξ̃(t) + (UT ⊗ In)(IM ⊗B)I ′Mmc(t)

+ (UT ⊗ In)(IM ⊗BK)I ′Mnw(t).

(4.35)

Next, we define the transition matrix Φ := diag(A,A + λ2BK, . . . , A + λMBK),
B := (UT⊗In)(IM⊗B)I ′Mm, and Bk := (UT⊗In)(IM⊗BK)I ′Mn, then (4.34) becomes

ξ̃(t+ 1) = Φξ̃(t) + Bc(t) + Bkw(t), (4.36)
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and thus

ξ̃(t) = Φtξ̃(0) +
t−1∑
k=0

ΦkBc(t− 1− k) +
t−1∑
k=0

ΦkBkw(t− 1− k),

with t ∈ N≥1. From the definition of ξ̃(t) = (UT ⊗ In)ξ(t), it is easy to know that
ξ̃1(t) = 1/M(∑M

i=1 ξi(t)) = 0. Also, By invoking Lemma 4.1 (i.e., ρ(A+ λiBK) < 1,
i = 2, 3, . . . ,M), we get

lim
t→∞

Φtξ̃(0) = 0. (4.37)

From I ′Mm = IMm − 1/M((1T1) ⊗ Im) = (IM − 1/M(1T1)) ⊗ Im, one gets the
matrix I ′Mm has eigenvalue 0 with multiplicity m and eigenvalue 1 with multiplicity
Mm−m. Here, it is obtained that ρ(I ′Mm) ≤ 1. In addition, ρ(A+ λiBK) ≤ 1, one
gets I ′Mm(ρ(A+λiBK))k < 1, k ∈ N≥1. In light of this, there always exists a constant
β ∈ (0, 1) such that

‖I ′MmΦk‖ ≤ βk < 1. (4.38)

Let E(t − 1 − k) = ‖(UT ⊗ In)‖‖IM ⊗ B‖‖c(t − 1 − k)‖. By application of the
Cauchy-Schwarz inequality and the inequality in (4.38), we have

lim
t→∞

t−1∑
k=0

ΦkBc(t− 1− k)

≤ lim
t→∞

t−1∑
k=0
‖ΦkBc(t− 1− k)‖

≤ lim
t→∞

t−1∑
k=0
‖I ′MmΦk‖ · ‖(UT ⊗ In)‖ · ‖IM ⊗B‖ · ‖c(t− 1− k)‖

≤ lim
t→∞

t−1∑
k=0

βkE(t− 1− k).

(4.39)

Further, according to Lemmas 4.3 and 4.4, we obtain

lim
t→∞

t−1∑
k=0

ΦkBc(t− 1− k) = 0. (4.40)

From the definition of set R∞i , we know that

lim
t→∞

t−1∑
k=0

ΦkBkw(t− 1− k) = R∞, (4.41)
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where R∞ = col(R∞1 ,R∞2 , . . . ,R∞M). Combining (4.37), (4.40) and (4.41) gives

lim
t→∞

ξ̃(t) ∈ R∞, (4.42)

which implies that the MAS converges to a neighborhood of the consensus set. The
proof is completed.

It is shown that the sequence ci(t) generated by solving the online DMPC opti-
mization problem converges to zero in Lemma 4.3. Then, we prove the consensus
convergence of the constrained MAS with bounded time-varying delays controlled by
the proposed consensus protocol in Theorem 4.1. It is worth mentioning that the
results can be extended to the cases where the MAS is affected by unknown additive
disturbances.

4.6 Numerical Examples

In this section, two numerical examples are conducted to verify the effectiveness of
the developed theoretical results.
Example 1: Linear MAS with semi-stable dynamics
Consider an MAS consisting of five discrete-time linear systems and each agent i is
described by [68]

xi(t+ 1) = Axi(t) +Bui(t), i = 1, 2, . . . , 5, (4.43)

with

A =



0.8 0.1 0.1 0 0
0 0.9 0 0.1 0

0.1 0.1 0.6 0.1 0.1
0 0.1 0.1 0.8 0

0.1 0.1 0 0 0.8


, B =



−0.1 0.1
0.1 −0.2
0 −0.3

0.08 0.1
0.2 0.08


.

The control input constraints of five agents are all set as ‖ui‖∞ ≤ 0.3. The
initial states of five agents are set as x1(0) = [0.94; 1.22;−1.12; 1.24; 0.40], x2(0) =
[1.21;−0.66; 0.14; 1.37; 1.39], x3(0) = [−1.03; 1.41; 1.37;−0.04; 0.90], x4(0) = [−1.07;
− 0.23; 1.25; 0.88; 1.38] and x5(0) = [0.47; −1.39; 1.05; 1.30; 0.54], respectively. The
maximum communication delay τ̄ = 3. The communication network is described by
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an undirected graph G, and its Laplacian matrix is

L =



1 −0.5 0 −0.5 0
−0.5 1 −0.5 0 0

0 −0.5 1 0 −0.5
−0.5 0 0 1 −0.5

0 0 −0.5 −0.5 1


.

The predesigned consensus gain matrix is chosen as K = [0.1258,−0.1015, 0.0542,
0.0071,−2.443;−0.0787, 0.1863, 0.0637, 0.0982,−0.1376] following the method in [68].
The prediction horizon is selected as N = 10, and the estimation error set ∆ = {δ |
‖δ‖ ≤ 0.3}. Let ε =

√
60. The weighting matrix Pi = I2 and

S =



2.551 −0.447 0.119 −0.813 −1.069
−0.447 4.028 0.227 1.356 −2.664
0.119 0.227 1.799 0.74 −2.431
−0.813 1.356 0.74 3.884 −3.689
−1.069 −2.664 −2.431 −3.689 10.081


.
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Figure 4.4: States of five agents under the consensus protocol in [68].
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Figure 4.5: States of five agents under the proposed protocol.
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Figure 4.6: Control inputs of five agents under the predesigned consensus protocol.

Figures. 4.4 and 4.5 show the states of five agents with communication delays
under the consensus protocol in [68] and the robust DMPC-based consensus protocol.
Clearly, the consensus is not achieved under the protocol in [68], due to time-varying
delays among agents. It can be seen from Figure 4.5 that five agents reach consensus
under the proposed protocol.

On the other hand, the control inputs of all agents under the predesigned consensus
protocol and the robust DMPC-based consensus protocol are shown in Figures. 4.6
and 4.7. It can be observed that the MAS only under the proposed consensus protocol
satisfies control input constraints.
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Figure 4.7: Control inputs of five agents under the robust DMPC-based consensus
protocol.
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Figure 4.8: Consensus performance comparison of different consensus protocols.

To quantify the consensus performance, we define a disagreement function D(t) =∑M
i=1

∑
j∈Ni aij‖xi(t) − xj(t)‖/M for the MAS under different consensus protocols.

The bounded consensus protocol from [169] is given as

ui =


0.3, ui ≥ 0.3,
−0.3, ui ≤ −0.3,
K ′

∑
j∈Ni

aij(xi(t)− xj(t)), −0.3 < ui < 0.3,

in which K ′ = [0.0846,−0.1523, 0.0028,−0.1044,−0.2256;−0.0818, 0.2567, 0.2256,
− 0.0423,−0.0479]. As illustrated in Figure 4.8, all disagreement trajectories mono-
tonically decrease. The MAS under the predesigned consensus protocol converges
at a faster rate than the proposed robust DMPC-based consensus protocol and the
bounded consensus protocol in [169]. However, the control input constraints cannot
be guaranteed under the predesigned consensus protocol as reported in Figure 4.6.
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In contrast, the other two types of consensus protocols guarantee the satisfaction of
control input constraints. In particular, the proposed DMPC-based consensus proto-
col achieves a faster consensus convergence rate than the bounded consensus protocol
in [169].
Example 2: Linear MAS with unstable dynamics
Consider an MAS consisting of four discrete-time oscillators and each agent i is char-
acterized by [105]

xi(t+ 1) = Axi(t) +Bui(t), i = 1, 2, 3, 4, (4.44)

with

A =
 0 1
−1.15 0

 , B =
0.5

0.5

 .
The control input constraints of four agents are all set as ‖ui‖∞ ≤ 0.1. The initial

states of four agents are set as x1(0) = [−0.18; 0.21], x2(0) = [0.32;−0.18], x3(0) =
[−0.29;−0.14] and x4(0) = [−0.22; 0.24], respectively. The maximum communication
delay τ̄ = 2. The wireless communication network among the MAS is described by
an undirected graph G. The Laplacian matrix of G is

L =


1 −0.5 0 −0.5
−0.5 1 −0.5 0

0 −0.5 1 −0.5
−0.5 0 −0.5 1

 .

The prediction horizon is N = 7 and the estimation error set is ∆ = {δ | ‖δ‖ ≤
0.1}. Let ε =

√
0.96. The weighting matrix Pi = 50, the predesigned consensus gain

matrix is designed as K = [0.2748,−0.3148] and S =
4.4733 0.8746

0.8746 3.3690

.

Figures. 4.9 and 4.10 show the states of four agents with communication delays
using the consensus protocol in [68] and the proposed robust DMPC-based consensus
protocol. It can be observed from Figure 4.9 that unstable agents with communication
delays cannot reach consensus under the protocol in [68]. In contrast, as shown
in Figure 4.10 four agents with communication delays asymptotically converge to
consensus. The simulation results verify that the proposed consensus protocol applies
to the general linear constrained MAS with semi-stable and unstable dynamics.

In addition, as shown in Figure 4.11, the control inputs of agents under the pre-



70

designed consensus protocol cannot satisfy control input constraints. In contrast,
Figure 4.12 exhibits that all agents under the proposed consensus protocol satisfy
control input constraints.
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Figure 4.9: States of four agents under the consensus protocol in [68].
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Figure 4.10: States of four agents under the proposed protocol.
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Figure 4.11: Control inputs of four agents under the predesigned consensus protocol.
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Figure 4.12: Control inputs of four agents under the robust DMPC-based consensus
protocol.

4.7 Conclusion

In this chapter, we designed a robust DMPC-based consensus protocol for general
the linear MAS with input constraints and time-varying communication delays. The
proposed distributed consensus protocol, based on inverse optimal control and tube-
based MPC techniques, achieved suboptimal consensus performance while satisfying
control input constrains. Furthermore, the recursive feasibility of the DMPC opti-
mization problem and the consensus convergence of the constrained MAS were rigor-
ously analyzed. Two numerical examples were given to verify the proposed distributed
consensus protocol.
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Chapter 5

Distributed Lyapunov-Based
Model Predictive Formation
Tracking Control for Autonomous
Underwater Vehicles Subject to
Disturbances

5.1 Introduction

It is well known that the AUV plays an essential role in performing underwater tasks,
such as deep-sea detection and oceanic rescue [133]. Compared with the single AUV,
cooperative AUVs can perform more complicated underwater tasks. One fundamen-
tal problem of cooperative AUVs is the formation tracking control, which requires
AUVs to keep a prescribed formation while simultaneously tracking a given reference
trajectory. Some appealing methods have been developed to tackle this problem, e.g.,
the virtual structure control method [168], and the leader-follower method [12]. Un-
fortunately, these methods cannot optimize the control performance of cooperative
AUVs with constraints. Alternatively, the DMPC method is an ingenious solution to
this problem and is exploited for the cooperative AUVs [70]. The main challenge of
applying DMPC for cooperative AUVs lies in guaranteeing closed-loop stability. The
conventional MPC approach performs local linearization on the nonlinear system and
then designs the additional terminal set and the terminal control law for the opti-
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mization problem [4, 17]. However, the stability analysis by the local linearization
is practically inefficient since AUVs have complex nonlinear system dynamics. To
overcome this difficulty, the authors in [14,82,132] circumvent the local linearization
by employing the Lyapunov-based MPC (LMPC), which combines the merits of the
Lyapunov-based control with the MPC design, thereby inheriting the stability of the
Lyapunov-based controller and the optimality of the MPC.

On the other hand, AUVs are exposed to unknown environmental disturbances
induced by the ocean current in practice, which poses a significant challenge to the
formation control task [1, 6]. For this reason, the formation control that ensures ro-
bustness against disturbances is highly appreciated. Compared with robust MPC,
the ESO-based MPC method is more constructive and computationally tractable for
cooperative AUVs with complex dynamics. Inspired by this attractive feature, we
incorporate the ESO design into the DLMPC scheme, in which the ESO can es-
timate unknown ocean current disturbances. Regarding the safety of cooperative
AUVs, collision avoidance is necessary to be considered in the distributed controller
design. Several collision avoidance methods have been developed (see, e.g., [111,153]).
In [111], a class of control Lyapunov barrier functions is introduced to ensure colli-
sion avoidance, yielding the gradient-based control input. In [153], MPC is applied
to solve this problem by imposing the collision avoidance constraint into the MPC
optimization problem. In this chapter, we design a potential field-based cost term to
account for collision avoidance and incorporate it into the overall cost function of the
DLMPC optimization problem. The main contributions of this chapter are two-fold:

• A DLMPC method is proposed for the formation tracking problem of coopera-
tive constrained AUVs, and an ESO is designed to estimate the unknown ocean
current disturbances. In addition, a potential field-based collision cost term is
designed to achieve inter-AUV collision avoidance. The control inputs of each
AUV are determined by solving the local DMPC optimization problem based
on its own and neighbors’ information. The overall control performance and
robustness of the AUVs are greatly enhanced.

• The recursive feasibility of the DLMPC algorithm is rigorously analyzed. Fur-
ther, the closed-loop stability of cooperative AUVs is guaranteed by the stability
constraint constructed by the ESO-based auxiliary controller and its associated
Lyapunov function. The theoretical results provide a firm ground for practical
cooperative AUVs’ formation tracking control design.
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5.2 Problem Formulation

5.2.1 AUV modeling

In this chapter, the 3-DOF horizontal motion of AUVs is considered under a reason-
able assumption that the roll angle φ and the pitch angle θ are small [24]. Consider a
team of M homogeneous AUVs, and the kinematics of AUV i, i ∈ V is described by

η̇i = R(ψi)νi, (5.1)

where ηi = [xi, yi, ψi]T consists of the position pi = [xi, yi]T and the orientation ψi,
νi = [ui, vi, ri]T denotes the velocity, and the rotation matrix R(ψi) is

R(ψi) =


cosψi − sinψi 0
sinψi cosψi 0

0 0 1

 .

The 3-DOF nonlinear dynamic motion equation of AUV i is expressed as

Miν̇i + Ci(νi)νi +Di(νi)νi + gi(ηi) = τi + τiw, (5.2)

where Mi is the inertia matrix including the added mass, Di(νi) denotes the damping
matrix, the restoring force is assumed by gi(ηi) = 0, τi denotes the control input,
Ci(νi) denotes the Coriolis-centripetal matrix, and τiw = MiR

T(ψi)wi, with wi being
the ocean current disturbances. Combining (5.1) and (5.2), we establish the system
dynamics of AUV i

ẋi =
 R(ψi)νi
M−1

i (τi + τiw − Ci(νi)νi −Di(νi)νi)

 = f(xi, τi, wi), (5.3)

where xi = col(ηi, νi) ∈ R6 and τi ∈ R3 are the system state and the control input of
AUV i, respectively.

The following essential properties of AUVs are exploited in the distributed con-
troller design later.
P-1: The inertia matrix is symmetric, positive definite and upper bounded, i.e.,
Mi = MT

i � 0, ‖Mi‖∞ = m̄i, where m̄i is a known constant.
P-2: The Coriolis matrix is skew-symmetric, i.e., Ci(νi) = −CT

i (νi).
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P-3: The rotation matrix satisfies that R−1(ψi) = RT(ψi) and ‖RT(ψi)ηi‖ = ‖ηi‖.
P-4: The damping matrix is positive definite, i.e., Di(νi) � 0.

5.2.2 Problem formulation

To better describe the information exchange among AUVs, we introduce a directed
graph G ′ = (V , E). An assumption on the communication network G ′ = (V , E) is
presented as follows.

Assumption 5.1. For cooperative AUVs, AUV i, i ∈ V can receive the information
from the virtual leader and its neighbors. The AUVs are synchronized in the time
clock, and the predicted system state sequences are available at sampling instants.

We now formulate the formation tracking problem of cooperative AUVs. In order
to maintain a prescribed formation shape and track the time-varying reference trajec-
tory of the virtual leader ηr(t) = col(pr(t), ψr(t)), AUV i, i ∈ V , is driven to satisfy: 1)
Tracking control: limt→∞{pi(t)− pr(t)} = dir, limt→∞{ψi(t)− ψr(t)} = 0; 2) Forma-
tion control: limt→∞{pi(t)−pj(t)} = dij; 3) Collision avoidance: ‖pi(t)−pj(t)‖ ≥ 2R,
where R is the safety radius of AUV i, λi = dir is the configuration formation vector
between AUV i and the reference trajectory, and dij = pi − pj denotes the relative
distance vector between AUV i and AUV j, j ∈ V , i 6= j.

To avoid singularities of the reference trajectory, we make the following assump-
tion.

Assumption 5.2. The reference trajectory and its first-, second- and third-order
derivatives are smooth and bounded, i.e., 0 ≤ p ≤ ‖pr‖∞ ≤ p <∞, 0 ≤ p1 ≤ ‖ṗr‖∞ ≤
p1 <∞, 0 ≤ p2 ≤ ‖p̈r‖∞ ≤ p2 <∞ and 0 ≤ p3 ≤ ‖

...
p r‖∞ ≤ p3 <∞.

From the reference trajectory ηr, we make the following reference augmentation,


ψr = atan2(ẏr(t), ẋr(t)),

ur =
√
ẋ2
r(t) + ẏ2

r(t),
vr = 0,
rr = (ẋr(t)ÿr(t)− ẏr(t)ẍr(t))/(ẋ2

r(t) + ẏ2
r(t)),

where atan2 is the four-quadrant inverse tangent operator.
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5.3 Distributed Lyapunov-Based Model Predictive
Formation Tracking Control

In this section, we design the DLMPC method for the formation tracking problem
of cooperative AUVs with unknown disturbances. First, an ESO-based auxiliary
controller is designed using the backstepping technique [3]. Next, we present the dis-
tributed model predictive formation tracking optimization problem and the DLMPC
algorithm. Finally, the algorithm’s recursive feasibility and the closed-loop stability
of AUVs are analyzed.

5.3.1 Design of the auxiliary control law

Let ηi = [xi, yi, ψi]T denote the trajectory of AUV i and ηir = ηr − λi = [xir, yir, ψir]T

be the desired trajectory. Define a virtual reference trajectory

η̇id = η̇ir − Λiη̃i,

νid = R−1(ψi)η̇id,
(5.4)

where η̃i = ηi − ηir denotes the tracking error of AUV i and Λi is a diagonal design
matrix. And let

si = η̇i − η̇id = ˙̃ηi + Λiη̃i, (5.5)

where si is a new state variable. The error dynamics becomes

˙̃ηi = η̇i − η̇ir
= R(ψi)(νi − νir)
= R(ψi)(R−1(ψi)si + αi − νir)
= −Λiη̃i + si,

(5.6)

where αi = νid = R−1(ψi)(η̇ir − Λiη̃i) is a stabilizing function. Further, we define

Vi,1 = 1
2 η̃

T
i Kpiη̃i, (5.7)

with Kpi = diag(kpi1, kpi2, kpi3), kpi1 > 0, kpi2 > 0, kpi3 > 0. Then the derivative of Vi,1
becomes

V̇i,1 = η̃T
i Kpi

˙̃ηi = (−η̃T
i KpiΛiη̃i + sT

i Kpiη̃i). (5.8)
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The dynamics of AUV i can be equivalently expressed as

M∗
i η̈i + C∗i η̇i +D∗i η̇i = R(ψi)(τi + τiw), (5.9)

whereM∗
i = R(ψi)MiR

T(ψi), C∗i = R(ψi)[Ci(νi)−MiS(ψ̇i)]RT(ψi), D∗i = R(ψi)Di(νi)
RT(ψi) and S(ψ̇i) = [0,−ψ̇i, 0; ψ̇i, 0, 0; 0, 0, 0].

In the next step, the Lyapunov function is defined as

Vi,2 = Vi,1 + 1
2s

T
i M

∗
i si. (5.10)

Taking the time derivative of Vi,2 results in

V̇i,2 =V̇i,1 + (sT
i M

∗
i ṡi + 1

2s
T
i Ṁ

∗
i si)

=sT
i (1

2Ṁ
∗
i − C∗i −D∗i )si − η̃T

i KpiΛiη̃i + sT
i Kpiη̃i

+ sT
i R(ψi)[τi + τiw −Miν̇id − Ci(νi)νid −Di(νi)νid]

=sT
i R(ψi)[τi + τiw −Miν̇id − Ci(νi)νid −Di(νi)νid +R(ψi)TKpiη̃i]
− η̃T

i KpiΛiη̃i − sT
i D
∗
i si,

(5.11)

where sT
i (Ṁ∗

i − 2C∗i )si = 0 thanks to the property P-2.
The ideal auxiliary control law is then designed as

τai = Miν̇id + Ci(νi)νid +Di(νi)νid −RT(ψi)Kpiη̃i −RT(ψi)Kdisi − τiw, (5.12)

in which Kdi = diag(kdi1, kdi2, kdi3), with kdi1 > 0, kdi2 > 0, kdi3 > 0.
In practice, the accurate ocean current disturbances are not available. Since the

ocean current has finite energy, we make the following assumption.

Assumption 5.3. The ocean current disturbances wi and its rate ẇi are unknown
but bounded by ‖wi‖ ≤ w̄i and ‖ẇi‖ ≤ ¯̇wi, respectively.

In the following, an ESO is developed to estimate the unknown disturbances
[27, 113]. To facilitate the ESO design, define µi = R(ψi)νi, then the system model
(5.3) is transformed into

η̇i =µi,
µ̇i =R(ψi)M−1

i τi + φi(ηi, µi) + wi,
(5.13)
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where φi(ηi, µi) = S(ψ̇i)µi −R(ψi)M−1
i [C(νi) +D(νi)]RT(ψi)µi.

Let η̂i, µ̂i and ŵi be the estimation of ηi, µi and wi, respectively. Define the
estimation errors e1i = ηi − η̂i, e2i = µi − µ̂i, e3i = wi − ŵi. Then, the ESO for AUV
i, i ∈ V is designed as

˙̂ηi = µ̂i +K1e1i,

˙̂µi = R(ψi)M−1
i τi + φi(ηi, µi) +K2e1i + ŵi,

˙̂wi = K3e1i,

(5.14)

where K1 = diag(k1, k1, k1), K2 = diag(k2, k2, k2) and K3 = diag(k3, k3, k3) are posi-
tive matrices. The estimation errors then become

ė1i = e2i −K1e1i,

ė2i = e3i −K2e1i,

ė3i = ẇi −K3e1i.

(5.15)

Let ei = col(e1i, e2i, e3i) ∈ R9, the estimation error dynamics (5.15) is expressed
as

ėi = Aei +Bẇi, (5.16)

with

A =


−K1 I3 03

−K2 03 I3

−K3 03 03

 , B =


03

03

I3

 .
The stability of error dynamic system in (5.16) is established if the following

inequality,
ATP + PA ≤ −%I9 (5.17)

holds, where P � 0, % ≥ 1.
Based on the ESO (5.14), the auxiliary control law is designed as

τ̂ai =Miν̇id + Ci(νi)νid +Di(νi)νid −RT(ψi)Kpiη̃i −RT(ψi)Kdisi − τ̂iw, (5.18)

where τ̂iw(tk) is the estimated disturbance.
The following lemma presents the stability of cooperative AUVs based on the

auxiliary control law.
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Lemma 5.1. For a team of AUVs in (5.3), if there exist a matrix P and a positive
constant such that 1) %−θ1−θ2 > 0, 2) λ(K∗di)−m̄2

i /2θ1 > 0 and the condition (5.17)
hold, with the design parameters 0 < θ1 < 1, 0 < θ2 < 1. Then, the cooperative AUVs
fulfill the formation tracking task under the ESO-based auxiliary control law (5.18).

Proof. The Lyapunov candidate function of the ESO is defined

Vi,3 = 1
2e

T
i Pei, (5.19)

which is bounded by 1/2λ(P )‖ei‖2 ≤ Vi,3 ≤ 1/2λ̄(P )‖ei‖2.
The derivative of Vi,3 with respect to (5.16) satisfies

V̇i,3 = 1
2e

T
i (ATP + PA)ei + eT

i PBẇi. (5.20)

Consider the following Lyapunov function

Vi = Vi,2 + Vi,3, V =
M∑
i=1

Vi. (5.21)

Note that the Lyapunov function (5.21) is continuously differentiable and radically
unbounded. By Lyapunov theorems [50], there exist functions βi(·), i = 1, 2 which
belong to class K∞ such that the following inequality holds

β1(‖xi‖) ≤ Vi ≤ β2(‖xi‖),

where xi = col(η̃i, si, ei).
Under the ESO-based auxiliary control law (5.18), the derivative of the overall

Lyapunov function becomes

V̇ |τ̂ai (t)

=
M∑
i=1

{
− η̃T

i KpiΛiη̃i − sT
i K

∗
disi + sT

i M
∗
i e3i + 1

2e
T
i (ATP + PA)ei + eT

i PBẇi
}

≤
M∑
i=1

{
− η̃T

i KpiΛiη̃i − (λ(K∗di)−
m̄2
i

2θ1
)‖si‖2 − 1

2(%− θ1)‖ei‖2 + ε1
}

=
M∑
i=1

{
− η̃T

i KpiΛiη̃i − (λ(K∗di)−
m̄2
i

2θ1
)‖si‖2 − 1

2(%− θ1 − θ2)‖ei‖2 − 1
2θ2‖ei‖2 + ε1

}

where V̇ |τ̂ai (t) denotes the derivative of Lyapunov function under the control law τ̂ai (t),
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K∗di = D∗i +Kdi, and ε1 = ‖ei‖‖PB‖ ¯̇wi. If ‖ei‖ ≥ 2‖PB‖ ¯̇wi/θ2 and the conditions 1)
and 2) hold, then

V̇i,3 ≤ −
1
2(%− θ1 − θ2)‖ei‖2 < 0. (5.22)

Therefore, the estimation errors converge to a compact set Ωe = {ei ∈ R3|‖ei‖ ≤
ρei , ρei > 2‖PB‖ ¯̇wi/θ2}. In addition, V̇i|τ̂ai (t) < 0, i.e., V̇ < 0. If the inequality
‖ei‖ > 2‖PB‖ ¯̇wi/θ2 holds, then, cooperative AUVs fulfill the formation tracking
task.

5.3.2 Design of the DMPC optimization problem

5.3.2.1 Collision avoidance cost design

The potential field method is widely used for robots to avoid collisions [96,135]. Here
a collision avoidance cost term is designed by using a potential field function that
penalizes potential collisions among AUVs. The collision avoidance cost J caij (t) is
designed as

J caij (t) =
∑
j∈Ni

Γ
1 + exp(dcaij ) =

∑
j∈Ni

fpi(t), (5.23)

where dcaij = ki(‖d̃ij‖ − 2R), ‖d̃ij‖ is the distance between AUV i and AUV j, fpi(t)
is the collision avoidance function, Γ > 0 is a tuning parameter, and ki > 0 is a
parameter that defines the smoothness of the collision avoidance function.

5.3.2.2 The objective function design

To achieve the control objective, the cost function of AUV i at tk is designed as

Ji(xi(tk), x̃aj (s|tk), τi(s|tk))

=
∫ tk+T

tk

{ ∑
j∈Ni
‖xij(s|tk)‖2

Qi
+ ‖xir(s|tk)‖2

Q′i
+ J caij (s|tk) + ‖τi(s|tk)‖2

Ri

}
ds,

(5.24)

where tk denotes the sampling time instant, s ∈ [tk, tk + T ], T denotes the prediction
horizon, δ denotes the sampling period, i.e., tk+1 = tk + δ, Qi � 0, Q′i � 0, Ri � 0 are
the weighting matrices, xir = x̃i+Λi−xr, xr = col(ηr, νr), and xij = x̃i+Λi− x̃aj−Λj.
Λi = col(λi, λ̇i), J caij (s|tk) is the collision avoidance cost. p̃i is the nominal position
of AUV i and p̃aj is the assumed position of AUV j. x̃i is the nominal state of AUV
i, which is evaluated by ˙̃xi(s|tk) = f(x̃i(s|tk), τi(s|tk), 0). The assumed state x̃aj (s|tk)
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of AUV j at tk is generated by ˙̃xaj (s|tk) = f(x̃aj (s|tk), τ̃aj (s|tk), 0), and the assumed
control input τ̃aj (s|tk), i.e.,

τ̃aj (s|tk) =

τ
∗
j (s|tk−1), s ∈ [tk, tk−1 + T ),

τ ∗j (tk−1 + T ; tk−1), s ∈ [tk−1 + T, tk + T ].

5.3.2.3 The DMPC optimization problem

For AUV i, using the objective function (5.24), the DMPC optimization problem Pi
is designed as

min
τi ∈ S(δ)

Ji(xi(tk), x̃aj (s|tk), τi(s|tk)) (5.25a)

s.t. ˙̃xi(s|tk) = f(x̃i(s|tk), τi(s|tk), 0), (5.25b)
x̃i(tk|tk) = xi(tk), (5.25c)
‖τi(s|tk)‖∞ ≤ τmax, (5.25d)
V̇i|τi(tk) ≤ V̇i|τ̂ai (tk), (5.25e)

where S(δ) is a family of piece-wise constant function with the sampling period δ,
s ∈ [tk, tk + T ], τ ∗i (tk) is the optimal control input for AUV i at tk. In addition,
τ ∗i (s|tk) denotes the optimal solution of the optimization problem Pi. xi(tk) and
x∗i (s|tk) denote the actual state and the optimal state, respectively. Furthermore,
combining (5.11), (5.18) and the derivative of the associated Lyapunov function leads
to the detailed expression of the stability constraint (5.25e) at time tk

sT
i R(ψi)(τi(tk)−Miν̇id − Ci(νi)νid −Di(νi)νid +R(ψi)TKpiη̃i)− η̃T

i KpiΛiη̃i − sT
i D
∗
i si

≤ −sT
i R(ψi)τ̂iw − η̃T

i KpiΛiη̃i − sT
i K

∗
disi,

where τi(tk) represents the optimization variable.
Note that (5.25b) is the nominal model of AUV i, i ∈ V , which is used to predict

the state trajectory. (5.25c) is the initial state condition at tk. (5.25d) specifies the
control input constraint. (5.25e) is the stability constraint that is constructed by the
ESO-based auxiliary controller τ̂ai (tk) as well as the associated Lyapunov function
Vi. The DLMPC controller inherits the stability and robustness of the ESO-based
auxiliary controller [87].

Remark 5.1. Conventional robust MPC techniques for the nonlinear systems, such
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as tube-based and min-max MPC, have a high requirement on the computation re-
source [78, 98]. In contrast, the proposed DLMPC method, where the ESO estimates
the ocean current disturbances, does not introduce additional computational burden,
thereby being more computationally efficient.

The distributed Lyapunov-based model predictive formation tracking algorithm
is presented in Algorithm 3, and it is implemented in the receding horizon fashion.

Algorithm 3 DLMPC Algorithm
1: Initialization: For AUV i, i ∈ V , choose the sampling period δ, the weighting

matrix Qi, Q′i, Ri, the safety radius R and other design parameters. Set k = 0;
Procedure

2: AUV i samples the system state xi(tk);
3: AUV i receives the predicted state sequence of AUV j, i.e., x̃aj (s|tk), j ∈ Ni,
s ∈ [tk, tk + T ];

4: Generate the stability constraint (5.25e);
5: AUV i solves Pi (5.25), generating τ ∗i (s|tk), s ∈ [tk, tk + T ];
6: Apply the control input τ ∗i (s|tk), s ∈ [tk, tk + δ];
7: k = k + 1 and go to step 2.

end Procedure

5.3.3 Theoretical analysis

Two key lemmas [132] are introduced to guarantee the feasibility of the DMPC opti-
mization problem.

Lemma 5.2. Suppose that AUV i is controlled by the auxiliary control law (5.18),
then the Coriolis matrix Ci(νi) and the damping matrix Di(νi) are bounded, i.e.,
‖Ci(νi)‖∞ ≤ c̄i, ‖Di(νi)‖∞ ≤ d̄i.

Lemma 5.3. Let K̄p and K̄d denote the largest entity in control gains KpiΛi and Kdi,
respectively. If the condition m̄i

¯̇νid + (c̄i + d̄i)ν̄id + (K̄p + K̄d)‖Γi(t0)‖+ m̄i( ¯̂wi) ≤ τmax

holds, then the auxiliary control input ‖τ̂ai (t)‖∞ ≤ τmax.

Proof. From the definition, it holds that |ψr| ≤ π and ψ̇r = |rr| ≤ p̄1p̄2/(p1)2 = ¯̇ψr.
Here ¯̇ψr represents the maximum value of ψ̇r, other variables are defined in the similar
way in the sequel. Then, ψ̈r is expressed as

|ψ̈r| =|
ẋr

...
y r − ẏr

...
x r

ẋ2
r + ẏ2

r

− 2(ẋrÿr − ẏrẍr)(ẋrẍr + ẏrÿr)
(ẋ2

r + ẏ2
r)2 | ≤ p̄1p̄3/p

2
1 + 2p̄2

1p̄
2
2/p

2
1 = ¯̈ψr,
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with 0 < ¯̈ψr <∞. Hence, we obtain

‖ηr‖∞ = η̄r = max{p, π},

‖η̇r‖∞ = ¯̇ηr = max{p1,
¯̇ψr},

‖η̈r‖∞ = ¯̈ηr = max{p2,
¯̈ψr}.

Let Γi = col(η̃i, RT(ψi)si, ei), the Lyapunov function (5.21) is rewritten as Vi =
1
2ΓT

i SiΓi, where Si = diag(Kp,Mi, P ). From Lemma 5.1, one has V̇i < 0, ‖Γi‖ ≤
‖Γi(t0)‖. Furthermore, by ‖η̃i‖∞ ≤ ‖η̃i‖ ≤ ‖Γi‖, ‖si‖∞ ≤ ‖si‖ ≤ ‖Γi‖ and ‖ei‖∞ ≤
‖ei‖ ≤ ‖Γi‖, then we know that ‖η̃i‖∞ ≤ ‖Γi(t0)‖, ‖si‖∞ ≤ ‖Γi(t0)‖ and ‖ei‖∞ ≤
‖Γi(t0)‖. Therefore

‖ ˙̃ηi‖∞ = ‖si − η̃i‖∞ ≤ ‖si‖∞ + ‖η̃i‖∞ ≤ 2‖Γi(t0)‖. (5.26)

Note that η̇id = η̇ir − Λiη̃i, νid = RT(ψi)η̇id. Then, we have

ν̇id =RT(ψi)η̈id +R(ψi)S(ψ̇i)η̇id. (5.27)

Since ‖si‖∞ and ‖η̃i‖∞ are bounded, (5.5) and (5.26) imply η̇id, η̈id and ˙̃ηi are
bounded, i.e., ‖η̇id‖∞ ≤ ¯̇ηid and ‖η̈id‖∞ ≤ ¯̈ηid. As a result, the upper bounds of
‖νid‖∞ and ‖ν̇id‖∞ are acquired and denoted as

‖νid‖∞ ≤ ν̄id, ‖ν̇id‖∞ ≤ ¯̇νid. (5.28)

Hence,

‖τ̂ai (t)‖∞
≤‖Miν̇id‖∞ + ‖(Ci(νi) +Di(νi))νid‖∞ + ‖RT(ψi)(KpiΛiη̃i +Kdisi)‖∞ + ‖τ̂iw‖∞
≤m̄i‖ν̇id‖∞ + (c̄i + d̄i)‖νid‖∞ + K̄p‖η̃i‖∞ + K̄d‖si‖∞ + ‖τ̂iw‖∞
≤m̄i

¯̇νid + (c̄i + d̄i)ν̄id + K̄p‖Γi(t0)‖+ K̄d‖Γi(t0)‖+ m̄i
¯̂wi

≤τmax,

where ¯̂wi = w̄i + ‖Γi(t0)‖, which concludes the proof.

In what follows, the recursive feasibility and stability of the cooperative AUVs
under the DLMPC algorithm are presented in Theorem 5.1.
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Theorem 5.1. For the multi-AUV system described by (5.3) with unknown ocean
current disturbances, AUV i solves the formation tracking optimization problem Pi at
each sampling instant tk. 1) If there exists a feasible solution at the initial instant t0,
then Algorithm 3 is recursively feasible, i.e., the optimization problem Pi admits a
solution for all tk > t0. 2) The formation tracking of the cooperative AUVs is achieved
under Algorithm 3.

Proof. 1) We first establish the recursive feasibility of Algorithm 3 before the the
stability proof. In order to guarantee the recursive feasibility of the optimization
problem Pi of AUV i, i ∈ V , we need to find a control input sequence that satisfies
the constraint (5.25d) and (5.25e). Note that the auxiliary control input τ̂ai (tk+1) is
generated by the auxiliary controller for the cooperative AUVs at time tk+1. There-
fore, the constraint (5.25e) is satisfied if we choose the control input as the auxiliary
control law, i.e., τi(tk+1; tk+1) = τ̂ai (tk+1). The optimization problem Pi is assumed
to be feasible at tk, and the optimal solution is τ ∗i (s; tk), s ∈ [tk, tk +T ]. At time tk+1,
the feasible control inputs are chosen as

τi(s; tk+1) =


τ̂ai (tk+1), s ∈ [tk+1, tk+1 + δ);

τ ∗i (s; tk), s ∈ [tk+1 + δ, tk + T );

τ ∗i (tk + T ; tk), s ∈ [tk + T, tk+1 + T ).

In the light of Lemma 5.3, the control input constraint (5.25d) is satisfied. Therefore,
the recursive feasibility is guaranteed.
2) Upon using Lemma 5.1, we get V̇i|τ̂ai (tk) < 0. From (5.25e) and the optimal control
input τ ∗i implemented at each sampling instant, we have

V̇i|τ∗i (tk) ≤V̇i|τ̂ai (tk) < 0. (5.29)

The formation tracking of the cooperative AUVs under the control input generated
by Algorithm 3 is achieved. The stability of the cooperative AUVs is further ensured.
This concludes the proof.

5.4 Simulation Study

This section set up two simulation tests to verify the DLMPC algorithm for the coop-
erative AUVs. The inter-AUV collision avoidance is tested in the first test with and
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without external disturbances. The second test illustrates the disturbance rejection
by introducing external disturbances.

5.4.1 Simulation setup

A sinusoidal shape trajectory is chosen as the reference trajectory of the virtual leader

xr = 0.5t,

yr = sin(0.5t+ π

2 ).
(5.30)

In the simulation, the time-varying disturbances induced by ocean current are
simulated by

wi =


0.5v3

i + 0.3sin(0.7t)
0.6uiri + 0.3ui + 0.2sin(0.6t)
−0.5v2

i − uiri − 0.2sin(0.9t)

 . (5.31)

The system parameters of Falcon AUV are given as follows [129]: m = 116kg and
the moment of inertia with respect to the z-axis Iz = 13.1kg ·m2. The hydrodynamic
coefficients Xu̇ = −167.6, Yv̇ = −477.2, Nṙ = −15.9, Xu = 26.9, Yv = 35.8, Nr = 3.5,
Du = 241.3, Dv = 503.8, and Dr = 76.9. Mx = m−Xu̇, My = m−Yv̇, and Mψ = Iz−
Nṙ, Di(νi) = diag(Xu, Yv, Nr) + diag(Du|ui|, Dv|vi|, Dr|ri|). Mi = diag(Mx,My,Mψ).
Ci(νi) = [0, 0,−Myvi; 0, 0,Mxui;Myvi,−Mxui, 0].

The parameters of DLMPC are designed as follows: The sampling period δ = 0.1s,
the prediction horizon T = 6δ. The safety radius R = 0.25m. The tuning parameter
Γ = 104 and the smoothness parameter ki = 8. The weighting matrices are chosen
as Qi = diag(104, 104, 103, 10, 10, 10), Q′i = diag(104, 104, 103, 102, 102, 102) and Ri =
diag(10−3, 10−3, 10−3). The parameters of the ESO are selected as K1 = diag(5, 5, 5),
K2 = diag(6, 6, 6) and K3 = diag(8, 8, 8). Let Kpi = diag(1, 1, 1), Kdi = diag(1, 1, 1).
The limit on control input is 1000N (N · m). The desired formation and tracking
vectors are d1r = [0, 1]T, d2r = [0,−1]T, d3r = [1, 0]T, d12 = −d21 = [0, 2]T, d13 =
−d31 = [1, 1]T, d23 = −d32 = [1,−1]T. The communication network G ′ is set up as
N1 = {0, 3}, N2 = {0, 3}, N3 = {0, 1, 2}.

5.4.2 Formation tracking with collision avoidance

In the first test, the initial state conditions of three AUVs are [0, 2, π/2, 0.4, 0, 0]T,
[−0.5,−0.5, 3π/4, 0.4, 0, 0]T, and [−0.1, 0.1,−π/2, 0.4, 0, 0]T, respectively. In the first
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two parts, the collision avoidance is considered for AUVs without disturbances, and
AUVs are exposed to disturbances in the third part.

In the first part, the formation tracking of AUVs is considered without collision
avoidance. The simulation results of DLMPC are illustrated in Figures 5.1 and 5.2.
The trajectories of three AUVs in the X-Y plane are plotted in Figure 5.1, where the
dash circles represent the safe radius of AUVs. During the period of [0.6s, 0.7s], AUV2
and AUV3 collide. As shown in Figure 5.1, AUVs can track the reference trajectory
but cannot avoid collisions. The control inputs of three AUVs are plotted in Figure
5.2. This simulation test provides a benchmark for the collision avoidance test.
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Figure 5.1: The trajectories of AUVs under DLMPC (without collision avoidance).
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Figure 5.2: The control inputs of AUVs (without collision avoidance).

In the second part, the formation tracking task is reconsidered with the collision
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avoidance guarantee, and the results are illustrated in Figures 5.3 and 5.4. The
trajectories of three AUVs are plotted in Figure 5.3, in which the collision is avoided
during the whole operational period. AUV1 denotes the first AUV controlled by
DLMPC, and AUVa1 denotes the first AUV controlled by the auxiliary controller.
It is observed that three AUVs track the reference trajectory with the prescribed
geometric shape. Compared with the auxiliary control law, AUVs under DLMPC
achieve faster and more accurate formation tracking performance. Figure 5.4 depicts
the control inputs of three AUVs.
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Figure 5.3: The trajectories of AUVs with collision avoidance.
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Figure 5.4: The control inputs of AUVs.

In the third part, the formation tracking of AUVs subject to disturbances is con-
sidered with collision avoidance, and the results are illustrated in Figures 5.5 and
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5.6. The trajectories of AUVs are plotted in Figure 5.5, where the collision is avoided
during the whole operational period for AUVs in the presence of disturbances. Figure
5.6 shows the corresponding control inputs of three AUVs. These simulation results
verify that the proposed DLMPC algorithm is effective.
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Figure 5.5: The trajectories of AUVs with disturbances.
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Figure 5.6: The control inputs of AUVs with disturbances.

5.4.3 Formation tracking of cooperative AUVs with distur-
bances

In the second test, AUVs are exposed to unknown ocean current disturbances as
simulated in (5.31). The initial conditions of three AUVs are [0, 2, π/2, 0.5, 0, 0]T,
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[−0.5,−0.5, 3π/4, 0.5, 0, 0]T, and [−1.5, 1.1,−π/2, 0.5, 0, 0]T, respectively. The for-
mation tracking performance of the proposed algorithm and the auxiliary control law
for the multi-AUV are illustrated in Figures 5.7–5.12.

In the first part of the second test, AUVs controlled by the DLMPC algorithm and
the auxiliary control law without the ESO cannot accomplish the formation tracking
task. In the second part, the results of AUVs controlled by the DLMPC algorithm and
the ESO-based auxiliary control law are shown in Figures 5.7–5.9. As shown in Figure
5.7, AUVs under the DLMPC algorithm quickly converge to the reference trajectory
with the predesigned formation. The formation tracking errors of three AUVs under
the DLMPC algorithm are smaller than the ESO-based auxiliary control law in Figure
5.9. The control inputs under the DLMPC algorithm and the auxiliary controller are
shown in Figure 5.10. The trajectories of the Lyapunov function with ESO-based
auxiliary controller and DLMPC are illustrated in Figure 5.12. It illustrates that
1) DLMPC converges faster than the auxiliary control law from the perspective of
evolutions of the Lyapunov function; 2) DLMPC improves the formation tracking
performance of cooperative AUVs. The estimation errors of the disturbances are
presented in Figure 5.11, and the estimation errors converge to a bounded region.
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Figure 5.7: The trajectories of AUVs with disturbances (with the ESO).

Quantitatively, the mean square errors (MSEs) of the formation tracking using
four different controllers are summarized in Table 5.1. The smaller MSEs value means
better formation tracking performance. As can be seen, the proposed DLMPC with
ESO achieves the smallest MSEs. The formation tracking performance is improved
using DLMPC with ESO compared to the auxiliary controllers without the ESO. If
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Figure 5.8: The states of AUVs with disturbances (with the ESO).
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Figure 5.9: The formation tracking errors of AUVs with disturbances (with the ESO).

the AUVs are exposed to ocean current disturbances, the closed-loop stability cannot
be ensured under the auxiliary controller and DLMPC without ESO.

Table 5.1: The MSEs under DLMPC and the auxiliary control law.

Method x[m2] y[m2] ψ[rad2]
Auxiliary Controller (without ESO) – unstable –
DLMPC (without ESO) NaN NaN NaN
Auxiliary Controller (with ESO) 0.1063 0.1235 1.2374
DLMPC (with ESO) 0.0611 0.0551 0.3650
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Figure 5.10: The control inputs of AUVs with disturbances (with the ESO).

0 5 10 15
0

0.2

0.4

||
e

1
i||

2

0 5 10 15
0

5

||
e

2
i||

2

0 5 10 15

Time[s]

0

1

2

||
e

3
i||

2 AUV1

AUV2

AUV3

Figure 5.11: The estimation errors under the proposed ESO.

5.5 Conclusion

This chapter proposed a DLMPC algorithm for the formation tracking problem of
constrained AUVs with unknown ocean current disturbances. The inter-AUV col-
lision avoidance was achieved by designing a potential field-based cost term with
well-tuned parameters integrated with the formation tracking cost function. The
control performance and robustness could be effectively enhanced by incorporating a
stability constraint generated by the ESO-based auxiliary controller and its associ-
ated Lyapunov function into the online MPC optimization problem. The algorithm’s
recursive feasibility and the cooperative AUVs’ closed-loop stability were rigorously
proved. The simulation results verified the effectiveness of the proposed distributed
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Lyapunov-based model predictive formation tracking control algorithm.
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Chapter 6

Robust Distributed Model
Predictive Platooning Control for
Heterogeneous Autonomous
Surface Vehicles

6.1 Introduction

The platooning control of connected vehicles has been widely studied in the intelligent
transportation area owing to its potential to improve road capacity and efficiency [22].
In a similar vein, the platooning control of ASVs can also hugely improve waterborne
transport efficiency and reduce labor costs [149]. Recently, some notable platooning
control methods for connected vehicles have been reported in the literature, such as
optimal control [46], sliding mode control [164], and delay-based spacing policy [2].
Compared with these methods, DMPC gains attention from platooning control re-
searchers since it is computationally efficient and applicable to dynamically decoupled
vehicle platoon systems [51, 89]. In [18], the authors present a DMPC algorithm for
the homogeneous vehicle platoon and derive a sufficient condition to ensure the string
stability. In [67], the platooning control input for each agent is generated by solving
a local DMPC optimization problem with a neighboring γ-gain stability constraint.
The string stability constraints suppress the spacing error at the price of the de-
creased feasibility, resulting in conservative and unsatisfactory control performance.
To achieve better platooning coordination performance, the authors in [182] develop



94

a DMPC algorithm without the string stability constraint for the heterogeneous con-
nected vehicles under four types of unidirectional communication networks.

However, the methods in [18, 67, 182] do not consider external disturbances that
may destroy the stability of connected vehicles. Some robust DMPC methods have
been developed to tackle this challenging problem [106, 146]. A recent paper [21]
proposes a platooning control algorithm, which combines the tube-based DMPC with
event-triggered feedforward control for homogeneous autonomous vehicles. However,
the overall system is assumed to be synchronized, and inter-vehicle safety cannot be
guaranteed. Inspired by these facts, a nonlinear tube-based DMPC approach for the
constrained heterogeneous ASV platoon is proposed, where each ASV is assigned a
local controller to calculate its local optimal control input. The main contributions
of this chapter are summarized as follows:

• A nonlinear robust DMPC approach is developed for the heterogeneous ASV
platoon with input constraints and bounded environmental disturbances. Com-
pared with the collision avoidance method in [160], a coupled minimum safe
following distance constraint is designed and incorporated into the optimiza-
tion problem to ensure inter-vehicle safety.

• A novel cost term is introduced to suppress the error between the predicted and
assumed state of each ASV, which does not require the overall system to be
synchronized. The offline designed ancillary control law reduces the deviation
between the actual system state and the optimal nominal system state, which
is more computationally efficient in comparison with [98]. Moreover, the re-
cursive feasibility of the robust distributed model predictive platooning control
algorithm is analyzed, and the heterogeneous ASV platoon is proved to be ISS.

6.2 Problem Formulation

6.2.1 ASV modeling

Consider a group of M + 1 heterogeneous ASVs [24], and the dynamics of ASV i

satisfies
η̇i = R(ψi)νi,
Miν̇i + Ci(νi)νi +Di(νi)νi = ui + wi,

(6.1)
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where ηi = [xi, yi, ψi]T includes the surge displacement xi, sway displacement yi, and
yaw angle ψi; νi = [µi, vi, ri]T includes the surge velocity µi, sway velocity vi and yaw
velocity ri. ui = [uix, uiy, uiψ]T is the control input and wi = [wix, wiy, wiψ]T is the
external disturbance. R(ψi) = [cosψi,− sinψi, 0; sinψi, cosψi, 0; 0, 0, 1] is the rotation
matrix. The inertia matrix including the added mass is Mi = diag(Mxi ,Myi ,Mψi)
with Mxi = mi −Xµ̇i , Myi = mi − Yv̇i , and Mψi = Izi −Nṙi . mi and Izi are the ASV
mass and the moment of inertia about the z-axis of the fixed body frame, respectively.
The hydrodynamic damping matrix including the drag force and vortex-induced force
is Di(νi) = diag(−Xµi ,−Yvi ,−Nri) + diag(−Xµi|µi||µi|,−Yvi|vi||vi|,−Nri|ri||ri|). The
Coriolis and centripetal matrix is Ci(νi) = [0, 0,−Myivi; 0, 0,Mxiµi;Myivi,−Mxiµi, 0].
Some notations of ASV i are introduced in Table 6.1

Table 6.1: Table of notations for ASV i.

xi, µi The actual position and the actual velocity.
q̄i, qi The nominal state and the actual state.
zi The actual error state.
xei , µ

e
i The actual error position and the actual error velocity.

z̄i The nominal error state.
x̄ei , µ̄

e
i The nominal error position and the nominal error velocity.

z̄i,i−1 The nominal error state of ASV i− 1 predicted by ASV i.
ūi,i−1 The nominal control of ASV i− 1 predicted by ASV i.
ūpi , z̄

p
i The control input candidate and its corresponding error state.

z̄∗i , ū
∗
i The optimal nominal error state and the optimal nominal control input.

πi, ui The ancillary control law and the actual control input.
zai , x

a
i The assumed error state and the assumed position.

ei The deviation of the actual state from the nominal state.
Ui The control input constraint set.
Ūi The tightened control constraint set.
Ωi The terminal set.
ǒ The bound between the predicted and assumed error state.
dx The desired spacing between any two neighboring ASVs.
dsafe
i The minimum safe following distance.
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6.2.2 ASV platoon modeling

In this work, the platooning control of heterogeneous ASVs is studied in one-dimensional
space, and the decoupled surge dynamics of ASV i is described by

ẋi = µi,

Mxiµ̇i −Xµiµi −Xµi|µi||µi|µi = uix + wix,
(6.2)

with the system state qi(t) = [xi(t), µi(t)]T ∈ R2. The predecessor-leader following
communication topology is adopted, i.e., ASV i can receive the information from its
preceding ASV i− 1 and the lead ASV 0 [182]. Hence, the neighboring set of ASV i

is denoted as Ni = {0, i− 1}, i ∈ V . The state of lead ASV 0 is denoted as q0(t), and
the follower ASV i tracks the following desired state

qdes
i (t) = q0(t)−

idx
0

 , t ≥ 0, (6.3)

in which dx denotes the desired spacing between ASV i and ASV i − 1. For ASV i,
i ∈ V0, the error state zi(t) = [xei (t), µei (t)]T is defined as

zi(t) = qi(t)− qdes
i (t), (6.4)

where xei (t) and µei (t) denote the error position and error velocity, respectively. Taking
the time derivative of (6.4), the error dynamics of ASV i is described as

żi(t) =fi(zi(t)) +Biui(t) +Biwi(t)

=
 µi − µ0

M−1
xi

(Xµiµi +Xµi|µi||µi|µi)− µ̇0

+Biui(t) +Biwi(t),
(6.5)

with Bi = [0,M−1
xi

]T. By a slight abuse of notation, ui(t) and wi(t) are used to denote
uix(t) and wix(t) in the sequel. Here ASV i is subject to the control input constraint
ui(t) ∈ Ui. wi(t) ∈Wi := {wi | |wi| ≤ wi,max} denotes the additive disturbance.

We make the following assumption for the error dynamics in (6.5).

Assumption 6.1. 1) The function fi(zi) : R2 → R2 is continuously differentiable
with fi(0) = 0. 2) The system in (6.5) with any initial state zi(0) has a unique,
absolutely continuous solution for the control input ui(t) ∈ Ui and wi(t) ∈Wi, t ≥ 0.

Without considering the disturbances wi(t), the nominal error dynamics of ASV
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i can be written as
˙̄zi(t) = fi(z̄i(t)) +Biūi(t), (6.6)

where z̄i and ūi are the nominal error state and nominal control input, respectively.
Note that a fixed graph, denoted by G ′′ = (V0, E), describes the information

exchange among the heterogeneous ASVs, where V0 = {i ∈ N≥0 | 0 ≤ i ≤ M} is the
set of the nodes representing a platoon of ASVs and E = {(i, j) ⊂ V0 × V0} is the
set of all directed edges denoting the communication from the ASV i to the ASV j.
Ni := {j | (i, j) ∈ E} denotes the set of ASV i’s neighbors, i.e. ASV i receives the
information from ASV j, j ∈ Ni. V = {i ∈ N>0 | 1 ≤ i ≤ M} denotes all follower
ASVs.

6.2.3 Control objective

The main control objective of this work is to realize the platooning control of a group
of heterogeneous ASVs subject to the input constraint and external disturbances.
ASV i, i ∈ V maintains the desired spacing with its preceding ASV i− 1 and tracks
the speed of the lead ASV 0. Furthermore, in order to ensure the safety of the ASV
platoon, the spacing between ASV i and ASV i− 1 satisfies

xi(t)− xi−1(t) ≤ −dsafe
i , (6.7)

where dsafe
i := (µi,maxts + µ2

i,max/2bs) is the minimum safe following distance, ts is the
minimum reaction time, bs is the maximum deceleration, and µi,max is the maximum
speed. From the definition of error state (6.4), the inequality (6.7) becomes

E(zi(t)− zi−1(t)) ≤ −dsafe
i + dx, (6.8)

with E = [1, 0] and dsafe
i ≤ dx. It is worth noting that ASV i only considers the

minimum safe following distance dsafe
i between ASV i and its preceding ASV i − 1,

since the predecessor-leader following communication topology is adopted.
In this work, a robust DMPC method is proposed to achieve the control objective

of the heterogeneous ASV platoon. As shown in Figure 6.1, the control input applied
to ASV i consists of two components: 1) the nominal control ū∗i (t) generated by
solving the DMPC problem steers the nominal error state z̄i(t) towards the origin,
and 2) the offline ancillary control law πi(zi(t), z̄i(t)) keeps the actual error state zi(t)
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in a specific set centered along the nominal error state z̄i(t).
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Figure 6.1: The proposed control diagram for the ASV platoon.

It is assumed that the DMPC problem of each ASV has the same prediction
horizon T and the sampling period δ ∈ (0, T ]. Let tk be the sampling time instant,
with k ∈ N≥0 and tk+1 = tk + δ. We define z̄i(·|tk) as the nominal error state of ASV
i, z̄i,i−1(·|tk) as the nominal error state of ASV i − 1 predicted by ASV i, z̄∗i (·|tk)
as the optimal nominal error state, z̄∗i,i−1(·|tk) as the optimal nominal error state of
ASV i− 1 predicted by ASV i, zai (·|tk) as the assumed error state, and z̄pi (·|tk) as the
predicted error state. The corresponding control inputs are denoted likewise.

As depicted in Figure 6.1, ASV i receives the assumed error states zai−1(s|tk), s ∈
[tk, tk + T ] from its preceding ASV i − 1, since the optimal nominal error states
z̄∗i−1(s|tk), s ∈ [tk, tk + T ] of the preceding ASV i − 1 are not available for ASV i at
tk. The assumed nominal error state zai (·|tk) of ASV i at tk is defined by

zai (s|tk) =
z̄
∗
i (s|tk−1), s ∈ [tk, tk−1 + T ],

0, s ∈ (tk−1 + T, tk + T ].
(6.9)

Similarly, the assumed control uai (·|tk) is constructed as

uai (s|tk) =
ū
∗
i (s|tk−1), s ∈ [tk, tk−1 + T ],

0, s ∈ (tk−1 + T, tk + T ].

With these notations, the cost function at tk is designed as

Ji
(
z̄i(tk), zai−1(·|tk), ūi(·|tk)

)
=
∫ tk+T

tk

Li
(
z̄i(s|tk), zai−1(s|tk), ūi(s|tk)

)
ds+ Fi (z̄i(tk + T |tk)) ,

in which z̄i(tk) = [z̄i(tk), z̄i,i−1(tk)]T, z̄i(tk) is the initial nominal error state and
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z̄i,i−1(tk) = zai−1(tk|tk) is the initial nominal error state of ASV i − 1, z̄i(s|tk) =
[z̄i(s|tk), z̄i,i−1(s|tk)]T and ūi(s|tk) = [ūi(s|tk), ūi,i−1(s|tk)]T.

The terminal cost function is designed as

Fi (z̄i(tk + T |tk)) = ‖z̄i(tk + T |tk)‖Pi + ‖z̄i,i−1(tk + T |tk)‖Pi,i−1

and the stage cost is defined as

Li
(
z̄i(s|tk), zai−1(s|tk), ūi(s|tk)

)
=‖z̄i(s|tk)‖Qi + ‖z̄i(s|tk)− zai−1(s|tk)‖Hi + ‖ūi(s|tk)‖Ri

+ ‖z̄i(s|tk)− zai (s|tk)‖Fi + ‖z̄i,i−1(s|tk)‖Qi,i−1 + ‖ūi,i−1(s|tk)‖Ri,i−1 ,

(6.10)

with Pi � 0, Pi,i−1 � 0, Qi � 0, Qi,i−1 � 0, Ri,i−1 � 0, Hi � 0, Fi � 0, Ri � 0, and
H−1 = H0 = Q0,−1 = R0,−1 = 0.

Remark 6.1. The cost term ‖z̄i(s|tk)− zai−1(s|tk)‖Hi in (6.10) aims to minimize the
predecessor-follower spacing error (i.e., xi−xi−1 +dx = zi−zi−1), and also maintains
the same velocity as its preceding ASV i− 1. The cost term ‖z̄i(s|tk)− zai (s|tk)‖Fi in
(6.10) is introduced to suppress the deviation between the nominal error state z̄i(s|tk)
and the assumed error state zai (s|tk). The cost term ‖z̄i,i−1(s|tk)‖Qi,i−1 is designed to
approximate the error state of ASV i− 1.

The following assumption is given for the nominal error system in (6.6).

Assumption 6.2. For the nominal error system of ASV i, there exist an admissible
terminal control law κi(·) ∈ Ūi and a terminal invariant set Ωi(εi) with a constant
εi > 0, such that: 1) ∀z̄i(tk) ∈ Ωi(εi), and by implementing κi(·), z̄i(t) ∈ Ωi(εi) with
t > tk; 2) ∀z̄i(t) ∈ Ωi(εi), i ∈ V0, Ḟi (z̄i(t)) + Li

(
z̄i(t), zai−1(t), ūi(t)

)
≤ 0.

6.3 Robust Distributed Model Predictive Platoon-
ing Control

The DMPC optimization problem and the ancillary control law are first presented in
this section. A robust control invariant set is then provided in Lemma 6.1. Finally,
the robust DMPC algorithm is given.
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6.3.1 DMPC optimization problem

The DMPC optimization problem Pi for ASV i, i ∈ V0 at time tk is designed as

min
ūi(·|tk)

Ji
(
z̄i(tk), zai−1(·|tk), ūi(·|tk)

)
s.t. z̄i(tk|tk) = z̄i(tk), (6.11a)

˙̄zi(s|tk) = fi(z̄i(s|tk)) +Biūi(s|tk), (6.11b)
ūi(s|tk) ∈ Ūi, (6.11c)
‖z̄i(s|tk)− zai (s|tk)‖ ≤ ǒ, (6.11d)
z̄i(tk + T |tk) ∈ Ωi(εi), (6.11e)
z̄i,i−1(tk|tk) = zai−1(tk|tk), (6.11f)
˙̄zi,i−1(s|tk) = fi−1(z̄i,i−1(s|tk)) +Bi−1ūi,i−1(s|tk), (6.11g)
ūi,i−1(s|tk) = uai−1(s|tk), s ∈ [tk, tk+1), (6.11h)
ūi,i−1(s|tk) ∈ Ūi−1, (6.11i)
z̄i,i−1(tk + T |tk) ∈ Ωi−1(εi−1), (6.11j)
E(z̄i(s|tk)− z̄i,i−1(s|tk)) ≤ dx − d̂safe

i , (6.11k)

where s ∈ [tk, tk + T ), the tightened control input constraint is defined as Ūi =
Ui	KiEi 6= ∅, with Ki being the control gain of the ancillary controller and Ei being
the robust control invariant set, and d̂safe

i := dsafe
i + exi,max + exi−1,max + ǒ. exi,max is the

maximum position error between the nominal position and the actual position, which
will be given in Section 6.3.2. Based on the assumed state zai−1(tk|tk) broadcast from
ASV i − 1, the states of ASV i − 1 are locally estimated by ASV i. The terminal
constraint is defined as Ωi(εi) = {z̄i | ‖z̄i‖ ≤ εi}, with εi < ǒ and εi + εi−1 < dx− d̂safe

i .

Remark 6.2. The collision avoidance safety of cooperative AUVs in [160] is achieved
by incorporating a coupled collision avoidance cost term into the overall cost function.
Instead, the inter-vehicle safety of the ASV platoon in this work is guaranteed via the
coupled constraint in (6.11k). The presence of coupled constraints makes the DMPC
optimization problem more challenging concerning the recursive feasibility analysis.
Following the similar approximation strategy in [123,147], the nominal error dynam-
ics and constraints of ASV i − 1 are assumed to be known by the local ASV i in the
optimization problem Pi. Hence, ASV i can approximate the error states of its pre-
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ceding ASV i− 1, which will not be broadcast among ASVs. In this way, the coupled
constraint (6.8) can be decoupled as a local constraint (6.11k).

6.3.2 The ancillary controller

The control input applied to ASV i is designed as

ui(s) = ū∗i (s|tk) + πi(zi(s), z̄∗i (s|tk)), s ∈ [tk, tk+1), (6.12)

for the sake of simplicity, ū∗i (s) denotes the optimal nominal control ū∗i (s|tk) and
πi(s) denotes the ancillary control law πi(zi(s), z̄∗i (s|tk)) in the sequel. The deviation
between the actual and nominal error system state is defined as ei(s) = zi(s)−z̄i(s|tk),
s ≥ tk, with ei(s) = [exi(s), eµi(s)]T. Next, the robust control invariant set Ei is
derived. The set Ei centers along the reference state (i.e., the nominal error state
z̄i(s|tk)) and the ancillary control law πi(s) ensures that ei(s) ∈ Ei.

The following lemma presents the ancillary controller design and the robust control
invariant set Ei.

Lemma 6.1. Suppose that Assumption 6.1 holds. Let Si(ei(s)) : R2 → [0,∞) be a
continuously differentiable function with 0 < Si(ei(s)) ≤ α2(‖ei(s)‖), where α2(·) is a
K∞ function. Let z̄i(s|tk), s ≥ tk be the reference state, and the feedback control law
is defined as

πi(s) = −Kiei(s), (6.13)

with Ki = [kpi +kdi +di, Mxi +kdi], di = −Xµi −Xµi|µi||µi|. If there exist Ki, ρi > 0,
and σi > 0, such that

d
dsSi(ei(s)) + ρiSi(ei(s))− σiw2

i (s) ≤ 0,∀wi(s) ∈Wi, (6.14)

with Si(ei(s)) = 1
2e

T
i (s)Γiei(s) and Γi = [kpi,Mxi ;Mxi ,Mxi ]. Then, ∀ei(tk) ∈ Ei,

ei(s) ∈ Ei, for all s > tk, where

Ei :=
{
ei(s) | Si(ei(s)) ≤

σiw
2
i,max

ρi

}
. (6.15)

Proof. The proof can be obtained by employing the argument in [172, Lemma 1].
Also, it implies that the deviations |exi (s)| and |eµi (s)| are bounded, i.e., |exi (s)| ≤
exi,max, |e

µ
i (s)| ≤ eµi,max, with exi,max > 0 and eµi,max > 0.
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6.3.3 Robust DMPC algorithm

The robust DMPC algorithm is implemented in a receding horizon fashion and is
presented in Algorithm 4.

Algorithm 4 Robust DMPC algorithm for ASV i, i ∈ V
1: Initialization: Set k = 0. For ASV i, i ∈ V0, give the desired states qdes

i (·|tk) at
tk. Set z̄0(tk) = 0 and z̄i(s|tk) = zai (s|tk) = 0, s ∈ [tk, tk + T ];

2: ASV 0 samples z0(tk), solves P0 without (6.11f) – (6.11k) and broadcasts za0(·|tk)
to ASV j, j ∈ V ;

3: ASV i receives za` (·|tk), ` ∈ Ni;
4: ASV i samples zi(tk), solves Pi in (6.11), and further generates control inputs
ui(s) via (6.12);

5: ASV i applies ui(s), s ∈ [tk, tk + δ), and transmits zai (·|tk) to ASV i+ 1.
6: k = k + 1. Go to Step 2 until the control is finished.

6.4 Theoretical Analysis

This section presents the theoretical analysis, including the recursive feasibility of the
proposed algorithm and the closed-loop robust stability of the heterogeneous ASV
platoon in the presence of external disturbances.

Theorem 6.1. Suppose that Assumptions 6.1 and 6.2 hold. For the heterogeneous
ASV platoon, if the optimization problem Pi is feasible at t0, then, 1) It is recursively
feasible at time tk, tk > t0 under Algorithm 4 if the conditions εi < ǒ and εi+εi−1 <

dx − d̂safe
i hold. 2) The inter-vehicle safety is ensured for all admissible disturbances

wi ∈Wi. 3) The ASVs under the robust DMPC algorithm is ISS if Fi � Hi+1 holds.

Proof. 1) The recursive feasibility of the DMPC algorithm is proved by induction. The
optimal nominal control inputs obtained at tk are denoted as ū∗i (s|tk), ū∗i,i−1(s|tk), s ∈
[tk, tk + T ), which drive the nominal error systems of ASV i and ASV i− 1 into the
terminal region Ωi(εi) and Ωi−1(εi−1), respectively. The optimal nominal error states
with control inputs ū∗i (s|tk), s ∈ [tk, tk + T ) are given by ˙̄z∗i (s|tk) = fi(z̄∗i (s|tk)) +
Biū

∗
i (s|tk), s ∈ [tk, tk +T ). At tk+1, based on the optimal nominal control inputs at tk

and Assumption 6.2, a feasible control input candidate ūpi (·|tk+1) for the problem
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Pi is given as

ūpi (s|tk+1) =
ū
∗
i (s|tk), s ∈ [tk+1, tk + T ) ,
κi(z̄i(s|tk)), s ∈ [tk + T, tk+1 + T ) ,

(6.16)

where κi(·) is the terminal controller for ASV i. The corresponding states are com-
puted as

z̄pi (s|tk+1) =
z̄
∗
i (s|tk), s ∈ [tk+1, tk + T ) ,
zκi (s|tk), s ∈ [tk + T, tk+1 + T ) .

(6.17)

The control input candidate and the corresponding states of locally approximated
ASV i− 1 are constructed similarly.

According to Assumption 6.2, κi(z̄i(s|tk)) ∈ Ūi, s ∈ [tk + T, tk+1 + T ). In addi-
tion, ūpi (s|tk+1) = ū∗i (s|tk) ∈ Ūi, s ∈ [tk+1, tk +T ). Hence, the control input constraint
(6.11c) is satisfied. Further, since the terminal region Ωi(εi) is invariant with the ter-
minal control law κi(z̄i(s|tk)), s ∈ [tk + T, tk+1 + T ), it has z̄pi (tk+1 + T |tk+1) ∈ Ωi(εi).
Therefore, the terminal state constraint (6.11e) holds. Due to the assumed states in
(6.9) and the states in (6.17) coincide, i.e., z̄pi (s|tk+1) = zai (s|tk+1), s ∈ [tk+1, tk+T ]. In
addition, zai (s|tk) = 0, s ∈ (tk+T, tk+1+T ] and εi ≤ ǒ, thus ‖z̄pi (s|tk+1)−zai (s|tk+1)‖ ≤
ǒ, s ∈ (tk + T, tk+1 + T ] holds. Hence, the constraint (6.11d) is fulfilled. The con-
straints (6.11i) and (6.11j) of ASV i − 1 can be proved following the same logic of
(6.11c) and (6.11e). Next, for s ∈ [tk+1, tk + T ],

E(z̄pi (s|tk+1)− z̄pi,i−1(s|tk+1)) = E(z̄∗i (s|tk)− z̄∗i,i−1(s|tk)) ≤ dx − d̂safe
i .

And for s ∈ (tk +T, tk+1 +T ], since the inequality εi + εi−1 < dx− d̂safe
i holds, and the

terminal constraint implies that (6.11k) is ensured. Thus, the minimum safe following
distance constraint (6.11k) is satisfied.

2) At time tk, from Lemma 6.1, it can be obtained zi(s) ∈ z̄∗i (s|tk) ⊕ Ei, s ∈
[tk, tk +δ], zi−1(s) ∈ z̄∗i−1(s|tk)⊕Ei−1, s ∈ [tk, tk +δ]. Since zai−1(tk|tk) = z̄i,i−1(tk|tk) =
z̄i−1(tk|tk), and ū∗i,i−1(s|tk) = uai−1(s|tk), then z̄i,i−1(s|tk) = zai−1(s|tk), s ∈ [tk, tk + δ].
In addition, by the constraint (6.11d), it can be obtained

zi−1(s) ∈ z̄∗i,i−1(s|tk)⊕ Ei−1 ⊕ Ǒ,

with s ∈ [tk, tk + δ], Ǒ := {z̄i | ‖z̄i− zai ‖ ≤ ǒ}. Therefore, the actual inter-ASV safety
in (6.8) is ensured since the constraint (6.11k) holds.
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3) For the overall ASV system, the Lyapunov function is chosen as the sum of the
distributed optimal cost function

V (tk) =
∑
i∈V0

Ji
(
z̄i(tk), zai−1(·|tk), ū∗i (·|tk)

)
. (6.18)

At time tk, the calculated optimal control input ū∗i (s|tk),s ∈ [tk, tk + δ) is applied.
At tk+1, applying the feasible control inputs (6.16) yields

V (tk+1) =
∑
i∈V0

Ji
(
z̄i(tk+1), zai−1(·|tk+1), ū∗i (·|tk+1)

)
≤
∑
i∈V0

Ji
(
z̄i(tk+1), zai−1(·|tk+1), ūpi (·|tk+1)

)
=
∑
i∈V0

{ ∫ tk+1+T

tk+1
Li
(
z̄pi (s|tk+1), zai−1(s|tk+1), ūpi (s|tk+1)

)
ds

+ Fi(z̄pi (tk+1 + T |tk+1))
}
.

Hence, the difference of the Lyapunov function (6.18) at tk+1 and tk becomes

V (tk+1)− V (tk)
≤
∑
i∈V0

Ji
(
z̄i(tk+1), zai−1(·|tk+1), ūpi (·|tk+1)

)
− V (tk)

=
∑
i∈V0

(∆i
1 + ∆i

2 + ∆i
3),

where

∆i
1 =−

∫ tk+1

tk

{
‖z̄∗i (s|tk)− zai−1(s|tk)‖Hi + ‖z̄∗i (s|tk)− zai (s|tk)‖Fi

+ ‖z̄∗i (s|tk)‖Qi + ‖ū∗i (s|tk)‖Ri + ‖z̄∗i,i−1(s|tk)‖Qi,i−1 + ‖ū∗i,i−1(s|tk)‖Ri,i−1

}
ds,

∆i
2 =

∫ tk+T

tk+1

{
Li(z̄pi (s|tk+1), zai−1(s|tk+1), ūpi (s|tk+1))

− Li(z̄∗i (s|tk), zai−1(s|tk), ū∗i (s|tk))
}

ds,

∆i
3 =

∫ tk+1+T

tk+T

{
‖z̄pi (s|tk+1)‖Qi + ‖ūpi (s|tk+1)‖Ri + ‖ūpi,i−1(s|tk+1)‖Ri,i−1

+ ‖z̄pi,i−1(s|tk+1)‖Qi,i−1 + ‖z̄pi (s|tk+1)‖Fi + ‖z̄pi (s|tk+1)‖Hi
}

ds

+ ‖z̄pi (tk+1 + T |tk+1)‖Pi − ‖z̄∗i,i−1(tk + T |tk)‖Pi,i−1

+ ‖z̄pi,i−1(tk+1 + T |tk+1)‖Pi,i−1 − ‖z̄∗i (tk + T |tk)‖Pi .
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It is easy to find that the inequality ∆i
1 < 0 always holds. Since the assumed

states in (6.9) and the states in (6.17) coincide, that is, z̄pi (s|tk+1) = zai (s|tk+1), s ∈
[tk+1, tk + T ]. Then, it can be obtained

‖z̄pi (s|tk+1)− zai (s|tk+1)‖Fi − ‖z̄∗i (s|tk)− zai−1(s|tk)‖Hi
+ ‖z̄pi (s|tk+1)− zai−1(s|tk+1)‖Hi − ‖z̄∗i (s|tk)− zai (s|tk)‖Fi

=‖z̄pi (s|tk+1)− zai−1(s|tk+1)‖Hi − ‖z̄∗i (s|tk)− zai (s|tk)‖Fi
− ‖z̄∗i (s|tk)− zai−1(s|tk)‖Hi
≤‖z̄∗i (s|tk)− zai−1(s|tk)‖Hi + ‖z̄∗i−1(s|tk)− zai−1(s|tk)‖Hi
− ‖z̄∗i (s|tk)− zai (s|tk)‖Fi − ‖z̄∗i (s|tk)− zai−1(s|tk)‖Hi

=‖z̄∗i−1(s|tk)− zai−1(s|tk)‖Hi − ‖z̄∗i (s|tk)− zai (s|tk)‖Fi .

(6.19)

Next, from H0 = H−1 = 0, Fi � Hi+1 and (6.19), we obtain

∑
i∈V0

∆i
2

=
∑
i∈V0

{ ∫ tk+T

tk+1
{−‖z̄∗i (s|tk)− zai (s|tk)‖Fi

+ ‖z̄pi (s|tk+1)− zai−1(s|tk+1)‖Hi − ‖z̄∗i (s|tk)− zai−1(s|tk)‖Hi} ds
}

≤
∑
i∈V0

∫ tk+T

tk+1
{‖z̄∗i−1(s|tk)− zai−1(s|tk)‖Hi − ‖z̄∗i (s|tk)− zai (s|tk)‖Fi} ds

≤
∫ tk+T

tk+1
−‖z̄∗M(s|tk)− zaM(s|tk)‖FM ds ≤ 0.

(6.20)

With the terminal control law κi(·) and κi−1(·), the system states will be z̄pi (s|tk+1)
and z̄pi,i−1(s|tk+1), s ∈ [tk + T, tk+1 + T ], respectively. By Assumption 6.2, one has

∑
i∈V0

∆i
3

=
∑
i∈V0

{ ∫ tk+1+T

tk+T
{‖z̄pi (s|tk+1)‖Qi + ‖ūpi (s|tk+1)‖Ri + ‖z̄pi (s|tk+1)‖Fi

+ ‖z̄pi,i−1(s|tk+1)‖Qi,i−1 + ‖z̄pi (s|tk+1)‖Hi + ‖ūpi,i−1(s|tk+1)‖Ri,i−1} ds
+ ‖z̄pi (tk+1 + T |tk+1)‖Pi − ‖z̄∗i,i−1(tk + T |tk)‖Pi,i−1

+ ‖z̄pi,i−1(tk+1 + T |tk+1)‖Pi,i−1 − ‖z̄∗i (tk + T |tk)‖Pi
}

≤0.

(6.21)
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According to (6.19), (6.20) and (6.21), we have

V (tk+1)− V (tk) ≤
∑
i∈V0

(∆i
1 + ∆i

2 + ∆i
3) < 0, (6.22)

which implies that the nominal error systems are asymptotically stable.
Then, we define Z̄∗(t) = [z̄∗T0 (t), . . . , z̄∗TM (t)]T, Z(t) = [zT

0 (t), . . . , zT
M(t)]T, E(t) =

[eT
0 (t), . . . , eT

M(t)]T, U(t) = [u0(t), . . . , uM(t)]T and Ū∗(t) = [ū∗0(t), . . . , ū∗M(t)]T, W (t) =
[w0(t), . . . , wM(t)]T. Further, the overall closed-loop nominal system and the overall
closed-loop actual system are given by

˙̄Z∗(t) = F (Z̄∗(t)) +BŪ∗(t), (6.23a)
Ż(t) = F (Z(t)) +BU(t) +BW (t), (6.23b)

where F (·) = col(f0(z0(t)), . . . , fM(zM(t))) ∈ R2(M+1)×1 and B = diag(B0, . . . , BM) ∈
R2(M+1)×M .

Following the result in [50, Lemma 4.5], if the overall nominal error system in
(6.23a) is asymptotically stable, then there exists a KL function α3(·, ·), such that

‖Z̄∗(t)‖ ≤ α3(‖Z̄∗(t0)‖, t− t0), t ≥ t0. (6.24)

By Lemma 6.1, if ei(tk) ∈ Ei, then ei(t) ∈ Ei, t ≥ tk always holds. The inequality
1
2ei(t)

TΓiei(t) ≤ σiw
2
i,max/ρi results in ‖ei(t)‖ ≤ ciwi,max, where ci =

√
2σi/ρiλmin(Γi).

By defining a K function γi(‖wi‖[t0,t]) = ciwi,max, we know ‖ei(t)‖ ≤ γi(‖wi‖[t0,t]).
Note that if the actual error state zi(t) satisfies zi(t) ∈ z̄i(t) ⊕ Ei for all admissible
disturbance sequences. This implies that ‖zi(t)‖ ≤ ‖z̄i(t)‖ + ciwi,max holds. Since
zi(t) = z̄∗i (t) + ei(t), thus one gets Z(t) = Z̄∗(t) + E(t). By defining a K func-
tion γ(‖W‖[t0,t]) = c

√
M + 1‖Wmax‖ for the overall closed-loop system, it is easy

to obtain ‖E(t)‖ ≤
√∑

i∈V0 c2
iw

2
i,max ≤ γ(‖W‖[t0,t]), where c = maxi∈V0{ci} and

Wmax = [w0,max, . . . , wM,max]T. Therefore, it follows from (6.24) that

‖Z(t)‖ ≤ ‖Z̄∗(t)‖+ ‖E(t)‖
(6.24)
≤ α3(‖Z̄∗(t0)‖, t− t0) + γ(‖W‖[t0,t]). (6.25)

From Definition 2.7, the overall closed-loop system in (6.23b) is proved to be
ISS.



107

6.5 Simulation Study

In this section, the simulation of the heterogeneous ASV platoon is presented to
verify the effectiveness of the proposed robust distributed model predictive platooning
control strategy. The simulated ASV platoon consists of seven Cybership II with
different configuration parameters [136], which are selected and shown in Table 6.2.
The control input constraint is |ui| ≤ 40N. The desired spacing is chosen as dx =
2.5m, and the minimum safe following distance is given as dsafe

i = 0.5m.

Table 6.2: Parameters of the ASVs in the platoon.

ASV mass added mass surge linear surge quadratic
i mi Xµ̇i drag Xµi drag Xµi|µi|

0 15.0kg −2.00kg −0.72kg/s −2.05kg/m
1 18.0kg −2.00kg −0.80kg/s −2.00kg/m
2 12.0kg −3.00kg −1.30kg/s −1.60kg/m
3 14.0kg −1.60kg −1.70kg/s −2.30kg/m
4 13.7kg −2.60kg −1.35kg/s −1.80kg/m
5 13.0kg −1.30kg −1.00kg/s −1.30kg/m
6 14.0kg −3.60kg −1.20kg/s −1.30kg/m

The speed µ0(t) of the desired state is given by

µ0(t) =



1 m/s, 0s ≤ t < 1.6s,
1 + 1.4t m/s, 1.6s < t ≤ 2s,
1.56 m/s, 2s < t ≤ 3.9s,
1.56− 1.6t m/s, 3.9s < t ≤ 4.4s,
0.76 m/s, 4.4s < t ≤ 6s.

(6.26)

In the simulation, time-varying disturbances are simulated by wi(t) = Ai sin(bit+
ci), where Ai, bi and ci, i ∈ V0 are given in Table 6.3.

Table 6.3: Disturbance parameters of the ASV platoon.

i 0 1 2 3 4 5 6
Ai 4.5 5.0 5.5 5.3 6.1 5.89 6.0
bi 0.5π 0.7π 0.8π 0.75π 0.9π 0.8π 0.65π
ci π/2 0 π/3 −π/4 π/5 2π/3 −π/6
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The parameters for the DMPC optimization problem Pi are designed as follows:
The sampling period δ = 0.1s, the prediction horizon T = 5δ. The weighting
matrices are chosen as Qi = Qi,i−1 = diag(103, 102), Pi = Pi,i−1 = diag(104, 103),
Hi = diag(102, 10), and Fi = diag(102, 102). Note that the weighting matrix Ri =
Ri,i−1 = 10−4 is chosen so that the control penalty is comparable to the cost terms of
Qi, Fi and Hi. The terminal set level is εi = 0.2 and the upper bound of the predicted
and assumed error state is chosen as ǒ = 0.5.

The robust control invariant set Ei in (6.15) is constructed based on the conditions
in Lemma 6.1. In addition, the ancillary controller should be designed to guarantee
that the tightened control input constraint set is not empty, i.e. Ūi = Ui	KiEi 6= ∅.
Intuitively, a smaller robust control invariant set leads to a larger admissible control
input domain of the DMPC problem Pi. The control gains kpi, kdi and the variables
σi and ρi for ASV i, i ∈ V0 are shown in Table 6.4. Then, the tightened control input
constraint sets are: |ū0| ≤ 20.67N, |ū1| ≤ 22.16N, |ū2| ≤ 21.32N, |ū3| ≤ 22.93N,
|ū4| ≤ 26.24N, |ū5| ≤ 26.02N, and |ū6| ≤ 21.38N.

Table 6.4: The ancillary control gain Ki of the ASVs.

ASV i 0 1 2 3 4 5 6
kpi 6.0 7.0 9.0 4.0 9.0 10.0 8.0
kdi 6.0 8.0 6.0 4.0 8.0 8.0 7.0
ρi 0.92 0.85 1.32 1.13 0.75 1.0 0.76
σi 0.20 0.10 0.25 0.15 0.05 0.08 0.09

The simulation results of the heterogeneous ASV platoon using the proposed ro-
bust DMPC strategy are demonstrated in Figure 6.2 – Figure 6.4. The proposed
strategy demonstrates a good platooning control performance as illustrated in Fig-
ure 6.2. The dash line represents the nominal position of the ASV platoon, the solid
line represents the actual position, and the shading area represents a hyper-tube
whose center is the nominal state. As shown in Figure 6.3, the error ei(t) between the
nominal error state z̄i(t) and the actual error state zi(t) stays within a small bounded
set and the nominal error state z̄i(t) approximately converges to zero. Figure 6.4
shows the control inputs of seven heterogeneous ASVs. It is observed that the control
input constraints of each ASV are always satisfied.
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Figure 6.2: States qi and q̄i of ASVs under the proposed robust DMPC.

6.6 Conclusion

In this chapter, a robust DMPC approach has been designed for the heterogeneous
ASV platoon with external disturbances over the predecessor-leader following commu-
nication topology. Each ASV received the assumed predicted state sequences from its
predecessor and the lead ASV, measured its system states, and broadcast its assumed
predicted state sequences to its follower ASV. Further, by incorporating a coupled
minimum safe following distance constraint into the DMPC optimization problem,
the local safe control input was generated for each ASV. The proposed platooning
algorithm’s recursive feasibility and the closed-loop stability of the heterogeneous
ASVs were rigorously analyzed. Simulation studies have been performed to verify the
effectiveness of the proposed platooning control method.
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Chapter 7

Conclusion and Future Directions

This dissertation studied distributed coordination problems of the constrained MAS
under uncertainties, including a) theoretical study: the formation stabilization prob-
lem of the nonlinear MAS with two types of uncertainties and the consensus problem
of the general linear MAS with communication delays (Chapter 3 and Chapter 4);
b) application study: the formation tracking problem of cooperative AUVs and the
platooning control problem of heterogeneous ASVs (Chapter 5 and Chapter 6).
We have designed robust DMPC algorithms to solve these problems and provided the
rigorous theoretical analysis of the recursive feasibility and closed-loop stability.

7.1 Conclusion

Chapter 3 studied the formation stabilization control problem of the dynamically
decoupled asynchronous nonlinear MAS with parametric uncertainties, external dis-
turbances, heavy communication burden, and bounded time-varying communication
delays. We have proposed a self-triggered min-max DMPC to tackle this challeng-
ing problem. A new constraint was incorporated into the local DMPC optimization
problem, which provided an upper bound for the deviation between the newest and
the previously predicted states. We have shown that the closed-loop MAS was ISpS
provided that this constraint was satisfied. Notably, the communication load was
significantly reduced while achieving desired control performance. Simulations were
carried out to verify the effectiveness and superiority of the proposed algorithm con-
cerning the control performance and communication load.

Chapter 4 investigated the consensus problem of the general linear MAS with in-
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put constraints and bounded time-varying communication delays. The delay-induced
estimation errors regarded as external disturbances were tackled by exploiting the
tube-based MPC scheme. We have developed a robust DMPC-based consensus pro-
tocol based on the inverse optimal control and robust MPC technique, which only
depended on the information of its immediate neighbors. We have proved the recur-
sive feasibility and consensus convergence for the constrained MAS in the presence of
bounded varying delays. Two numerical examples have been provided for illustrative
validations.

Chapter 5 has tackled the formation tracking control problem of cooperative
AUVs with unknown ocean current disturbances. We proposed a DLMPC algorithm
to address this challenging problem. Furthermore, a coupled cost term was designed
based on the artificial potential field method to guarantee the inter-AUV collision
avoidance. The stability and robustness were further enhanced by incorporating a
stability constraint generated by an ESO-based auxiliary controller and the associated
Lyapunov function into the DMPC optimization problem without adding a terminal
cost and a terminal constraint. The recursive feasibility and closed-loop stability of
AUVs were rigorously proved. Simulation results have verified the effectiveness of the
proposed algorithm.

In Chapter 6, a robust DMPC approach was designed for the heterogeneous
ASV platoon with external disturbances over the fixed predecessor-leader following
communication topology. Each follower ASV received the assumed predicted state
trajectories from its predecessor and the lead ASV, sampled the local states, and
broadcast the assumed predicted state trajectory to its following ASV. The local safe
control input was calculated for each ASV by incorporating the coupled minimum
safe following distance constraint into the DMPC optimization problem. We have
rigorously proved the proposed algorithm’s recursive feasibility and the ASV pla-
toon’s closed-loop stability. Simulation studies were presented to demonstrate the
effectiveness of the proposed distributed platooning control method.
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7.2 Future Work

7.2.1 Resilient DMPC for constrained consensus of the MAS
under adversarial attacks

Typically, the information is exchanged in a distributed fashion for the MAS without
the central collection and process. Potential malicious intrusions and adversarial at-
tacks may exist in the communication networks, leading to vulnerability or damage.
Resilient consensus becomes critical when some malicious agents in the network do
not obey the predefined communication rule and try to mislead the other agents.
The objective is to achieve the consensus of normal agents, depending on the reliable
information of their neighbors. There has been a growing interest in studying the
resilient consensus problem of the MAS under cyber-attacks. Conventional consen-
sus protocols are not applicable for the security-critical MAS with constraints. To
systematically address this problem, a distributed attack detection algorithm will be
developed and incorporated into the DMPC-based consensus algorithm in Chapter
4.

7.2.2 DMPC of the MAS over time-varying networks: A dis-
tributed optimization approach

The study of DMPC for the MAS has received considerable attention recently from
the control and system communities; see [17, 19] and the references therein. In the
literature, a fixed communication graph is often adopted to describe the information
exchange among the MAS. The fixed network communication topology is, without
any question, the core mechanism that enables agents to cooperate based on the in-
formation exchange among agents. In practice, a time-varying communication graph
is more suitable for practical MAS applications due to packet drops, node failures,
and link failures. Hence, it becomes essential to generate distributed optimal control
policy by solving the optimization problem over the time-varying graph. Moreover,
it is desirable to improve the control performance while maximizing the convergence
rate and minimizing energy consumption. This work will investigate DMPC for con-
strained linear systems over the time-varying communication networks and also ex-
ploit the distributed optimization techniques to accelerate the convergence of the
DMPC optimization problem, e.g., [84].
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7.2.3 Scalable distributed model platooning control of con-
nected vehicles: A plug-and-play scenario

The platooning control problem of connected vehicles has been regarded as an appeal-
ing solution to reduce fuel consumption and increase traffic efficiency. The plug-and-
play capability further improves the capacity of the road and enables the cooperation
between autonomous vehicles to be more flexible. However, deploying the plug-and-
play DMPC algorithms on the connected vehicle systems remains challenging. First,
the vehicle platoon has to change its formation, and a feasible controller for transi-
tioning between two formations is needed. Second, the collision-free guarantee and
the closed-loop stability of the connected vehicles are necessary. Third, the connec-
tivity of the connected vehicles should be maintained since each vehicle suffers from a
limited communication range. To cope with these difficulties, we will develop the scal-
able DMPC for the plug-and-play platooning control problem of connected vehicles
with constraints.
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Appendix A

Publications

• Journal papers

1. Henglai Wei, Chao Shen and Yang Shi. Distributed Lyapunov-based model
predictive formation tracking control for autonomous underwater vehicles sub-
ject to disturbances. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 51(8), pp. 5198-5208, 2021.
(This work is presented in Chapter 5.)

2. Henglai Wei, Qi Sun, Jicheng Chen and Yang Shi. Robust distributed model
predictive platooning control for heterogeneous autonomous surface vehicles.
Control Engineering Practice, 107, p. 104655, 2021.
(This work is presented in Chapter 6.)

3. Henglai Wei, Kunwu Zhang and Yang Shi. Self-triggered min-max DMPC for
asynchronous multi-agent systems with communication delays. IEEE Trans-
actions on Industrial Informatics, doi: 10.1109/TII.2021.3127197.
(This work is presented in Chapter 3.)

• Journal paper under review

1. Henglai Wei, Changxin Liu and Yang Shi. A robust distributed model pre-
dictive control framework for consensus of multi-agent systems with varying
delays and input constraints. Submitted.
(This work is presented in Chapter 4.)

• Conference paper

1. Henglai Wei, Kunwu Zhang and Yang Shi. Distributed min-max MPC for
dynamically coupled nonlinear systems: A self-triggered approach. IFAC-
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PapersOnLine, 53(2), pp.6037-6042, 2020.

• Book

1. Yang Shi, Chao Shen, Henglai Wei and Kunwu Zhang. Advanced Model
Predictive Control for Autonomous Marine Vehicles, Springer.
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