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Plug-in hybrid electric vehicles (PHEVs) represent a promising future direction for the 

personal transportation sector in terms of decreasing the reliance on fossil fuels while 

simultaneously decreasing emissions. Energy used for driving is fully or partially shifted to 

electricity leading to lower emission rates, especially in a low carbon intensive generation 

mixture such as that of British Columbia’s. Despite the benefits of PHEVs for vehicle owners, 

care will need to be taken when integrating PHEVs into existing electrical grids. For example, 

there is a natural coincidence between peak electricity demand and the hours during which the 

majority of vehicles are parked at a residence after a daily commute. This research aims to 

investigate the incremental impacts to distribution networks in British Columbia imposed by the 

charging of PHEVs.  

A probabilistic model based on Monte Carlo Simulations is used to investigate the impacts 

of uncontrolled PHEV charging on three phase networks in the BC electricity system. A model 

simulating daily electricity demand is used to estimate the residential and commercial demand on 

a network. A PHEV operator model simulates the actions of drivers throughout a typical day in 

order to estimate the demand for vehicle charging imposed on networks. A load flow algorithm 

is used to solve three phase networks for voltage, current and line losses. Representative three 
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phase networks are investigated typical of suburban, urban and rural networks. Scenarios of 

increasing PHEV penetration on the network and technological advancement are considered in 

the absence of vehicle charging control.  

The results are analyzed in terms of three main categories of impacts: network demands, 

network voltage levels and secondary transformer overloading. In all of the networks, the PHEV 

charging adds a large amount of demand to the daily peak period. The increase in peak demand 

due to PHEV charging increases at a higher rate than the increase in energy supplied to the 

network as a result of vehicles charging at 240V outlets. No significant voltage drop or voltage 

unbalance problems occur on any of the networks investigated. Secondary transformer 

overloading rates are highest on the suburban network. PHEVs can also contribute to loss of 

transformer life specifically for transformers that are overloaded in the absence of PHEV 

charging. For the majority of feeders, uncontrolled PHEV charging should not pose significant 

problems in the near term. Recommendations are made for future studies and possible methods 

for mitigating the impacts.  
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1 Introduction  

Recent attention to the issues of fossil fuel use such as greenhouse gas emissions, cost and 

supply security have led governments and automobile manufacturers to explore electric vehicle 

technologies in an attempt to decrease emissions from passenger vehicles and reduce reliance on 

fossil fuels. In the province of British Columbia, Canada (BC), a recent greenhouse gas 

inventory estimated that 14% of the total emissions came from the use of passenger vehicles 

[1].The vast majority of these vehicles derived their energy from gasoline or diesel, with little or 

no alternative to the type of fuel used.  

Plug-in Hybrid Electric Vehicles (PHEVs) represent a promising direction in the personal 

transportation sector for decreasing the reliance on fossil fuels while simultaneously decreasing 

emissions [2]. Taking the concept of the hybrid electric vehicle (HEV) a step further with the 

addition of a larger battery, PHEVs have the ability to travel on electricity derived from the 

electrical grid for small distances. The inclusion of a small gas engine or generator increases the 

range of the vehicle, thus maintaining the reliability of the familiar internal combustion engine. 

Currently, most of the major automobile manufacturers are considering or designing a PHEV or 

a full electric vehicle (EV). While there are a number of vehicle technologies and drive train 

arrangements being considered by manufacturers, this thesis will focus on near-term PHEV 

technologies.  

Advantages for PHEV owners will be reduced fuel costs and emissions as driving on 

electricity has been found to be less expensive per mile and typically produces less emissions 

than a conventional vehicle, even in highly fossil based systems [3]. In fact, the emissions per 
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mile were found to be similar to a hybrid electric vehicle when charging on a generation mixture 

consisting mostly of coal and natural gas [4]. In British Columbia, electricity is generated by 

large hydroelectric dams with low emission intensities and thus PHEVs are an attractive option 

for reducing emissions in the transportation sector in the province. The wide availability of 

existing charging infrastructure in the form of 120/240V outlets at homes and offices is another 

strong argument for a transition to PHEVs, over other alternative vehicle technologies such as 

fuel cells.  

Despite the potential benefits for PHEV owners when compared to conventional vehicles, 

reconciliation will be needed between vehicle owners and grid operators [5]. For example, there 

is a natural coincidence between peak electricity demand and vehicles returning to a residence 

after a daily commute. This coincidence between vehicle charging demand and existing peak 

demand is the principle near-term concern from the utility point of view. Previous studies have 

called for some form of control over vehicle charging to avoid adding to the peak demand [3,6]. 

For the utility operator in the long term, PHEVs present the possibility of a distributed 

energy storage mechanism that can be controlled to increase the efficiency of the grid [7]. First, 

and most likely in the near term, PHEVs may operate as a responsive load where the time of day 

when the vehicles charge would be controlled. This would shift vehicle charging to off-peak 

hours. Second, and requiring a more complicated integration, the PHEVs’ batteries may be able 

to supply power back to the grid in an operating mode known as Vehicle-to-Grid or V2G. This 

scheme may prove more useful in terms of economic and technical operation of the grid [5].  

This research investigates the impacts that are likely to be seen on the electricity system 

due to the charging of PHEVs, specifically focussing on distribution networks. It is unlikely that 



3 
 

 
 

large-scale dispatch of generators or operation of transmission systems will be greatly affected 

by small penetrations of PHEVs. However, even with low penetrations of PHEVs across a 

province or transmission system, certain neighbourhoods or areas could have higher penetration 

rates; such an effect has been seen with the aggregation of hybrid electric vehicles [8]. Thus, 

distribution networks are where the first impacts from PHEVs are likely to occur and these 

systems are therefore the focus of this research. Also, it will be some time before proper time-of-

use incentives or charging control infrastructure is in place to encourage vehicle charging during 

the low demand hours, thus, this study will focus on impacts in the absence of vehicle charging 

control methods.  

To investigate the impacts of PHEVs on distribution networks, an analogy can be drawn 

between electric vehicles and distributed energy resources (DERs), such as distributed 

generation. For example, the vehicles will be distributed in a random fashion and connect to the 

customer side of the meter, similar to many distributed generators such as rooftop photovoltaics.  

The action of PHEV drivers connecting to the grid will be somewhat predictable, but will contain 

elements of randomness much like many distributed renewable energy generators. It is also very 

important to understand how people use their vehicles and what actions they will take to charge 

their vehicles. The behaviour of vehicle operators is an important aspect for understanding the 

connection of PHEVs to the grid, similar to understanding how the weather or season may affect 

a renewable generator’s output.  

The considerations for connection of PHEVs to distribution networks are similar to that of 

other DERs and should be subject to the same technical, economic and regulatory challenges. 

Technical challenges may include large voltage drops, increased losses, voltage unbalance and 

other issues related to power quality [9]. Economic challenges include costs of infrastructure, 
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maintenance and shifting the operation of distribution networks toward active instead of passive 

management [10]. The third and perhaps most important challenge is a regulatory one; without 

clear policy from both governments and utilities, it is unlikely that PHEVs will have the impact 

that some researchers are suggesting is possible [11]. 

The aim of this research is to investigate the impacts of PHEV charging on distribution 

networks in the absence of vehicle charging control strategies. A probabilistic model based on 

Monte Carlo simulations is developed and used to achieve this objective. The model uses a 

simulation of daily residential and commercial loads on representative three-phase distribution 

networks within the BC transmission system. A PHEV operator simulation model is coupled to 

the load model to estimate the demand for vehicle charging and the emissions from driving. A 

direct concern is to estimate the impacts on certain power quality aspects of the network such as 

voltage and current constraints as well as to determine the emissions from operation of PHEVs. 

These impacts are investigated under scenarios of PHEV penetration and technology 

advancement.  

Chapter 2 of this thesis contains a literature review, where methods of analyzing distributed 

energy resources and examining PHEV impacts are summarized. The literature review highlights 

the necessity of using a probabilistic approach for this research as well as summarizing some of 

the recent studies investigating PHEV impacts on the grid. In Chapter 3, a model framework 

outlining the probabilistic load flow model using Monte Carlo simulations is provided, with a 

discussion of the three phase aspects of distribution networks and the load flow algorithm used. 

The method for simulating the residential and commercial loads that are used as inputs to the 

probabilistic load flow model and the techniques used for simulating the vehicle charging aspects 

are also described in Chapter 3. Following this, Chapter 4 presents three representative 
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distribution networks from the BC grid and summarizes the scenarios used as inputs to the 

model, including the assumptions for battery sizes, charging rates and PHEV penetration. The 

modelling results follow in Chapter 5, starting with the impact that PHEV charging may have on 

the network demand in terms of power and energy. The network voltage drop, voltage 

unbalance, network energy losses and secondary transformer overloads are investigated to 

examine the frequency and probability of impacts caused by PHEV charging. The fuel 

consumption of vehicles in the network is analyzed including the emissions released from 

driving on gasoline and an estimate of the emissions created from vehicle charging. In the 

discussion and conclusions sections of Chapters 6 and 7, the key results and insights are 

highlighted with recommendations for future work concluding the thesis.  

  



6 
 

 
 

2 Literature Review  

This chapter reviews previous research related to distribution network modelling and PHEV 

impacts on the grid. The first section reviews aspects of modelling distribution networks and the 

integration of distributed generation. The need for a probabilistic analysis is highlighted. The 

second section reviews some of the recent large scale studies conducted to investigate potential 

environmental and grid related impacts of PHEVs.  

2.1 Probabilistic Modelling of Distribution Networks  

The traditional method for operation of distribution networks has been challenged in recent 

years by the concept of distributed energy resources (DERs). These resources could include 

distributed generation (DG), combined heat and power systems, responsive loads or energy 

storage systems [12]. Recent attention has been given to shifting the architecture of energy 

systems away from centralized power plants located large distances from load centers toward 

many small electric power sources connected throughout distribution networks, often on the 

customers side of the meter. Lopes et al. [11] review the economic, technical and environmental 

challenges of integrating a variety of DERs into distribution networks. The review highlights the 

commercial, regulatory and environmental drivers causing the shift towards DERs. Emphasis is 

placed on the notion that these resources should not be regarded in a fit and forget manner but 

should be integrated into the larger system for maximum benefit.  

A load flow (or power flow) algorithm solves the non-linear relationships among complex 

power demand, line currents, bus voltages and angles with the network constants provided in 

terms of circuit parameters such as impedance and network structure [13]. Traditionally, 

distribution networks are radial, passively operated systems that were designed using load flow 
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studies to capture the critical or high demand cases. Typically, the design was aided through 

deterministic studies that contained no elements of randomness. Only the maximum power 

demand expected from groups of customers needed to be specified, and a single solution was 

enough to capture the absolute voltage drop and maximum line currents expected to occur on a 

network.  

When considering the connection of DG to a distribution network, load flow calculations 

can be used to assess the maximum number of generators allowed in order to ensure the voltage 

and line current carrying capacities are not exceeded. Because DG may be based on renewable 

energy sources such as wind and solar, a deterministic load flow may not capture the 

intermittency and random nature of these sources and may be an inadequate approach to 

assessing the true impacts on the distribution network. Conti and Raiti [14], show that the use of 

a traditional deterministic load flow leads to an overestimation of the maximum photovoltaic 

(PV) power that can be installed. They also outlined a probabilistic load flow (PLF) algorithm 

with appropriate statistical models for loads and PV generator productions that provides a more 

accurate evaluation of PV integration.  

Monte Carlo Simulation (MCS) is a modelling technique that involves repetition of a 

simulation process using a set of probability distributions defining the random variables of 

interest. MCS methods are commonly used for PLF studies. In the case of distribution networks 

these variables are usually consumer loads and DG production [11]. In a MCS, the random 

variables are sampled at each repetition from a probability density function and used as inputs to 

the load flow program. The output from a PLF estimates the frequency of adverse events such as 

overvoltage, voltage drop and transformer overloads.  
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McQueen et al. [15] used MCS to model residential electricity demand and its application to 

low voltage regulation problems. Their predicted voltage distributions were compared to actual 

voltage readings showing a good match between modelled and measured voltages. El-Khattam et 

al. [16] presented a MCS algorithm that used a single phase representation of a distribution 

network to estimate the impacts of DG units on the steady-state system behaviour. They 

estimated the power loss savings and the impacts to bus voltage variation due to the presence of 

DG. An interesting application of the MCS approach to probabilistic network modelling by 

Mendez et al. [9] studied the use of DG for the deferral of capital investment. Their results find 

that once some initial network reinforcements for DG connection are in place, significant 

investment in feeder and/or transformer reinforcements can be deferred. In the context of 

distribution networks, MCS have also been applied to study reliability improvements due to 

energy storage systems [17] and to examine the impact of harmonic distortions [18].  

Often in the PLF literature, the load on a three phase network is assumed to be fully 

balanced and a single phase representation of the network is applied. In real distribution systems, 

the lines are unbalanced and sections can carry a mixture of single, double or three phases. This 

mixture of lines and the presence of single and three phase loads causes imbalances where the 

voltage phase angles are not always 120⁰ displaced and the magnitude of the voltages between 

lines are not always equal. Caramia et al. [19] used a three phase representation of a distribution 

network to investigate a PLF with MCS considering only phase-load demands and network 

configurations. They recently extended this work to incorporate the effects of wind farms with 

asynchronous machines on the unbalance of the network [20]. The three phase model provides a 

more realistic evaluation of the network operation as phase unbalance in distribution networks 

can cause increased losses, upstream problems to the transmission network and increases the 
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likelihood of a fault. The impacts on the unbalance of the system should therefore be taken into 

account when performing a PLF where possible.  

2.2 Summary of Plug-in Hybrid Electric Vehicle Studies  

In contrast to the work being done in the field of integration of DG, no research has been 

published that focuses on the integration of PHEVs into distribution networks. The majority of 

PHEV studies so far have been aimed at two aspects of PHEVs: (1) the long term impacts of 

large penetrations of PHEVs on existing power systems and the effects on the dispatch of 

generation assets and (2) assessing the environmental impacts, upstream emissions and battery 

technology.  

An environmental assessment of PHEVs performed by the electric power research institute 

(EPRI) examined the emissions from vehicles and the electric sector under various scenarios of 

electric sector CO2 intensity and electric vehicle penetrations from 2010 to 2050 [4]. The study 

found that annual and cumulative CO2 reductions were possible in every scenario analyzed, 

ranging from reductions of 163 to 612 million metric tons of CO2 annually by the year 2050. 

Vehicle emissions per mile were calculated based on the upstream electric sector CO2 emissions 

and upstream gasoline emissions (well-to-tank). They found that PHEVs or EVs have similar or 

less emissions than regular hybrid electric vehicles (HEVs) in all scenarios of carbon intensity.  

A study performed at the National Renewable Energy Laboratory (NREL) [21] investigated 

the costs and emissions associated with PHEV charging in a Colorado service area. The authors 

created aggregate charging profiles for a 30% penetration of PHEVs and, using a generation 

dispatch algorithm to optimally dispatch power, they investigated the operation with and without 

the charging of vehicles. This study found that no additional generating capacity would be 
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required even for massive penetrations of vehicles assuming some form of vehicle charging 

control is in place. Similar to the study by EPRI, they concluded that PHEVs would allow for 

significant emissions reductions, even in the highly fossil based system under study.  

Another large scale scoping study [22] estimated the regional percentages of the energy 

requirements for the US light duty vehicle (LDV) stock that could be supported by the existing 

infrastructure in 12 NERC (North American Energy Reliability Council) regions. They found 

that up to 73% of LDVs energy requirement could be supported without the need for additional 

capacity. Similarly, Denholm and Short [6] found that for six regions in the U.S., large-scale 

deployment of PHEVs will have limited negative impacts on the electric power systems in terms 

of the need for more additional generation capacity. The studies discussed above have all 

assumed some form of utility or third party control over vehicle charging to avoid charging 

during the peak demand periods. These large-scale utility studies have shown that proper control 

of vehicle charging can lead to benefits to the grid and to the transportation sector in terms of 

operational costs and emissions.  

A recent survey of drivers of hybrid vehicles converted to PHEVs performed by Kurani et 

al [23] showed some interesting results, despite a small number of respondents. They found that 

very few drivers, if any, considered the impact that their vehicle charging had on the grid. Also, 

upwards of 80% of drivers plugged their vehicles in whenever possible, especially at routine 

locations such as home and work. This brief study, while not statistically significant due to the 

limited sample size, shows that the behaviour of PHEV owners is an important aspect that must 

be considered and that a wide range of actions is likely to occur when examining vehicle 

charging in the near-term.  
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To the author’s knowledge, there has yet to be any literature published that has examined 

the impact of PHEVs on the operation of distribution networks. As PHEVs slowly enter the 

market, it will be some time before proper charging control mechanisms are realized and put in 

place. Until then, it is unlikely that many vehicle owners will consider the impacts to the grid 

when charging their vehicles and will likely plug their cars in at every opportunity. The 

stochastic nature of human decisions for vehicle operation can be thought of as similar to 

intermittent renewable energy, and thus a probabilistic approach to modelling should be 

undertaken when considering PHEVs connection to distribution networks.  
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3 Model Overview  

This chapter provides a background on distribution networks and a description of the 

probabilistic model. The processes for load modelling and PHEV simulation are also explained. 

All modelling work in this thesis is performed in the Matlab™ environment.  

3.1 Three Phase Distribution Networks in BC 

A simplified one-line example of a distribution network is shown in Figure 3.1. The 

distribution system starts with a substation that is fed by a high-voltage transmission line or sub-

transmission line. The substations serve primary “feeders”, the vast majority of which are radial, 

meaning there is only one flow path for the power from substation to customer [24]. The 

substation’s main function is to reduce the voltage down to the primary distribution voltage 

level. The primary feeder distributes the power throughout the network to the secondary 

transformers where the voltage is further decreased to the customer level of 120/240V. It should 

be noted that all networks considered in this thesis are 4-wire “wye” systems; the line voltages 

are separated into three phases displaced by an angle of 120⁰, with a single neutral return wire. 

Every distribution network is designed to meet the specific requirements of the area it 

serves. An attempt is made at the design stage to balance the load amongst the phases to ensure 

efficient operation; however, the loading on a network is inherently unbalanced because of the 

presence of unequal single phase loads. Thus, a single phase representation as is typically useful 

for transmission systems analysis is not adequate, and a full three-phase analysis should be 

employed [25]. When the load is unbalanced on the network, current will flow in the neutral wire 

increasing the system losses. For customers connected to a three phase secondary transformer, 

unbalanced voltages can cause three phase induction motors to function improperly.  
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3.2 Model Description  

As mentioned previously, the model presented here is a probabilistic load flow model using 

Monte Carlo simulations to capture the stochastic nature of loads and PHEV charging to estimate 

the impacts on distribution networks. A detailed flow chart is shown in Figure 3.2, outlining the 

general steps taken in the algorithm. The model begins by selecting a distribution network to 

study and selecting a scenario that provides the input parameters to be used in the model, such 

as: the penetration rate of PHEVs, the amount of office and retail charging, size of PHEV 

batteries, etc. The scenarios are explained in Chapter 4.  

Transmission line 

SS Sub-station 

3 phase primary feeder 

Single phase primary lines Secondary 
transformers Shunt  

Capacitor 

Network loads  

1  2
  

n
  

Figure 3.1 Simplified one line diagram of a three phase distribution network 
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Input the network parameters: line configuration and impedance, phasing, transformers, voltage regulating 

equipment, customer type and location. Calculate line impedance matrices (Appendix A.1) 

Determine locations of PHEVs and select their parameters battery size, charge rates, etc.  

Calculate the load probability density functions (PDFs) as a mean and standard deviation for each bus at each 

half hour for real and reactive power 

Generate Customer Loads 

Generate PHEV Loads 

Time loop, 
half hour 

increments 

h = h + 1 

Solve the load flow algorithm (Appendix A.2) 

Is the day 
completed? 

h = H? 

No 

Are Monte Carlo 
iterations completed?* 

 

Yes 

No 

Yes 

Generate Results 

Figure 3.2. PLF model logic flowchart 

*Note: an initial convergence analysis was performed to determine a preset number of MCS iterations that is used 
throughout the analysis (see §5.1) 

Choose scenario and network 

Start of day, h = 1 

i = i + 1 
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With a scenario and network selected, the next step is to import the parameters that define 

the network. This includes the locations of all voltage regulating equipment, phasing of the 

branches, locations and types of customers and structure of the network. This information is then 

used to calculate generalized line impedance matrices that are used when solving the 

deterministic load flow algorithm. These calculations are outlined in Appendix A. PHEVs are 

assigned randomly throughout the network to the residential customers and their battery sizes, 

home charging rate and other parameters defining their vehicle characteristics are initialized. 

Probability density functions describing the customer demand at each hour and for each 

customer are calculated next. With all of the inputs to the model defined, the Monte Carlo (MC) 

loop is initialized.  

The MC loop repeats a single “peak load” day multiple times solving the deterministic 

steady-state load flow algorithm at a half hour resolution. The MC loop begins by generating the 

residential and commercial demand on the network based on the probability density functions 

calculated earlier. The PHEV simulation follows, calculating the number of PHEVs connected 

both in residential and commercial locations and determining their charging demand on the 

network. The PHEV simulation also calculates fuel consumption and battery state of charge for 

any driving events that may occur during a given time period for each vehicle. Once the PHEV 

load is determined and the complex power demand at each bus of the network has been 

calculated for that time point, the deterministic load flow algorithm is solved producing voltage 

and current magnitudes and angles for the buses. 

The deterministic load flow algorithm assumes that the complex power supplied to the 

network is in a steady state and solves for the line currents, bus voltages and phase angles using a 

forward-backward sweep algorithm outlined in Appendix A.2. The network complex power loss 
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is calculated following the solution to the load flow. Any transformer/current ratings or bus 

voltage limits that are exceeded during the simulations are flagged. The MC loop continues the 

process of generating input data and solving the deterministic load flow algorithm for multiple 

iterations until a predetermined number of iterations have been reached, determined by a 

convergence analysis of the means and standard deviations (Section 5.1).  

The methods described in this chapter are used to estimate the customer demands and 

PHEV charging demands at each location in a network. A number of variables are 

probabilistically determined during model initialization and during the Monte Carlo loop, these 

variables are summarized in Table 3.1. Customer electricity demands are described by a normal 

distribution, which produces a demand value (Sn,h,i) for each half-hour (h) and iteration (i) at each 

secondary transformer (n) in the network. Similarly, the PHEV simulation model predicts the 

temporal charging demand for each individual PHEV at residential, office and retail locations on 

the network. The individual PHEV demands are summed at each secondary transformer for each 

half hour and iteration of the model (𝑆𝑆𝑛𝑛 ,ℎ ,𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ). In the model derivation, superscripts are used for 

descriptive variables to distinguish between types of loads and customers for example, SPHEV to 

represent PHEV demand. Subscripts are used for tracking the Monte Carlo model parameters n, 

h and i. 
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Table 3.1. Summary of probabilistic parameters that are selected throughout the model 

Probabilistic Parameter Symbol When it is selected during the model 
Vehicle trip distance and timing Dtrip PHEV simulation model/Monte Carlo loop 

Customer loads Sn,h,i Each half hour/Monte Carlo loop 
Initial battery SOC for PHEVs at 
office locations SOC Monte Carlo loop 

Charging demand at retail chargers 𝑆𝑆𝑛𝑛 ,ℎ ,𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟  Each half hour/Monte Carlo loop 

CD mode efficiency  ηCD Each simulated PHEV trip 

CS mode efficiency  ηCS Each simulated PHEV trip 

Battery size B Model initialization 

Charge rate at home CR Model initialization 

Work start time WS Model initialization 

Work end time  WE Model initialization 

Charging at work WC Model initialization 
One-way commuting distance D Model initialization 

Location of residential PHEVs - Model initialization 
Number of installed retail and 
office chargers # Chargers Model initialization 

 
 

3.3 Network Solution Algorithm 

As mentioned, the core of the probabilistic model is a steady-state deterministic three phase 

load flow algorithm. There are many options when selecting an algorithm for load flow solutions 

for distribution networks. The traditional approach is to use an algorithm that takes advantage of 

the radial structure of the network in an iterative fashion. A ladder iterative technique known as 

the forward/backward sweep (FBS) algorithm was chosen for its simplicity and robustness in 

radial systems [25]. The details and equations used in this algorithm are shown in Appendix A. A 

brief description follows.  

Model 

Initialization 

Monte Carlo 

Loop 
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The first step in the FBS algorithm calculates generalized line impedance matrices that 

relate sending end and receiving end voltage and current for all of the lines. The generalized 

matrices can also be used to model the voltage regulators, shunt capacitors or in-line 

transformers. The algorithm makes use of Kirchhoff’s voltage law (KVL) and Kirchhoff’s 

current law (KCL) with the generalized matrices. The iterative process begins at the extreme 

buses of the network that are the furthest from the substation and assumes that they are at the 

base voltage of the network for the first iteration. The complex (real and reactive) power is 

known at all buses in the network so the current in the furthest branches can be determined. This 

value is then used with KVL to find the voltage at the upstream bus. When the upstream voltage 

is calculated, the current at the upstream bus is found using KCL. In this manner, all the currents 

and voltages are calculated stepping forward towards the substation. When the substation is 

reached, the calculated voltage is compared to the set-point (base) voltage of the substation. If it 

is within the tolerance of the calculation, then the iteration can stop. If it is not, then the 

backward sweep begins by resetting the substation voltage to its base value.  

The backward sweep calculates new voltage values using the current values calculated 

during the forward sweep and moving downstream using KVL and KCL until the extreme buses 

are reached at which time the forward sweep begins again. This forward/backward sweep 

process is repeated updating the voltages and currents after each sweep. The process continues 

until the maximum difference in set-point substation voltage and calculated substation voltage 

converges to a predefined tolerance of 1×10-4 per unit of voltage. At this point the voltage and 

current at each bus and on each line throughout the network is known. The calculations of power 

loss in the system can then be completed (Appendix A.2). For simplicity in calculations and 
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reporting, the per-unit (p.u.) system is used for all calculations in this thesis as explained in 

Appendix B.  

3.4 Customer Demand Modelling  

Determining the power demand on a distribution network is a difficult task due to the 

stochastic behaviour of the customers connected to it and seasonal changes in both climate and 

light. An efficient method to predict the 24-hour total load curve at a distribution substation is to 

sum the load curves corresponding to the various types of customers supplied by the substation 

[26]. These customer 24-hour load curves for each specific season or day show a small variation 

around a mean value. Thus, it is common when performing probabilistic load flow studies to 

assume a normal distribution of load within a time interval for each load bus and customer class 

on the network [14, 19, 26]. The normally distributed load values are assumed to be independent 

of time, meaning that load values do not depend on the previous or subsequent load value.  

For this thesis, five unique customer classes are identified: apartments, single detached 

homes (houses), offices, retail and other. The “other” class is used for locations with little to no 

expected PHEV charging demand such as schools and municipal pumping stations. It is 

important to separate the customers into unique classes because each exhibits distinct 24 hour 

load profiles, and the assumptions for vehicle charging and simulation will be different for each 

class. 

The assumption of a normally distributed load is convenient because the distribution is 

completely described using only the mean and standard deviation of the load at the given hour as 

shown [14]: 
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𝑓𝑓(𝑃𝑃𝑛𝑛 ,ℎ) =
1

𝜎𝜎𝑛𝑛 ,ℎ√2𝜋𝜋
∙ 𝑟𝑟

−(𝑃𝑃𝑛𝑛 ,ℎ−𝑃𝑃n ,ℎ������)
2𝜎𝜎𝑛𝑛 ,ℎ

2
 

(3.1) 

 

where Pn,h is the load value, 𝑃𝑃𝑛𝑛 ,ℎ����� is the mean and 𝜎𝜎𝑛𝑛 ,ℎ  is the standard deviation at each half-hour 

(h) and secondary transformer (n). With an average half-hourly load profile and standard 

deviation, the probability density function (PDF) shown in Equation (3.1) can be used to 

generate load data within the bounds of each PDF. A brief analysis was performed to validate the 

assumption of normality of the load when considering various numbers of customers connecting 

to a single transformer. This analysis, performed in Appendix C, shows that for five or more 

residential customers connecting to a single transformer, the load at a given hour can be 

considered to be a normal distribution at the 95% confidence level.  

To estimate the PDFs for each bus on the network, a normalized annual load profile for 

each customer class was used to calculate a mean and standard deviation at each half hour of a 

day. Normalized profiles are used due to a lack of individual customer class data, or substation 

level hourly data. The normalized profiles were supplied by BC Hydro from estimates of annual 

customer demands. To calculate the PDF parameters, a time window representing three high-

demand winter months (90 days, mid-November – mid-February) centered on the peak demand 

day was selected. This peak load period was chosen to represent a worst-case demand scenario. 

As an example, a normalized mean load profile for a group of single detached homes is shown in 

Figure 3.3. The half hour increments were found by interpolating linearly between the hours.  
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Figure 3.3. Normalized annual load profile for a group of single detached residences 
showing the selected time window for calculating probability density function parameters 

 

The only demand data available that was specific to each network was the customer 

monthly energy consumption readings and a peak substation demand reading taken monthly by a 

technician through a field visit to the substation. The method used to estimate the PDF 

parameters is shown in Figure 3.4.  

To simplify the nomenclature used for customer demand modelling, the following 

conventions are used. Peak values will be denoted with an asterisk, such as  𝑆𝑆∗ to represent peak 

power demand. Normalized values will be denoted with a dot accent, such as �̇�𝑆. The superscript c 

is used to represent the customer class where c can have the values: house, apartment, retail, 

office or other. 
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Only one type of customer class is connected to each secondary transformer. Thus, the 

PDFs for individual transformers can be specified without the need to specify a PDF for each 

individual customer on the network. The following method is used to create PDFs at each half 

hour for each group of customers attached to a secondary transformer:  

Import peak substation demand and customer monthly energy readings. Estimate the peak real and reactive 

power demand at each secondary transformer in the network 

Model Initialization (Choose scenario and network, calculate line impedance matrices, determine location and 

characteristics of PHEVs) 

Calculate a normalized mean and standard deviation of the demand for each half hour of a single day using 90 

days of normalized data during a high demand period 

Scale the normalized mean and standard deviation to the peak real and reactive power demand at each 

secondary transformer 

Monte Carlo Loop  

Calculate 

probability 

density function 

(PDF) 

parameters 

Generate Results  

Figure 3.4. PLF model logic flow chart showing process to calculate probability density 
function parameters for customer load generation 

Simulate customer loads using distribution calculated during model initialization  

Simulate PHEV loads 

Solve Load Flow  

Repeat for each 

half hour of a day 

and for all 

iterations 
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1) The peak demand on each secondary transformer is first estimated by dividing the substation 

peak demand amongst all secondary transformers. The peak substation demand reading (𝑆𝑆∗,𝑇𝑇) 

is allocated to each secondary transformer (n) in the network by dividing the energy 

consumption of each group of customers at a secondary transformer (En) by the total energy 

consumption of all the customers in the network (ET) and multiplying by the peak substation 

demand. This creates a peak demand value (S𝑛𝑛∗) at each secondary transformer that when 

summed equals the recorded peak feeder demand as shown in Figure 3.5. This step allocates 

the peak feeder demand such that customers with higher energy consumption share a larger 

percentage of the peak load. The peak load at each transformer is: 

𝑆𝑆𝑛𝑛∗ = 𝑆𝑆𝑇𝑇,∗ ∙
𝑃𝑃𝑛𝑛
𝑃𝑃𝑇𝑇

 (3.2) 

 

2) A power factor (PF) estimate equal to 0.94 [27] was used to calculate the real (𝑃𝑃𝑛𝑛∗) and 

reactive (𝑄𝑄𝑛𝑛∗ ) components of the peak demand for each customer group:  

SS 
Sub-station 

𝑆𝑆𝑇𝑇,∗ [𝑘𝑘𝑃𝑃𝑘𝑘] 

𝑃𝑃𝑇𝑇[𝑘𝑘𝑘𝑘ℎ] 𝑆𝑆1
∗,𝑃𝑃1 𝑆𝑆2

∗,𝑃𝑃2 𝑆𝑆𝑛𝑛∗ ,𝑃𝑃𝑛𝑛  

Figure 3.5. Allocation of peak substation demand to secondary transformers 
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𝑃𝑃𝑛𝑛∗ = 𝑆𝑆𝑛𝑛∗ ∙ 𝑃𝑃𝑃𝑃 (3.3) 

𝑄𝑄𝑛𝑛∗ = �(𝑆𝑆𝑛𝑛∗)2 − (𝑃𝑃𝑛𝑛∗)2 (3.4) 

 

3) Now, the normalized load data, such as that shown in Figure 3.3, is used to calculate 

normalized means and standard deviations for each half hour of a day. Dot accents are used 

above variables to represent normalized values. The normalized load data for each half hour 

(h), day (d) and customer class (c), �̇�𝑃ℎ
𝑐𝑐 ,𝑑𝑑 , is used to calculate a mean and standard deviation of 

the normalized load at half hour intervals (�̇�𝑃ℎ𝑐𝑐��� and �̇�𝜎ℎ𝑐𝑐 ) over a 90 day period. This produces 

vectors of normalized load half hour means and standard deviations for each customer class 

for a single day: 

�̇�𝑃ℎ𝑐𝑐��� =
� �̇�𝑃ℎ

𝑐𝑐 ,𝑑𝑑
90

𝑑𝑑=1
90

   ∀ ℎ, 𝑐𝑐 (3.5) 

�̇�𝜎ℎ𝑐𝑐 =
�� (�̇�𝑃ℎ

𝑐𝑐 ,𝑑𝑑 − 𝑃𝑃ℎ�̇�𝑐
���)2

90

𝑑𝑑=1
90

   ∀ ℎ, 𝑐𝑐 
(3.6) 

 

4) The normalized means and standard deviations vectors from Equations (3.5) and (3.6) were 

then scaled for each secondary transformer by multiplying each element of the vectors by the 

real and reactive peak transformer demand calculated in Equations (3.3) and (3.4):  
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𝑃𝑃𝑛𝑛 ,ℎ
𝑐𝑐����� = �̇�𝑃ℎ𝑐𝑐��� ∙ 𝑃𝑃𝑛𝑛∗   ∀ ℎ, 𝑐𝑐,𝑛𝑛 (3.7) 

𝜎𝜎𝑛𝑛 ,ℎ
𝑐𝑐 =  �̇�𝜎ℎ𝑐𝑐 ∙ 𝑃𝑃𝑛𝑛∗  ∀ ℎ, 𝑐𝑐,𝑛𝑛 (3.8) 

Equations (3.7) and (3.8) are repeated using the reactive power (𝑄𝑄𝑛𝑛∗ ) calculated from Equation 

(3.4) with the same mean and standard deviation (�̇�𝑃ℎ𝑐𝑐  
���� and �̇�𝜎ℎ𝑐𝑐). Scaling in this manner preserves 

the power factor of the load. 

This method ensures that the sum of the resulting load profiles of each secondary 

transformer will represent a “high demand” day in order to reflect a worst-case scenario of 

network demands. The normalized load profiles (�̇�𝑃ℎ𝑐𝑐) for three of the customer classes are shown 

in Figure 3.6; the retail and “other” load categories have a very similar profile to the office load 

and are not shown.  

 

Figure 3.6. Normalized load profiles for apartment, house and office 
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3.5 Simulation of PHEV Charging Behaviour 

Many difficulties arise when attempting to model the temporal charging demand and 

predict the technological aspects of PHEVs in future scenarios. First and most importantly, there 

are currently no PHEVs or EVs in production leading to a wide uncertainty in the types of 

technologies and market penetrations that will be seen in the coming years. Second, the scale of 

distribution networks may not warrant an aggregated charging demand modelling approach due 

to the small number of PHEVs on the networks, especially when examining low PHEV market 

penetration scenarios. Third, the assumptions for vehicle charging within residential or 

commercial customer classes will be inherently different. The above points show a need to take a 

novel approach to modelling PHEV driver’s actions while segregating the vehicle simulation 

model by customer class and considering the uncertainties in PHEV technology.  

The following sections describe the major assumptions and simulation techniques used for 

determining the vehicle charging demand on a network in residential and commercial settings. A 

separate set of assumptions is used for residential (both homes and apartments), office and retail 

locations. The residential PHEV model simulates the daily driving behaviour of each individual 

PHEV owner that resides on the network in a probabilistic manner.  

3.5.1  PHEV Technology Assumptions and Vehicle Characteristics Selection 

The assumed specifications and operating parameters used for PHEV technologies were 

taken from a recent report on a joint effort between NREL and the US Advanced Battery 

Consortium (USABC) who attempted to define requirements for energy and power, electric 

range, cost, volume, weight and calendar life of future PHEV batteries [28]. Their researchers 

considered two main modes of PHEV operation: charge depleting (CD) and charge sustaining 
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(CS) modes. CD is an operating strategy in which the vehicle’s battery state of charge (SOC) 

decreases steadily while the vehicle is driving, relying very little, if at all, on the gas engine. The 

average distance that a PHEV is capable of driving in CD mode when the battery is full is called 

the all-electric range (AER). In CS mode, the battery SOC may vary slightly but on average is 

maintained at a certain level by utilizing both engine and battery, an identical operating strategy 

is used in most hybrid electric vehicles. These types of vehicles are commonly known as 

extended range electric vehicles (EREV), but are still classified as PHEVs because of the 

hybridization between gas and electric motor.  

The USABC results suggest battery size requirements for specific AERs including energy 

and gasoline consumption for CD and CS modes. The requirements put forth by the USABC 

were selected for use as future PHEV specifications in this study because they represent a 

realistic target for future PHEV batteries. Two main vehicle batteries were highlighted by the 

USABC – a PHEV-10 and a PHEV-40, meaning PHEVs with 10 and 40 mile AERs, 

respectively. The characteristics of these vehicles are summarized in Table 3.2. For simplicity in 

estimating energy consumption, it is assumed that the engine does not turn on during CD mode. 

The process for selecting the vehicle characteristics of individual PHEVs is performed 

before the Monte Carlo loop is initialized as shown in Figure 3.7. During model initialization, the 

assumed penetration rate (UPR) of PHEVs is used to randomly assign vehicles to residential 

apartments and houses. This is accomplished by stepping through a loop of each individual 

customer (not customer groups). For each residential customer (x), a randomly generated number 

(rx), uniformly distributed between 0 and 1 is compared to the penetration rate of PHEVs (Table 

4.1). If the random number (rx) is less than the penetration rate, then a PHEV will be assigned to 

that secondary transformer location. Once the vehicles are assigned a location, a full set of 
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characteristics are assigned to each vehicle. These characteristics remain constant throughout the 

Monte Carlo Simulations. The selection method described above, where a uniform random 

number is compared to a probability value to select residential PHEV locations, is used 

extensively throughout the model to select vehicle characteristics, control the vehicle trips, and 

select locations for retail and office charging. A flow chart of the method used to select the 

vehicles and their characteristics is shown in Figure 3.8. 

Table 3.2. PHEV Technology Assumptions 

Vehicle or Battery Characteristics PHEV-10 PHEV-40 

Total Battery Size, B (kWh)1 4.85 16.6 

Available Battery Energy for CD mode or grid recharge 
when empty (kWh)1  3.4 11.6 

Outlet Recharge Rate, CR @ 120V 15A (kW) [28] 1.44 

Outlet Recharge Rate, CR @ 240V 40A (kW) [28] 7.6 

Vehicle’s Charger Efficiency (%) 90 

CD Mode Efficiency (kWh/km) [29] 0.171-0.249 0.180 – 0.264 

CS Mode Efficiency ( (L per 100 km) [29] 4.5 – 4.7 4.6 – 4.9 

Vehicle Charging Power Factor Estimate 0.95 
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Loop through each individual customer and assign PHEVs probabilistically based on the penetration rate  

Model Initialization - Choose scenario and network, calculate line impedance matrices, calculate load PDFs 

When a vehicle is added to a transformer, probabilistically select the following characteristics (Figure 3.8): 

-  battery size (B) 

- home  charge rate (CR) 

- commuting distance (D) 

- work starting (WS) and ending (WE) time  

- charging available at work (WC) 

Select PHEV 

locations and 

vehicle 

characteristics 

Generate Results 

Figure 3.7. PLF model logic flow chart showing processes to select vehicle characteristics  

Monte Carlo Loop  

Simulate customer loads  

Simulate PHEV loads 

Solve Load Flow  

Repeat for each 

half hour of a day 

and for all 

iterations 
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Generate eight uniformly distributed random numbers (r) between 0 
and 1 (rx, rB, rCR, rWS, rWE, rWC, rD1, rD2) 

Select Next Customer (x) 

Select Battery size (B), Equation (3.9) 

Is rx < UPR? 

No  

Yes  

Select home charge rate (CR), Equation (3.10) 

Select time vehicle leaves home for work in the morning (WS), Equation 
(3.11) 

Select time the vehicle leaves work for home in the evening (WE), Equation 
(3.12) 

Select if the vehicle can charge at work or not (WC), Equation (3.13) 

Select one-way commuting distance (D); see Figure 3.9 and Equation (3.14). 

All Customers Finished? 

Done 

Yes  

No 

Start 

Figure 3.8. Flow chart for probabilistic selection of individual residential vehicle 
charactersistics. U is a probability value. The superscripts are: x – customer number, PR – 
penetration rate, B – battery size, CR – charge rate, WS – Work start time, WE – work end 
time, WC – Work Charging, D – commuting distance.  

Add a PHEV to the transformer that the customer is connected to 

No 
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The probabilistic selection method to determine the vehicle characteristics that are used 

throughout the simulations (Figure 3.8) begins by selecting the battery size (B) from the 

probability value (𝑈𝑈𝐵𝐵) and the randomly generated number (rB): 

𝐵𝐵 =  �
4.85   𝑟𝑟𝐵𝐵 < 𝑈𝑈𝐵𝐵

16.6    𝑟𝑟𝐵𝐵 ≥ 𝑈𝑈𝐵𝐵
 � (3.9) 

The charging rate (CR) used for home charging is selected next:  

𝐶𝐶𝐶𝐶 =  �
1.44 𝑘𝑘𝑘𝑘   𝑟𝑟𝐶𝐶𝐶𝐶 < 𝑈𝑈𝐶𝐶𝐶𝐶

7.60 𝑘𝑘𝑘𝑘    𝑟𝑟𝐶𝐶𝐶𝐶 ≥ 𝑈𝑈𝐶𝐶𝐶𝐶  � (3.10) 

The time that the vehicle leaves home for work (WS) in the morning is:  

𝑘𝑘𝑆𝑆 =  

⎩
⎪
⎨

⎪
⎧07: 00                𝑟𝑟𝑘𝑘𝑆𝑆 < 0.2

07: 30     0.2 < 𝑟𝑟𝑘𝑘𝑆𝑆 ≤ 0.4
08: 00     0.4 < 𝑟𝑟𝑘𝑘𝑆𝑆 ≤ 0.6
08: 30     0.6 < 𝑟𝑟𝑘𝑘𝑆𝑆 ≤ 0.8
09: 00                 𝑟𝑟𝑘𝑘𝑆𝑆 > 0.8   

� (3.11) 

The WS variable is then used to select the time that the vehicle leaves work for home (WE) 

𝑘𝑘𝑃𝑃 =  

⎩
⎪
⎨

⎪
⎧ 𝑘𝑘𝑆𝑆 + 6.5 ℎ𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜                  𝑟𝑟𝑘𝑘𝑃𝑃 < 0.2
𝑘𝑘𝑆𝑆 + 7 ℎ𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜        0.2 < 𝑟𝑟𝑘𝑘𝑃𝑃 ≤ 0.4
𝑘𝑘𝑆𝑆 + 7.5 ℎ𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜    0.4 < 𝑟𝑟𝑘𝑘𝑃𝑃 ≤ 0.6
𝑘𝑘𝑆𝑆 + 8 ℎ𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜        0.6 < 𝑟𝑟𝑘𝑘𝑃𝑃 ≤ 0.8

   𝑘𝑘𝑆𝑆 + 8.5 ℎ𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜               𝑟𝑟𝑘𝑘𝑃𝑃 > 0.8   

� (3.12) 

The WE and WS times are fixed for each vehicle throughout the MCS. A binary variable (WC) is 

selected that is equal to one if the vehicle can charge at work and equal to zero otherwise: 

𝑘𝑘𝐶𝐶 =  �
1   𝑟𝑟𝑘𝑘𝐶𝐶 < 𝑈𝑈𝑘𝑘𝐶𝐶

0    𝑟𝑟𝑘𝑘𝐶𝐶 ≥ 𝑈𝑈𝑘𝑘𝐶𝐶  � (3.13) 
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Finally, the one-way commuting distance that the vehicle will travel each day to work is 

selected. The cumulative probability of one-way commuting distance shown in Figure 3.9 

contains data for the entire province of BC, taken from statistics Canada census 2006 [30]. This 

data was used to assign a commuting distance to each vehicle by generating a uniform random 

number (rD1) between 0 and 1. If the uniform random number fell within the cumulative 

probability for each distance range then a second uniform random number (rD2) between the 

ranges of driving distances was generated to assign a distance to each vehicle. For distances of 

over 30 km, a maximum value of 75 km was chosen as the upper bound for commuting distance 

range. For example, if the uniform random number was greater than 0.41 and less than 0.65 (i.e 

within the first “step” of Figure 3.9), a driving distance uniformly distributed between 5 and 10 

km would be selected, such as 7.1 km. To select a commuting distance (D), within the range 

[Dlow Dhigh] a uniformly distributed number (rD2) between 0 and 1 is used:  

𝐷𝐷 = 𝐷𝐷𝑟𝑟𝑜𝑜𝑙𝑙 + (𝐷𝐷ℎ𝑖𝑖𝑖𝑖ℎ − 𝐷𝐷𝑟𝑟𝑜𝑜𝑙𝑙 ) ∙ 𝑟𝑟𝐷𝐷2 (3.14) 

In any case throughout the model, where a uniform distribution is used to select between ranges 

of values, Equation (3.14) is used.  
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Figure 3.9. Piecewise cumulative distribution of one-way commuting distances for the 
province of BC. Source: Statistics Canada [30] 

 

3.5.2 Vehicle Simulation Model for Residential Customers 

The residential vehicle simulation model attempts to recreate the stochastic actions of 

vehicle operators as they commute to work and make trips away from their homes. The vehicle 

simulation model was designed for the dual purpose of predicting the temporal charging demand 

of PHEVs and also estimating the gasoline and electricity consumption of individual vehicles. 

The model assumes that all PHEV owners commute to work each day. This assumption stems 

from one of the main benefits proposed for PHEVs; that they will allow for a means of travel to 

and from the workplace using mostly electricity as the fuel [31]. The process for determining 

vehicle charging demand at residential and commercial locations is shown in Figure 3.10. 
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Model Initialization - Choose scenario and network, calculate line impedance matrices, calculate load PDFs, 

select vehicles locations and characteristics 

Start of day, h = 1 

Generate Customer Loads for half-hour (h) 

h = h + 1 

h = H? 

i = I? 

Solve the load flow algorithm 

 

Select Residential PHEV 

Determine Retail PHEV Demand 

Determine status of PHEV 

If driving, adjust SOC at end of time interval, and calculate any gasoline used 

If connected to the network – add load to the transformer and adjust SOC 

All PHEVs 
finished? 

Select Next Residential 

PHEV 

Determine Office PHEV Demand 

Sum PHEV demands and customer 

demands 

i = i + 1 Results 
Y 

Y 

Y 

N 

N 

N 

Figure 3.10 Model logic flow chart showing process for determining vehicle charging demand 
at residential and commercial locations 
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For all simulated vehicle charging considered in this thesis, an uncontrolled charging 

scenario is assumed. This means that when vehicles are parked at their home base they are 

always connected to the grid and charging at a constant rate until the battery is fully charged. 

Charging in an uncontrolled fashion creates a “worst case” scenario of coincidental peak 

electrical demand and vehicle charging. For the first time point (00:30) of the first iteration of the 

model, all residential vehicle batteries are assumed to be fully charged and parked at home. For 

subsequent iterations, all charging loads, vehicle locations and battery SOCs carry over when the 

next MCS iteration begins. The SOC of each PHEV and the demand for each vehicles charging 

is tracked throughout the simulation to ensure the battery SOC limits are not exceeded, and to 

determine the timing of the vehicles electricity demand on the grid. 

Each PHEV that resides in a detached home or apartment building on the network is 

simulated using a set of simple rules that define their actions. There are two trips for each vehicle 

that must occur during each 24 hour period – commuting to and from work. Apart from these 

mandatory trips, there are three periods during each day in which trips can be taken. These three 

non-commuting trip periods are shown in Figure 3.11, which is adapted from a travel demand 

analysis model presented by Bhat et al. [32] who used surveys of U.S. drivers to estimate the 

probability (U) of a trip occurring within the travel period. For each simulated vehicle, only one 

trip can occur during each trip period of Figure 3.11, as the data from Bhat et al. showed that two 

or more trips during each trip period occurred with much lower frequency than a single trip.  

At the first time point of each non-commuting period, a decision is made that determines if 

a vehicle trip occurs based on the probabilities shown in Figure 3.11. If a trip is to occur, the start 

time, length of time and total distance of this trip is then probabilistically selected. All non-

commuting trip distances are assumed to be normally distributed and the mean distance (µtrip) 
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travelled during these trips is estimated from data in the US National Personal Transportation 

Survey (NPTS, Table 5.17) [33]. A 15% standard deviation (σtrip) is assumed for the trip 

distances.  

 

Figure 3.11. Schematic of vehicle simulation timeline and assumptions for driving distances 
and trip times. Circles represent time periods during the day in which trips can be taken. 
Probabilities of trips, mean distances and standard deviations of those trips are given in the 
square boxes along with a description of the trip timing.  

 

The mean distances and probability values in Figure 3.11 are used in simulating the vehicle 

trips for both apartments and detached dwellings. The data presented by Bhat et. al [32] showed 

that additional trips taken during the morning commute happened with a very low probability, 

Morning 

Commute 

No extra 

trips Work Day 
Trips 

Evening 
Commute 

Trips after work 

Trip occurring 
during work hours 

U = 0.344 

μtrip = 10.4 km 

σtrip = 1.57 km 

Time length of trip: 

 0.5 hours  

Timing of trip:  

Uniformly between 
work start and end 

Additional trip for 
evening commute 

U = 0.352 

μtrip = 14.9 km 

σtrip = 2.2 km 

Time length of trip:  

0.5 hours 

Timing of trip:  

0.5 hours added to 
end of evening 

commute 

Evening trip away 
from home 

U = 0.324 

μtrip = 29.3 km 

σtrip = 4.395 km 

Time length of trip: 

 Uniformly between 
0.5 – 4 hours 

Timing of trip:  

Trip start time is 
uniformly distributed 
between 0.5-4 hours 
after returning home 

from commute  

Work Start Time – 
time vehicle leaves 

home 

Work End Time 
– time vehicle 
leaves work 

24:00 

Daily Vehicle Timeline 

Early morning trip 
away from home 

U = 0.023 

μtrip = 29.3 km 

σtrip = 4.395 km 

Time length of trip: 

1 hour 

Timing of trip:  

Trip starts uniformly 
between 24:00 and 

work start time 

Time of day 
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thus no additional morning trips are considered in this analysis. In contrast, a higher percentage 

of drivers (35.2%) made an additional trip during their evening commute and 32.4% of surveyed 

drivers made a trip after returning home from work. After midnight and before work, there is a 

2.3% probability that a vehicle will take a trip, based on data from the US NPTS (Table 5.20) 

[33]. This trip is distributed identically to the evening trips; however it lasts for an hour only.  

When a PHEV trip is triggered and a driving distance (Dtrip) selected, a value for energy 

consumption per kilometre is generated for CD mode from the range given in Table 3.2. The CD 

mode efficiency (ηCD) is used to calculate the amount of energy to withdraw from a vehicles 

battery (EB): 

𝑃𝑃𝐵𝐵 = 𝜂𝜂𝐶𝐶𝐷𝐷 ∙ 𝐷𝐷𝑟𝑟𝑟𝑟𝑖𝑖𝑝𝑝  (3.15) 

If EB < SOC, then no gasoline will be used on this trip, and the new battery state of charge 

(SOCnew) is calculated as the difference between the SOC and EB:  

𝑆𝑆𝑆𝑆𝐶𝐶𝑛𝑛𝑟𝑟𝑙𝑙 = 𝑆𝑆𝑆𝑆𝐶𝐶 − 𝑃𝑃𝐵𝐵  (3.16) 

However, if EB > SOC after calculating Equation 3.15, then the battery will be depleted during 

the trip and a CS mode efficiency value (ηCS) is generated from Table 3.2. The remaining 

distance that the vehicle travels on gasoline is estimated (Dtrip,new):  

𝐷𝐷𝑟𝑟𝑟𝑟𝑖𝑖𝑝𝑝 ,𝑛𝑛𝑟𝑟𝑙𝑙 = 𝐷𝐷𝑟𝑟𝑟𝑟𝑖𝑖𝑝𝑝 −
𝑆𝑆𝑆𝑆𝐶𝐶
𝜂𝜂𝐶𝐶𝐷𝐷

 (3.17) 

This new distance is used with the charge sustaining efficiency to calculate the amount of 

gasoline used for that trip:  
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𝐺𝐺 = 𝐷𝐷𝑟𝑟𝑟𝑟𝑖𝑖𝑝𝑝 ,𝑛𝑛𝑟𝑟𝑙𝑙 ∙ 𝜂𝜂𝐶𝐶𝑆𝑆  (3.18) 

The amount of gasoline (G) and battery energy used for each vehicle trip is stored for the 

purposes of estimating individual vehicle grid energy consumption and emissions from driving. 

The process for determining gasoline and battery energy usage for each trip is shown in Figure 

3.12.  

3.5.3 Charging Simulation for Office Customers 

To simulate charging demand at office locations (𝑆𝑆𝑛𝑛 ,ℎ ,𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ,𝑜𝑜𝑓𝑓𝑓𝑓𝑖𝑖𝑐𝑐𝑟𝑟 ) on the network, a simplified 

approach is taken. First, all office charging is assumed to be performed at 120V (1.44 kW). The 

probability of an office location providing charging stations is determined during model 

initialization. This probability value is assumed to be the same as that for the probability of a 

residential PHEV being able to charge while at work (Table 4.1). To estimate the number of 

charging stations that each office customer can install, a small percentage of the transformer’s 

kVA capacity is allocated to vehicle charging stations using the “Fraction of capacity for 

charging” value from Table 4.1:  

# 𝑜𝑜𝑓𝑓 𝐶𝐶ℎ𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑜𝑜 =
𝑃𝑃𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟𝑖𝑖𝑜𝑜𝑛𝑛 𝑜𝑜𝑓𝑓 𝐶𝐶𝑟𝑟𝑝𝑝𝑟𝑟𝑐𝑐𝑖𝑖𝑟𝑟𝐶𝐶 𝑓𝑓𝑜𝑜𝑟𝑟 𝐶𝐶ℎ𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 ∗ 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑 𝐶𝐶𝑟𝑟𝑝𝑝𝑟𝑟𝑐𝑐𝑖𝑖𝑟𝑟𝐶𝐶 (𝑘𝑘𝑃𝑃𝑘𝑘)

𝑃𝑃𝑟𝑟𝑜𝑜𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖
 (3.19) 

The number of chargers is then rounded to the nearest whole number. The plug rating value in 

Equation (3.19) is the plug real power (e.g. 1.44 kW) adjusted for a 0.95 power factor. Each 

installed office charger is assumed to be utilized for vehicle charging during each day.  

To estimate the office PHEV charging demand at each installed charger, a vehicle is 

assumed to arrive with a uniform probability between 07:00 and 09:00 with a SOC uniformly  
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Vehicle trip is triggered 

Select CD mode efficiency 

(Equation 3.14) and Table 1, ηCD
 

Calculate battery energy used 
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Equation (3.17) 
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consumption used for this trip 
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Figure 3.12. Process to calculate gasoline and battery energy used for each vehicle trip 

Select CS mode efficiency 

(Equation 3.14) and Table 3.2, ηCS
 

Determine distance and timing of 

the trip (Figure 3.11) 
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distributed between 0 and 50% of its capacity. The vehicle’s battery size (kWh) is selected each 

day upon arrival using the same assumptions for battery technology that are used to select 

batteries for residential PHEVs. The vehicle is connected immediately upon arriving at work and 

starts charging. Daytime vehicle trips for office PHEVs use the same set of assumptions as those 

for the daytime trips of residential PHEVs. 

3.5.4 Charging Simulation for Retail Customers 

Estimating PHEV charging at retail locations requires a different approach than that used 

for the office or residential vehicle charging simulations. Vehicles connecting to retail charging 

stations would be doing so for short periods of time while performing small personal tasks such 

as shopping or eating. This kind of charging is known as “opportunity charging” [22] and is 

assumed to occur at 240 V (7.6 kW). The probability of a retail location providing charging and 

the number of chargers at each location are calculated as for the office locations using Equation 

3.19. To determine the demand (𝑆𝑆𝑛𝑛 ,ℎ ,𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟 ) and timing of retail charging, traffic volume data 

from BC was used to calculate a probability distribution of vehicles on the road, shown in Figure 

3.13 [34]. Charging events at retail locations were triggered by comparing the probability of 

vehicle charging (𝑈𝑈ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟 ) from Figure 3.13 to a uniform random number (rretail). Charging events 

at retail locations last only for a half hour.  
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Figure 3.13. Probability of vehicle charging at retail locations by time of day 
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4 Scenario Definition and Network Characterization 

This chapter provides a summary of three scenarios used as inputs to the MCS model. The 

scenarios represent increasing penetrations of PHEVs and improved technological advancement 

of charging infrastructure. Three networks are selected for analysis representing suburban, urban 

and rural locations. The defining characteristics of each network are presented.  

4.1 Scenario Definition 

The model incorporates three scenarios for investigating the PHEV impacts. The scenarios 

were created to capture the uncertainty of vehicle technology, charging infrastructure and local 

penetration of PHEVs. For the purposes of this thesis, PHEV penetration is defined as the 

probability of a residential customer in the given network owning a PHEV (Figure 3.8, UPR). The 

assumptions for each scenario are summarized in Table 4.1. Scenario 1 (“low scenario”) 

represents a low penetration (5%) of PHEVs where most charging occurs at 120V and there is 

limited availability of charging stations at office and retail locations. Scenario 2 (“medium 

scenario”) includes a 15% penetration of PHEVs at residential locations with a higher probability 

of office and retail charging. Scenario 2 also has higher charge rates for homes than Scenario 1. 

Scenario 3 (“high scenario”) has the highest penetration of vehicles considered, with higher 

charge rates and increased installations of retail and office charge stations. These three scenarios 

are meant to cover a range of possibilities for PHEVs in the future.  
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Table 4.1. Scenario definition for increasing PHEV technological advancement 

Parameter Scenario 1 – 
Low  

Scenario 2 – 
Medium  

Scenario 3 – 
High  

Residential PHEV penetration rate (UPR) 0.05 0.15 0.25 
Apartment PHEV penetration rate (UPR,apt) 0.025 0.075 0.25 
Probability of retail location installing 
chargers 0.2 0.3 0.5 

Probability of office location installing 
chargers 0.2 0.5 0.6 

Fraction of capacity for charging 0.025 0.05 0.1 
Probability of residence charging at 120V 
(UCR) 0.75 0.25 0.1 

Probability of a PHEV having a small 
battery (4.85 kWh), (UB) 0.5 0.5 0.5 

Probability of a residential PHEV owner 
being able to charge at the workplace (UWC) 0.2 0.5 0.6 

 

4.2 Network Characterisation  

The variety of customer types and demographics within the small areas served by 

distribution networks leads to drastically different characteristics between some networks. These 

characteristics include:  

- various levels and types of residential, commercial and industrial loads, 

- different amounts of three phase and single phase loads, 

- network topology variations including differences between total length and lengths of 

single and three phase sections, 

- different network voltage levels (25.2 kV, 14.4 kV, etc) and substation MVA ratings. 

To include the uncertainties and differences in network types, three networks were selected 

that supply different levels of the four customer types: office, retail, apartment and house. The 

selected networks are representative of suburban, urban and rural locations. All three networks 
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are real distribution networks within the provincial grid. The network data was provided by BC 

Hydro. Figures showing the topology and relative lengths of the networks are included in 

Appendix D. The defining parameters for each of the network types are shown in Table 4.2 and 

the customer type distributions by connected capacity are summarized in Figure 4.1.  

Table 4.2 contains a parameter called “network capacity”, which represents the capacity 

that is allocated to this network through the substation. It is generally advisable to keep the 

demand below this level to avoid excessive voltage drops or current overloads. The percentage 

of capacity values shown in Figure 4.1 are calculated using the rated capacity of the secondary 

transformers (𝑆𝑆𝑛𝑛
𝑐𝑐 ,𝑐𝑐𝑟𝑟𝑝𝑝 ) for each customer class (c): 

% 𝑜𝑜𝑓𝑓 𝐶𝐶𝑟𝑟𝑝𝑝𝑟𝑟𝑐𝑐𝑖𝑖𝑟𝑟𝐶𝐶 =
∑ 𝑆𝑆𝑛𝑛

𝑐𝑐 ,𝑐𝑐𝑟𝑟𝑝𝑝𝑁𝑁
𝑛𝑛=1

∑ 𝑆𝑆𝑛𝑛
𝑐𝑐𝑟𝑟𝑝𝑝𝑁𝑁

𝑛𝑛=1
,    ∀ 𝑐𝑐 = {ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟, 𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑛𝑛𝑟𝑟, 𝑜𝑜𝑓𝑓𝑓𝑓𝑖𝑖𝑐𝑐𝑟𝑟, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟, 𝑜𝑜𝑟𝑟ℎ𝑟𝑟𝑟𝑟} (4.1) 

 

The urban network contains 51% of its connected capacity as office loads, with a further 

7% of the connected capacity coming from retail locations (Figure 4.1). The suburban location 

serves primarily houses and a few apartment buildings with less than 1% office and retail 

connected capacity. The rural network also serves primarily houses, however, it also contains 

small amounts of office, retail and apartment loads. This network is quite typical of rural areas; it 

contains very long single and three phase sections due to the spread of customers over a wide 

geographical area, and has a very large amount of connected capacity. It is important to note that 

the individual customer loads are not distributed evenly by connected capacity (Section 3.2) and 

thus, Figure 4.1 may not reflect the total demand from each type of customer. 
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Table 4.2. Summary of representative network characteristics 

Parameter Suburban Urban Rural 
Total Length (km) 26.1 10.1 114.6 
Length of Three Phase Sections (km) 6.3 8.1 18.3 
Length of Single Phase Sections (km) 19.8 2.0 96.3 
Line-to-Line Voltage (kV) 25.2 12.6 25.2 
Network Capacity  (MVA) 12 6 12 
Recorded Peak Feeder Demand (MVA) 9.4 3.8 11.8 
Total Connected Capacity (kVA) 14, 735 7,375 24,900 
Number of Secondary Transformers 244 59 769 
Number of Three Phase Transformers 3 11 7 
Total number of customers 1983 494 2169 

 

 

Figure 4.1. Percentages of total connected capacity of each customer type for the selected 
networks. Values less than 1% have not been shown 
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5 Results and Analysis  

In this chapter, the results of the model simulations are presented and analyzed. A 

convergence analysis is first performed and the model inputs are shown summarizing the number 

of vehicles simulated on the networks for each scenario. The networks are investigated 

considering three main categories of possible impacts: PHEV demand, bus voltages and 

transformer overloads. Emissions and gasoline use from individually simulated residential 

vehicles are calculated.   

5.1 Convergence Analysis and Model Input Results 

The model was first run for 500 iterations to determine a suitable stopping point criterion 

explained in terms of the number of iterations that could be used for subsequent analyses. The 

line current entering a single-phase bus at 18:00 hours with PHEV charging is chosen to analyze 

the evolving mean and standard deviation of the calculated current as the iterations progress. As 

shown in Figure 5.1, the mean and standard deviation of the value changes with each progressive 

iteration and approaches a converged value. A value of 350 total iterations is chosen for the 

model because at this point the mean values have changed less than 0.1% in at least 50 

subsequent iterations. 



47 
 

 
 

 

Figure 5.1. Convergence of the mean and standard deviation for the load at a residential 
single phase bus with PHEVs at 18:00 hours. 

 

Initially, a scenario without PHEV charging is run on each network to determine the base 

network demand. Following this, the three scenarios (Table 4.1) are run on all three networks 

creating 12 model data sets. A summary of the office and retail chargers and the simulated 

residential vehicles for each scenario and network is shown in Table 5.1. The values found in 

Table 5.1 are selected before the MCS iterations begin using the probabilistic methods outlined 

in Section 3.5, and are constant throughout the given simulation.  
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Table 5.1. Categorization of residential vehicles, office and retail charging locations for 
each scenario and network 

Parameter 
Suburban Urban Rural 

L1 M H L M H L M H 
Total number of office chargers  0 0 30 16 65 178 5 12 10 
Total number of retail chargers  0 3 1 5 12 53 4 27 49 
 
Residential Vehicle Parameter          

Total number of PHEVs 
simulated 100 296 507 21 62 114 96 292 559 

Number of 4.85 kWh batteries 57 152 251 13 33 44 40 144 300 
Number of PHEVs charging at 
7.6 kW 20 217 454 4 47 99 21 223 496 

1 L – low (scenario 1), M – medium (scenario 2), H – high (scenario 3) 

5.2 PHEVs and Network Demand 

The total demand on the network without PHEV charging, which will be referred to as 

“network demand” (𝑆𝑆ℎ ,𝑖𝑖
𝑇𝑇 ), is calculated for each half hour and averaged over the 350 MCS 

iterations to produce the “average network demand” (𝑆𝑆ℎ𝑇𝑇���):  

𝑆𝑆ℎ ,𝑖𝑖
𝑇𝑇 = �𝑆𝑆𝑛𝑛 ,ℎ ,𝑖𝑖

𝑁𝑁

𝑛𝑛=1

 
(5.1) 

𝑆𝑆ℎ𝑇𝑇��� =
∑ 𝑆𝑆ℎ ,𝑖𝑖

𝑇𝑇350
𝑖𝑖=1

350
,     ∀ ℎ 

(5.2) 

where N is the total number of secondary transformers, i is the iteration number, h is the half-

hour interval and T represents “total”. 

For each scenario and network, the demand from PHEV charging at each bus is summed 

over the entire network at each half-hour. The “average PHEV demand” (𝑆𝑆ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��������) is calculated 

for each scenario and each network as follows:  
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𝑆𝑆ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�������� =
� (� 𝑆𝑆𝑛𝑛 ,ℎ ,𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁
𝑛𝑛=1 )

350

𝑖𝑖=1
350

   …∀ ℎ 
(5.3) 

The results in Figure 5.2(a-c) show the average PHEV demand in each scenario for the three 

networks at each time interval. In each of the plots in Figure 5.2, the right hand axis shows the 

PHEV demand normalized to the demand without PHEVs (�̇�𝑆ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��������) during each time interval:  

�̇�𝑆ℎ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�������� =
𝑆𝑆ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑆𝑆ℎ𝑇𝑇
   …∀ ℎ (5.4) 

For all of the networks shown in Figure 5.2, a large demand for vehicle charging in the 

peak period between the hours of 16:00 and 19:00 is evident due to the return of vehicles after 

their evening commutes. Then, as batteries become fully charged and drivers make evening trips 

away from their homes, the peak charging diminishes after 19:00 and levels off. The charging 

continues throughout the evening and early morning hours as vehicles return from evening trips 

and charge throughout the night. The urban network, Figure 5.2(a), with its higher proportion of 

office and retail loads, shows an increase in demand during the morning hours from 7:00 to 

10:00 caused by vehicles charging at workplaces. A small amount of retail charging at the urban 

location adds only a small amount to the total PHEV charging demand as demonstrated in Figure 

5.3, by separating the PHEV demand into office, retail and residential portions 
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Figure 5.2. Average PHEV demand for each scenario on (a) urban, (b) suburban and (c) 
rural networks at each time interval. Error bars show the extreme values of maximum and 
minimum PHEV demand for the high scenario. 
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Figure 5.3. Average PHEV demand for scenario 3 on the urban network showing 
residential, office, retail and total PHEV demand. 

 

To further examine the impact of the PHEV demand on the three networks, the network 

demand and PHEV demand at each bus is summed for each half hour of the MC iterations to find 

the “average network demand with PHEVs” (𝑆𝑆ℎ
𝑇𝑇,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃����������) at each half-hour time interval:  

𝑆𝑆ℎ
𝑇𝑇,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃���������� =

∑ ∑ (𝑆𝑆𝑛𝑛 ,ℎ ,𝑖𝑖 + 𝑆𝑆𝑛𝑛 ,ℎ ,𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 )𝑁𝑁

𝑛𝑛=1
350
𝑖𝑖=1

350
,     ∀ ℎ 

(5.5) 

These demand curves are compared to the average network demand without PHEVs (Equation 

5.2), and shown in Figure 5.4 for the urban network, Figure 5.5 for the suburban network and 
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Figure 5.6 for the rural network. The suburban network has a demand curve similar to the rural 

network and is not shown.  

For all of the networks, the low penetration case shows a marginal increase in the network 

demand evident from the low scenario shown in Figure 5.4 and Figure 5.5. The demand 

increases significantly during the peak period for the medium and high scenarios, especially in 

the rural and suburban networks. An increase in the daytime network demand between 9:00 and 

15:00 occurs in the urban network due to the charging of PHEVs at large office locations. This 

creates a different overall load shape than the suburban or rural networks and produces a 

morning peak as vehicles arrive to work and begin charging. On the rural network, the average 

network demand exceeds the network capacity during the hours of 18:00 – 19:00.  

 
Figure 5.4. Average network demand for the urban network with PHEVs for all scenarios 
in each time interval. Error bars show the maximum and minimum values for the high 
scenario.  

  



53 
 

 
 

 

Figure 5.5. Average network demand for the suburban network. Error bars show the 
maximum and minimum values for the high scenario. 

 

Distribution designers and engineers are often concerned with the maximum demand likely 

to occur on a given network in order to determine the likelihood of faults due to overloading 

fuses and conductors. In each of Figure 5.4 to Figure 5.6 the average network demand in the high 

scenario is shown with error bars representing the maximum and minimum demand occurring 

during each time interval. The maximum demand including PHEVs in the high scenario in each 

network is 11.45 MVA, 3.966 MVA and 12.72 MVA for the suburban, urban and rural networks 

respectively. Notably the peak demand for the urban network comes at 10:00 hours, while the 

peak load for the other two networks occurs at 18:00 hours. 

 In the rural network the average demand exceeds the network capacity rating for the high 

scenario (Table 4.2). The other two networks do not exhibit any network capacity overloads. On 
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the rural network in Figure 5.6, the maximum demand is 10.4% higher than the average demand 

without PHEV charging at that time (18:00 hours).  

 

Figure 5.6. Average network demand on the rural network showing exceedance of the 
network capacity. Error bars show the maximum and minimum values for the high 
scenario. 

 

While the timing of the demand is important to distribution operation, the increase in 

energy supplied for PHEV charging is a central aspect for utility planning to estimate growth in 

aggregate energy demand. The total energy supplied without PHEV charging (𝑃𝑃𝑖𝑖𝑇𝑇) and the total 

PHEV energy supplied (𝑃𝑃𝑖𝑖
𝑇𝑇,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ) during each iteration is calculated for every scenario and 

network. The calculated energy values are averaged over the iterations and used to calculate the 

average percent increase in energy supplied (%∆𝑃𝑃𝑇𝑇�������� ) above the case without PHEV charging as 

follows:  
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%∆𝑃𝑃𝑇𝑇�������� =  
∑ �

𝑃𝑃𝑖𝑖
𝑇𝑇,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃𝑖𝑖𝑇𝑇
�350

𝑖𝑖=1

350
 

(5.6) 

 

These average percent increase in energy values are then compared to the average percent 

increase in peak demand (%∆𝑆𝑆∗,𝑇𝑇���������) as shown in Figure 5.7. The average percent increase in peak 

demand is calculated by finding the peak network demand at all iterations and calculating the 

percent increase above the network demand without PHEV charging at that time:  

%∆𝑆𝑆𝑖𝑖
∗,𝑇𝑇 =  �max�

𝑆𝑆ℎ ,𝑖𝑖
𝑇𝑇,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑆𝑆ℎ ,𝑖𝑖
𝑇𝑇

� ,∀ ℎ� ∙ 100% ,∀ 𝑖𝑖 
(5.7) 

 

These peak increase values from Equation (5.7) are averaged over the iterations (i) to produce a 

mean percent increase in peak demand for each scenario and network.  

An important aspect of charging PHEVs in an uncontrolled fashion is that the peak demand 

increases at a higher rate than energy as PHEV penetration increases. This result can be seen in 

Figure 5.7. For example, for the rural network, the increase in energy from PHEV charging rises 

from 0.47% to 2.76% in the low to the high scenarios, respectively. In comparison, the average 

percentage increase in peak demand rises from 1.10% to 9.15%.  
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Figure 5.7. Percentage increases in energy and peak demand for all three networks in all 
scenarios 

 

5.2.1 Network Losses 

Power loss on the networks is calculated using Equation (A.11) in Appendix A for each 

section (Figure A. 1) and summed over the whole network for each time point. This produces a 

total network power loss value (𝑆𝑆ℎ ,𝑖𝑖
𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑇𝑇) at each half hour throughout the simulations for every 

network and scenario:  

𝑆𝑆ℎ ,𝑖𝑖
𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑇𝑇 =  �𝑆𝑆𝑘𝑘 ,ℎ ,𝑖𝑖

𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜    
K

k=1

∀ ℎ, 𝑖𝑖 
(5.8) 
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where k is the section (branch) and K is the total number of sections. Using the total power loss 

values, daily energy loss (𝑃𝑃𝑖𝑖𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 ) on each network is then calculated for each iteration and 

averaged (𝑃𝑃𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜������ ):  

𝑃𝑃𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜������ =  
� 𝑃𝑃𝑖𝑖𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜

𝑀𝑀
𝑖𝑖=1
𝑀𝑀

 
(5.9) 

where M is the total number of MCS iterations.  

Figure 5.8 shows the average percentage increase in energy supplied to each network 

(Equation 5.6) alongside the average percent increase in energy loss in those networks. The 

increase in energy loss is calculated for the percent difference between the demand without (wo) 

PHEVs and the demand in the high scenario:  

%∆𝑃𝑃𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜����������� = �
Eloss ,PHEV������������

Eloss ,wo  PHEV���������������� − 1� ∙ 100% (5.10) 

 The percent increase in energy loss is higher than the percent increase in energy for all of 

the networks. Specifically in the urban network, energy loss increased by almost 10%. The 

energy loss in the urban network is highest because of the increases in the morning and evening 

peak demands. Although the percent increase in energy loss is higher than the percent increase in 

energy, the absolute values in Figure 5.8 show that the energy supplied for PHEV charging is an 

order of magnitude above the change in energy loss. 
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Figure 5.8. Average percent increase in energy and energy loss for the high scenario 
compared to the base case without PHEV charging. Absolute changes in energy values are 
shown above each bar in kWh.  

 

5.3 Voltage drop and Unbalance  

 Voltage drop is an aspect to consider for reliable operation of a distribution network. 

Excessively low voltages can cause electrical equipment to malfunction and damage to electric 

motors [35]. Increasing the impedance on a line causes more power loss, resulting in an 

increased voltage drop. Thus, as the distance from the source (substation transformer) increases 

on a network, so does total impedance causing the lowest system voltages to occur at the extreme 

buses of a network. A generally accepted practice for voltage limits has been set forth by the 

American National Standards Institute (ANSI), which suggests the following guidelines for 

voltage magnitudes at the point of utilization (connection of the secondary transformer) [24]:   
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- Favourable zone: between 1.05 p.u.  and 0.95 p.u. above or below nominal base voltage 

- Tolerable zone: between 0.91 p.u. and 0.95 p.u. of nominal voltage 

- Extreme (emergency) zone: between 0.90 p.u. and 0.91 p.u. of nominal voltage 

Voltages within the favourable zone will allow for satisfactory operation of equipment 

(motors, lights, computers, etc.) without noticeable problems or damage. The tolerable zone is 

acceptable for most purposes, and equipment should operate satisfactorily. However, voltages in 

the tolerable zone may be unacceptable to customers with voltage sensitive equipment, and thus 

attempts should be made to improve the voltages on the network within this range. The extreme 

or emergency zone is the last permissible voltage range. When voltages are within the 

emergency zone, most equipment will continue to function but will do so at a lower level of 

performance or incur some minor damage. It is recommended that voltages within the emergency 

zone be improved immediately through the use of a voltage regulator or shunt capacitor.  

The voltage results for each network in the high scenario are analyzed for the lowest 

occurring line-to-neutral voltage on the network and the bus location, phase and hour of this 

minimum voltage is recorded. This minimum voltage bus is then used to analyze the impact of 

PHEV charging on network voltage drop by creating histograms to compare the voltage 

magnitude with and without PHEV charging on the three networks. The histograms are shown in 

Figure 5.9, Figure 5.10 and Figure 5.11 for the suburban, urban and rural networks respectively. 

The percentage decrease in average voltage at the minimum voltage buses due to PHEV charging 

was 0.38%, 0.25% and 0.63% for the suburban, urban and rural networks respectively. The rural 

network exhibits the largest voltage drops due to the long line lengths in that network, dropping 

below the favourable zone even in the absence of PHEV charging.  The emergency zone voltage 

range is not reached in any network.  
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Figure 5.9. Bus voltage distribution for lowest single phase bus voltage on the suburban 
network at 18:00 hours 

 

Figure 5.10. Bus voltage distribution for lowest single phase bus voltage on the urban 
network at 10:00 hours. 
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Figure 5.11. Bus voltage distribution for lowest single phase bus voltage on the rural 
network at 18:00 hours. 

 

Apart from voltage drop, voltage unbalances can cause adverse impacts to three phase 

equipment on a power system such as induction motors, power electronic converters and 

adjustable speed drives [36]. In an unbalanced condition, a distribution network will incur more 

losses and will be less stable. The usual method for assessing voltage unbalance is to use the 

method from the National Electrical Manufacturers Association [24]. To calculate the maximum 

percent voltage unbalance at a three phase bus (n), the line-to-line voltage magnitudes (V) are 

used in the following expression:  
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% 𝑃𝑃𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟 𝑈𝑈𝑛𝑛𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑐𝑐𝑟𝑟𝑛𝑛

=  
𝑀𝑀𝑟𝑟𝑀𝑀𝑖𝑖𝑎𝑎𝑜𝑜𝑎𝑎 𝐷𝐷𝑟𝑟𝐷𝐷𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖𝑜𝑜𝑛𝑛 𝑓𝑓𝑟𝑟𝑜𝑜𝑎𝑎 𝑀𝑀𝑟𝑟𝑟𝑟𝑛𝑛 𝑜𝑜𝑓𝑓 {𝑃𝑃𝑟𝑟𝑈𝑈𝑛𝑛 ,𝑃𝑃𝑈𝑈𝑐𝑐𝑛𝑛 ,𝑃𝑃𝑐𝑐𝑟𝑟𝑛𝑛 }

𝑀𝑀𝑟𝑟𝑟𝑟𝑛𝑛 𝑜𝑜𝑓𝑓 {𝑃𝑃𝑟𝑟𝑈𝑈𝑛𝑛 ,𝑃𝑃𝑈𝑈𝑐𝑐𝑛𝑛 ,𝑃𝑃𝑐𝑐𝑟𝑟𝑛𝑛 }
∙ 100% 

(5.11) 

where a, b and c represent the phases.  It is recommended that electrical supply systems should 

be designed to limit the maximum voltage unbalance to 3% to avoid the majority of problems for 

three phase equipment on the network [36]. 

Voltage unbalance is calculated for each three phase bus on the network by first converting 

all of the line-to-neutral voltages to line-to-line voltages. Equation (5.11) is used to calculate a 

percent voltage unbalance at each bus for each hour and iteration. The maximum percent voltage 

unbalance is shown in Figure 5.12 for each network with and without PHEV charging. In Figure 

5.12, the bus with the highest maximum voltage unbalance is selected. The charging of PHEVs 

causes a slight increase in the maximum unbalance on all three networks, increasing the 

maximum unbalance to 0.55%, 1.06% and 2.01% for the suburban, urban and rural networks 

respectively. The limit of 3% maximum voltage unbalance is not reached in any of the networks. 

The unbalance is highest in the rural network because of the presence of large single phase 

sections on the network.  
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Figure 5.12. Maximum percent voltage unbalance for a three phase bus on each network 

 

5.4 Transformer Overloads  

In the following section, the term overload refers to an exceedance of a transformer’s rated 

power capacity.  

5.4.1 Transformer Overloading  

The overloading of both primary (substation) and secondary transformers is a concern 

associated with the economical operation of distribution networks. For secondary transformers 

this is important when considering the upgrade of charging to 240V as numerous households 

charging PHEVs simultaneously at this level would add a load that is much higher than typical 

household loads.  
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To investigate secondary transformer overloading, the number of transformers with an 

overload above 20% of their rated capacity are counted at each time interval. The value of 20% 

greater than the rating is chosen because loss of life is not expected to be very significant below 

this level [37]. The percentage of transformers overloaded at each time step is then averaged over 

the iterations to produce an average percentage of overloaded transformers for each time step:  

%𝑆𝑆𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝑑𝑑ℎ𝑇𝑇����������������� =  
∑ �

𝑇𝑇𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟 𝑁𝑁𝑜𝑜𝑎𝑎𝑈𝑈𝑟𝑟𝑟𝑟 𝑜𝑜𝑓𝑓 𝑆𝑆𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝑑𝑑𝑜𝑜𝑖𝑖 ,ℎ
𝑁𝑁 �𝑀𝑀

𝑖𝑖=1

𝑀𝑀
,∀ ℎ 

(5.12) 

where M is the total number of MCS iterations 

 Figure 5.13 (a-c) shows the average percentage of overloaded secondary transformers 

(%𝑆𝑆𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝑑𝑑ℎ𝑇𝑇�����������������) at each time step (h) in the high scenario and in the absence of PHEVs for the 

three networks. The rural network, Figure 5.13 (c), shows a small amount of transformer 

overloading which increases a small amount when PHEVs are added. The urban network, Figure 

5.13 (b), shows almost 10% of the transformers are overloaded in the absence of PHEVs; 

however, when considering the high scenario, PHEVs do not increase the amount of overloads 

significantly. The suburban network, Figure 5.13 (a), shows the most secondary transformer 

overloading accounting for nearly 25% of all the transformers in the network at 18:00 hours in 

the high scenario. The suburban network also has the highest increase in transformer overloading 

when PHEVs were added. 
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Figure 5.13. Average percentage of overloaded secondary transformers with and without 
PHEV charging for (a) suburban, (b) urban and (c) rural networks for the high scenario 

 

5.4.2 Transformer Insulation Loss of Life 

The overloaded transformer percentages (Figure 5.13) provide an estimate of the number of 

transformers that have some degree of overloading; however, it does not provide information 

about the impact on the lifetime of the transformers caused by overloading. During transformer 

operation the core material and tape insulation on the windings heats up and degrades slightly. 

Under normal operation the lifetime of the transformer insulation can be greater than 20 years, 

but overloading will decrease this expected lifetime.  

The IEEE standard C57.91-1995 provides a guide to loading mineral oil immersed 

transformers and a method for estimating the insulation loss of life associated with overloading 
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of these transformers [37]. The loss of life is a function of the degree and duration of the 

overload as well as the ambient temperature of the surroundings and the design of the 

transformer. The method used to estimate the percent insulation loss of life is summarized in 

Appendix E. The definition of normal life is based on retaining 25% tensile strength of the 

insulation material for continuous operation of a transformer at rated capacity and a “hottest 

spot” insulation temperature of 110 ⁰C. This definition leads to an estimated lifetime of 180,000 

hours or 20.55 years. For a 24 hour period of operation at rated capacity and hottest spot 

temperature of 110 ⁰C, the daily percent loss of life is estimated to be 0.018% per day. 

Calculated loss-of-life values below 0.018% will extend the life of the transformer beyond its 

expected lifetime.  

The standard C57.91-1995 is applicable to a wide range of transformer sizes and can be 

used to estimate the percent loss of life on secondary transformers. To analyze transformer 

insulation loss of life, three overloaded secondary transformers from the suburban network are 

used for the calculations. Two of the transformers used for the calculation have a 25 kVA rated 

capacity, while the other has a 50 kVA rated capacity. The characteristics of these three 

transformers are shown in Table 5.2 

The calculations are made using the average load supplied to each transformer for a 24 

hour period (𝑆𝑆𝑛𝑛 ,ℎ�����). The manufacturer specifications used for the individual transformer 

calculations are found in Appendix E. The percent loss of life, shown in Figure 5.14, is 

calculated for the three transformers assuming constant daily ambient temperatures of 5⁰C and 

25⁰C to represent loading in the winter and summer respectively.  

 



67 
 

 
 

 

Table 5.2. Summary of characteristics for loss of life calculations on three secondary 
transformers 

Parameter Transformer 1 Transformer 2 Transformer 3 

Rated Capacity (kVA) 25 50 25 

Ratio of peak transformer load to 
rated capacity 

1.86 1.78 1.36 

Duration of overload (hours) 15.5 17 6.5 

Number of Customers connected 6 9 7 

Number of PEVs at 120V 0 1 0 

Number of PEVs at 240V  2 4 1 

 

The transformer loss of life increases exponentially with the hottest spot insulation 

temperature (Appendix E). Transformers 1 and 2 show the highest average loadings of 186% and 

178% of rated capacity, respectively. They also have the longest duration of overloads (Table 

5.2). This leads to very high percent loss of life for both of these transformers when compared to 

the expected loss of life (0.018% per day). If repeated overloading of transformers 1 and 2 were 

to occur for a long period of time, the cumulative loss of life would be significant.  

Transformers 1 and 2 are excessively overloaded, especially in the presence of PHEVs. 

However, transformer 3 shows a lower peak overload and shorter duration of overload than the 

other two transformers and thus its loss of life is significantly lower. The calculated loss of life 

for transformer 3 is below the expected loss of life, even though it is loaded up to 136% of its 

rated capacity.  The results in Figure 5.14 provide strong evidence that there is negligible loss of 

life for a transformer that is subjected to an overload that is less than 20% above its rated 
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capacity. The vast majority of the overloaded transformers on this network (Figure 5.13) exhibit 

overloads between 20-30% above their rated capacity where loss of life is not significant. 

In the transformer loss of life calculation, the ambient temperature has a linear effect on the 

hottest spot temperature. Thus, for a given transformer loading profile, higher ambient 

temperature can significantly increase the transformer loss of life.  

 

Figure 5.14. Average percent loss of life for one day considering three secondary 
transformers from the suburban network at 5⁰C and 25⁰C ambient temperature. Values 
are shown above the bars. 

 

5.5 Vehicle Simulation Results and GHG Analysis  

For all vehicle results considered in this section, the vehicles from the rural network are 

used. The assumptions determining the vehicles behaviour during the simulations do not change 
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for a scenario or network, so the network and scenario with the most vehicles is chosen for the 

analysis.  

For the residential vehicles, the energy derived from the grid (grid energy) and the gasoline 

consumed for each vehicle trip is tracked for the entire simulation. The average gasoline use is 

calculated for each vehicle on a per day basis by averaging over the iterations. Figure 5.15 shows 

a histogram of average daily gasoline use. As expected, daily gasoline consumption is higher for 

vehicles in the low scenario due to the lower availability of charging locations away from home. 

For the high scenario in Figure 5.15, 78% of vehicles do not use any gasoline for the entire 

simulation, compared to 56.2% and 33.3% in the medium and low scenarios, respectively. 

 

Figure 5.15. Distribution of average gasoline consumption per day for all vehicles in the 
rural network 
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To investigate the relationship between energy, gasoline and commuting distance, the 

average daily grid energy and gasoline used for each vehicle is plotted against one-way 

commuting distance in four different combinations of battery size and home charging rate as 

shown in Figure 5.16 (a-d). The low, medium and high scenario vehicles are pooled together in 

Figure 5.16. This can be done because the simulation of residential vehicles does not change 

between scenarios, only the technology and number of vehicles changes.  

In each of Figure 5.16 (a-d) the grid energy and gasoline use trends show a distinct 

bifurcation at a specific commuting distance at which one trend levels off near the battery 

capacity, while the other levels off at double the battery capacity. The upper trend representing 

double the battery size is caused by vehicles which can charge at their workplace. Also, above a 

threshold commuting distance, a linear trend in gasoline consumption is seen as commuting 

distance increases. This threshold is increased for those vehicles with the ability to charge at the 

workplace. When commuting distances are small, there is very little if any gasoline consumption.  

In both Figure 5.16 (a) and (b), all of the small battery vehicles have an average daily 

gasoline use above zero. However, at low commuting distances the gasoline use is very low.  

Comparing between Figure 5.16 (a) and (b) shows that home charging at 240V (7.6 kW) has 

little to no effect on gasoline consumption or grid energy used for small battery vehicles. The 

bifurcation point between PHEVs with no workplace charging and those with workplace 

charging occurs at a one-way commuting distance of approximately 5 km.  

The larger batteries, Figure 5.16 (c) and (d), use significantly less gasoline and more grid 

energy than the smaller battery vehicles. The larger battery vehicles use no gasoline if their 

commuting distance is below a threshold of approximately 20 km. Comparing between Figure 
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5.16 (c) and (d), the ability for home charging at 240V does not appear to affect the gasoline 

consumption or grid energy used per day.  

An interesting trend in Figure 5.16 is seen by comparing the gasoline usage between the 

small batteries and large batteries in Figure 5.16 (b) and (d), respectively. In Figure 5.16 (b) the 

gasoline consumption lines run nearly parallel after the bifurcation point, suggesting that the 

ability to charge small batteries at work has little effect on daily gasoline usage if the commuting 

distance is high. However, in Figure 5.16(d) the gasoline consumptions lines are further apart 

after the bifurcation point showing that even for very high commuting distances, larger battery 

PHEVs can significantly reduce gasoline usage, especially if they can charge at their workplace.  

 

Figure 5.16. Average daily energy and gasoline usage verses commuting distance for 
combinations of battery sizes and charging rates. (a) 4.85 kWh batteries, 1.44 kW charge 
rate, (b) 4.85 kWh batteries, 7.6 kW charge rate, (c) 16.6 kWh batteries, 1.44 kW charge 
rate and (d) 16.6 kWh batteries, 7.6 kW charge rate. 
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Emissions from vehicle operation are often cited as a major reason for widespread adoption 

of electric vehicle technologies. Emissions from the grid in BC are significantly lower than other 

jurisdictions due to the high proportion of hydro electric power dominating the generation 

mixture. In 2008, BC hydro reported an average emission intensity of 22 tCO2e/GWh [38], a 

value significantly lower than the Canadian average of 217 tCO2e/GWh [39]. Using the BC 

hydro reported emissions intensity (22 tCO2e/GWh) and a value of 9.254 kg CO2e per gallon of 

gasoline [39], average daily emissions are calculated using the same vehicles as in Figure 5.16. 

The combined gasoline and grid energy average daily emissions are plotted in Figure 5.17 

against the average daily distance driven for each vehicle.  

 

Figure 5.17. Scatter plot of average emissions verses the average daily distance. 

 

The scatter plot of average emissions in Figure 5.17 shows that vehicle emissions increase 

rapidly as vehicles drive further and use more gasoline. Emissions are lower for the larger 
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batteries because they derive more energy from the grid than the smaller batteries. The larger 

battery vehicles are more likely to drive solely on electricity and a large proportion obtained 

more than 90% of their kilometres from grid energy. The average emissions rate for the larger 

batteries is 0.38 kgCO2e/day, while the small batteries have an average of 1.31 kgCO2e/day. 

These averages are quite low due to the small commuting distances used as inputs to the model 

and can be seen by the clustering of points around the low ranges of average distance in Figure 

5.17.   
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6 Discussion 

This chapter begins with a discussion of the impact of PHEV charging on network demand 

and the implications for each type of network. Next, the results from the voltage drop and 

unbalance analysis are discussed followed by a thorough treatment of the consequences of 

transformer overloading and loss of life. Emissions results are summarized and a discussion of 

the impact of generation mixture on emissions in BC is given.  

6.1 Network Demand  

The coincidence between peak electricity demand and vehicles returning home from daily 

commutes is one of the main near-term concerns for utilities when considering electric vehicles. 

Model results show that as vehicles return home and begin charging, they can cause a large 

increase in the peak demand on a network (Figure 5.7). In the suburban and urban networks, the 

peak simulated network demand is not high enough to cause overloading above the suggested 

network capacity. Thus, increased peak demand from PHEV charging does not appear to be a 

significant concern for the reliable supply of power, even for high PHEV penetrations of up to 

25%.  

For the rural network, the measured peak demand (Table 4.2) is near the suggested network 

capacity. As a result, PHEV penetrations in excess of 15% on this network cause overloads and 

excessive voltage drops during high demand days.  

As PHEVs numbers grow, the peak demand may increase at a higher rate than the increase 

in energy supplied to the network due to PHEV charging (Figure 5.7). The peak demand 

increases more than energy growth because of a wider assumed availability of 240V chargers at 

residences. A further result of a higher peak demand is that the energy loss in the networks 
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increases more than the energy growth because of the losses being a function of the square of the 

current (Equation A.12). Economically this is undesirable because more energy needs to be 

generated to meet the incremental demand. This result is a further example of the need for 

vehicle charging control.  

PHEV demand at retail and office locations differs significantly from residential PHEV 

demands. The urban network exhibits an increase in the demand during the daytime hours 

creating a morning peak on this network (Figure 5.4). Areas with high office loads, such as the 

urban network, may exhibit similar morning peak demands if workplaces are willing to install 

charging locations for their employees. A network with a high level of retail demand was not 

considered (see Figure 4.1). It is uncertain whether the charging demand at retail locations will 

be significant, as vehicles will connect for only short periods of time and the demand might be 

spread more evenly throughout the day. Charging stations installed on streets, retail locations and 

workplaces will mean less aggregate gasoline usage and lower vehicle emissions for PHEV 

operators who can take advantage of these stations. 

In terms of total network demand, the possible implications of large penetrations of PHEVs 

charging in an uncontrolled fashion are higher voltage drops, lines current overloading and the 

possible exceedance of the network capacity. These impacts are all difficult and costly to remedy 

and can reduce the reliability of power supply. In any jurisdiction, networks that exhibit total 

demands near their capacity are at higher risk for some of these possible detrimental impacts.  

Control over vehicle charging will be important in the future for shifting the vehicle 

charging demand into the off-peak hours. Even with charging control, it is likely that some 

owners will still want to charge during the peak period in order to make trips during the evening 
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without the need to use gasoline. Also, if PHEV owners have larger batteries and are charging at 

120V, the amount of time needed to charge their battery may require them to charge during the 

peak period.   

In the near term it is suggested that a program be started to keep track of the location and 

type of electric vehicles sold throughout a jurisdiction. This type of program will help to 

determine the networks that are at highest risk for some of the adverse impacts considered in this 

study and could help with a transition to control of vehicle charging or integration of vehicles 

into a smart metering infrastructure. Identifying the possible networks or areas where high 

penetrations of PHEVs could occur will be important for predicting impacts on these areas.  

 

6.2 Voltage Drop and Unbalance 

Maximum voltage drops on the suburban and urban networks remain within the favourable 

zone for all of the scenarios considered, as shown in Figure 5.9 and Figure 5.10. This is mainly 

due to the shorter feeder length and lower peak demands when comparing these networks to the 

rural network (Table 4.2). Voltage drop is an issue for the rural network because of the long line 

length. The maximum voltage drops calculated on the rural network are in the tolerable zone as 

shown in Figure 5.11. Thus, further voltage regulation may be needed on this network in the near 

future, most likely in the form of a shunt capacitor or voltage regulator.  

In the model, the substation transformer was considered as a constant voltage source, when 

in fact, substation transformers are equipped with load tap changers that can raise the base 

network voltage by altering the turns ratio of the transformer windings. By increasing the base 

voltage by 5%, the minimum voltage drop of 0.93 p.u. encountered on the rural network could be 
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improved to bring it into the favourable zone. This is possible because the voltage standards 

allow for voltages greater than 5% above the nominal level for the favourable zone. 

Rural networks often exhibit higher voltage drops and lower reliability when compared to 

smaller networks because of the large areas that they supply power to [17]. Uncontrolled PHEV 

charging on rural networks will further lower the voltages found on these networks and they may 

require reinforcing if PHEV penetration is significant. Alternatively, there is an opportunity to 

use PHEVs for voltage support in a vehicle-to-grid (V2G) scheme on these networks. Thus, rural 

networks could be used as demonstration or pilot projects as a means of introducing V2G in a 

jurisdiction.  

6.3 Overloading and Transformer Loss of Life  

The overloading of secondary transformers is highest for the suburban network. Almost 10% 

of the transformers are overloaded without any vehicles charging. When PHEV are considered in 

the high scenario, the total percentage of overloaded transformers reaches nearly 25% as shown 

in Figure 5.13 (a). The rural and urban networks do not show a significant increase in 

transformer overloading even for the high penetration scenarios (Figure 5.13 (b) and (c)).  

In the suburban network, the total connected capacity (the sum of all secondary transformers’ 

rated capacities) is much lower when compared to the rural network (Table 4.2). However, both 

networks have the same total network capacity and voltage level. This means that on the 

suburban network there are more customers sharing fewer transformers leading to the higher 

rates of overloading. In the suburban network, customers are closer together and thus, it may be 

economical to connect more customers to fewer transformers. In the rural network, customers are 

spread out over larger distances and generally more transformers are used for fewer customers. 
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This is done to avoid lengthy secondary wiring sections where voltage drop and losses are 

higher. In the urban network, there is a substantial amount of demand connected to large three 

phase secondary transformers serving larger customers such as apartments and offices. Three-

phase secondary transformers are more expensive to install and maintain than the pole-mounted 

single phase type. Consequently, these transformers are generally over-sized to accommodate 

load growth leading to fewer overloads on the urban network when compared to the suburban 

network. Overloads on the urban network mostly occur on single phase transformers.  

Single-phase secondary transformers are of standardized size and can be easily replaced to 

minimize the effects of transformer overloading. For example, an overloaded 50 kVA 

transformer could be replaced with a 75 kVA transformer. This 50 kVA transformer could then 

be used to replace an overloaded 25 kVA transformer. In this manner the economical loss of 

transformer life is diminished and secondary transformers of lower ratings can be slowly 

swapped out as needed. 

During model initialization, the power demand on each transformer in the network is 

estimated from customer energy consumption readings (Figure 3.5). In practice, the demand on a 

given secondary transformer is unknown. Thus, a method to identify overloaded transformers 

could be implemented to ensure that the properly sized transformers are used for all customer 

groups. This type of program could help to reduce the impact of PHEV charging on secondary 

transformer lifetimes, especially if other networks have similarly overloaded transformers as the 

suburban network does. If future smart grid technologies are installed correctly on a network, 

overloaded transformers could be easily identified and monitored.  
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The simulation results for transformer insulation loss of life (Figure 5.14) show that the 

ambient temperature of the surroundings can have a large impact on the lifetime of a transformer. 

This may be especially evident in jurisdictions with high summer peak loads. In a jurisdiction 

where the peak demand occurs in the winter months, transformer insulation may last longer due 

to the lower temperatures. Specifically, in BC, the annual peak demand is often correlated to the 

coldest day of the year.  

Transformers that are experiencing overloads without PHEV charging can have their lifetime 

significantly reduced if PHEVs are added, which is evident from Figure 5.14. This is particularly 

true if large numbers of PHEVs are charging at the 240V level. However, the loss of life is not 

significant for short time duration overloads in the range of 20-30% above the rated capacity of 

the transformer. Thus, identifying the transformers with excessively high overloading is 

necessary.  

 

6.4 Emissions  

Total emissions from PHEV operation are lower for large battery vehicles as shown in 

Figure 5.17. As the average distance driven increases, the emissions rise rapidly due to a higher 

use of gasoline. Thus, replacing gasoline use with grid energy could have large benefits in terms 

of reducing transportation sector emissions, particularly in grids with low emission rates such as 

BC.  

The emissions are calculated by assuming constant emission intensity for grid energy. In 

reality, the emissions depend upon how generation is allocated to the generation assets and the 

amount of power being imported. In BC, electricity may be imported during the low demand 
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hours when the price for imported power is lowest. Generation during the low demand hours in 

neighbouring jurisdictions, specifically Alberta, may contain a large fraction of coal generation, 

leading to higher emission rates. If large amounts of vehicles are charging in the off-peak hours 

this could increase the emissions from these vehicles. The amount of power imported is 

generally low compared to the amount generated domestically and thus, emissions may not 

increase dramatically. Further study is needed in this area to properly determine the emissions 

increase caused by this effect.  

Large penetrations of PHEVs could alter both the economics of grid operation and the 

emissions intensity. The effect of PHEVs on the dispatch of generation and, thus, the emissions 

and costs of electricity is a region-specific problem that must be investigated for entire electrical 

systems through the use of optimal power flow algorithms. The results of this type of study may 

lead to optimal charging scenarios for vehicles that consider the emissions produced during 

charging rather than simply considering the timing of charging. For the sole purpose of reliable 

operation of the distribution network, vehicle charging during the off-peak hours would be ideal.  

6.5 Electric Vehicle Technologies and the Future Smart Grid 

Electric vehicles represent a paradigm shift for both the transportation sector and utilities.  

As electric vehicles increase in numbers, more electricity will be generated and less gasoline 

used, affecting aspects of both sectors positively and negatively. As an example of a negative 

impact, when gasoline is replaced by electricity, tax revenue from gasoline sales will diminish 

and this revenue will need to come from another source, the most likely candidate being 

electricity price increases. This could eventually reduce the price benefit of electric vehicles for 

vehicle owners.   
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The transition to an electrified transportation sector will require careful planning and sound 

policy. Electrifying the transportation sector will also create new and unique business and 

employment opportunities. Balancing the positive and negative impacts of electric vehicles will 

be important for maximizing the social, economic and environmental benefits. Smart grid 

technologies are a promising approach to both control vehicle charging and add an element of 

active control and measurement to distribution networks. Currently, a widespread smart grid 

program is being undertaken by many utilities in an effort to increase the efficiency of the grid 

and to gain more insight into the operation of the distribution networks. 

 Integration of PHEVs with smart grid technologies will be important to realize the 

maximum benefit of PHEVs to vehicle owners and lessen the negative impact of vehicle 

charging. The integration of PHEVs and smart grid technologies could also help in the transition 

to Vehicle-to-grid (V2G) schemes, where vehicles could act as distributed storage mechanisms 

and supply power back to the grid. V2G schemes have been proposed as a means of increasing 

the penetration of renewable generation [2]; however, this aspect requires more investigation on 

a region-specific level to determine feasibility.  

The control and pricing of PHEV charging are two aspects that could play a major role in 

impacting their market penetration. The control method could be direct control from the utility, 

where the vehicle responds to a real-time price or wireless control signal. Control could also 

occur indirectly through incentives or onboard vehicle charge controllers. Also, a mechanism 

would need to be in place to ensure payment for vehicle charging at workplace and quick charge 

locations is transferred to the vehicle owner where appropriate. Regardless of how charging is 

performed or priced, methods of controlling charging times and rates should be implemented 

well before PHEVs become widespread.  
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7 Conclusions and Recommendations  

7.1 Study Objective and Summary of Methodology 

The objective of this study is to investigate the impacts of plug-in hybrid electric vehicles 

on distribution networks. The impacts considered on the networks are: total network demand, 

energy supplied, energy lost, voltage drop, voltage unbalance, and transformer loss of life. 

Estimated GHG emissions from vehicle operation are calculated to determine the environmental 

benefit of PHEVs.  

The objective is achieved through creation of a probabilistic load flow model based on 

Monte Carlo simulations (MCS) in which a probabilistic model of customer demand is combined 

with probabilistic models of uncontrolled PHEV charging at residences, offices and retail 

locations. The MCS procedure consists of repetitive deterministic solutions to a load flow 

algorithm supplying the random variables of customer demand and PHEV load. Simulations are 

performed repeating a peak demand day in order to determine the incremental impacts of PHEVs 

to a worst-case customer demand scenario. Three-phase distribution networks within the BC grid 

are selected with distinct demographic and topological aspects to represent suburban, urban and 

rural areas. Three scenarios are created to investigate increasing PHEV penetration and 

technology advancement (low, medium and high scenarios). The three phase network 

incorporates three phase and single phase sections as well as voltage control equipment.  
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7.2 Key Findings 

7.2.1 PHEVs and Network Demand 

All of the networks exhibit an increase in peak demand due to the charging of PHEVs by 

vehicle owners returning home from evening commutes. For the rural network, the peak demand 

exceeds the network capacity rating when PHEV penetrations are above 15%. The suburban and 

urban networks do not exhibit network overload, and can safely accommodate PHEV 

penetrations up to 25%. This is mainly due to the existing (recorded) peak demand being much 

higher on the rural network than on the other two networks. A morning peak occurs at 10:00 on 

the urban network from the charging of PHEVs at offices.  

When progressing from the low scenario to the high scenario, the peak network demand 

increases at a higher rate than the energy supplied to the network for PHEV charging. Energy 

loss on the networks is also found to increase at a higher rate than the energy supplied, meaning 

that more energy would need to be generated to meet the incremental demand. 

7.2.2 Voltage drop and unbalance 

 The suburban and rural networks did not exhibit voltage drops below the favourable zone. 

The rural network exhibits the largest voltage drop of the three networks; however, the voltages 

do not drop below the extreme zone at any time. The rural network may require some form of 

voltage regulation to improve the voltages on the extreme buses.  

 PHEV charging increases the maximum voltage unbalance on all of the networks. 

However; the maximum unbalance does not exceed the 3% suggested threshold. Voltage 

unbalance should not be a specific area of concern when considering PHEV charging.  
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7.2.3 Transformer Loss of Life 

The suburban network shows a large increase in the number of overloaded transformers for 

the high PHEV penetration scenario. The high number of transformer overloads is due to the fact 

that this network has more customers that connect to lower rated transformers and thus the risk 

of overloading is higher. The overloading increases as vehicles are added to the network, 

especially with more PHEVs charging at 240V.  

Transformer loss of life is calculated for three secondary transformers that show significant 

levels of overloading. The 25 kVA transformer charging 2 PHEVs at 240V shows the largest 

percent loss of life. Transformers subjected to short duration overloads that are less than 30% of 

their rated capacity should not experience significant loss of life.  

7.2.4 PHEV Operation and Emissions 

Energy and gasoline usage are tracked for all simulated PHEVs owned by residential 

customers. When charging infrastructure is limited away from vehicles’ home base, PHEVs 

charge only once per day, increasing the amount of gasoline they use. When charging 

infrastructure is more available for PHEV owners, it allows them to charge their batteries more 

than once per day leading to a higher proportion of miles derived from electricity, effectively 

reducing emissions. The home charge rate, whether 120V or 240V, did not significantly affect 

the amount of energy that vehicles obtained from the grid. Vehicles with larger batteries were 

more likely to drive solely on electricity than their smaller battery counterparts. Despite a lower 

efficiency, large battery vehicles have lower average emissions because of their ability to drive 

more on electricity.  
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7.3 Conclusions 

The networks in this study are representative of the types of networks found within the 

provincial grid and throughout most of North America. For small penetrations of PHEVs daily 

operation of the networks are not significantly affected. For networks that do not have peak 

demands near their capacity, the uncontrolled charging of vehicles does not create significant 

problems in terms of reliable operation of these networks. However, networks that currently have 

demands near their capacity are the most likely places that PHEV charging could have adverse 

impacts.  

The introduction of PHEVs to a residential network where the loads on secondary 

transformers are already close to their capacity will increase the rate of transformer overloads 

and decrease their expected lifetime. This impact will be amplified if large numbers of PHEV 

owners upgrade their home charging outlets to 240V. Secondary transformer overloading can be 

mitigated through a transformer swapping program, however, the transformers that are at risk of 

being overloaded need to be properly identified first. Smart metering technology can be used to 

identify overloaded transformers.  

Integrating PHEVs with smart grid technologies will allow for higher penetrations of 

PHEVs because the charging may be shifted to the low demand hours. This can be accomplished 

without adding significant network infrastructure, even on already stressed networks. The variety 

of impacts investigated in this thesis shows that an integrated approach to distribution system 

management is needed that can incorporate real-time measurement of parameters of interest 

through a smart metering program and high level modelling of networks.  
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7.4 Recommendations for future work 

Some improvements to the model are recommended. First and foremost, a survey of 

vehicle commuters in BC could help to improve the commuting distance statistics as the current 

data includes all commuters, not solely those driving vehicles. Better estimates of the distance 

and timing of non-commuting vehicle trips in periods throughout the day would also help to 

improve the vehicle simulation portion of the model. These improvements would likely change 

the emissions from vehicles and the daily energy supplied for vehicle charging; however, 

changing the vehicle simulation inputs may not have a significant impact on the timing of the 

PHEV demand.  

Network load modelling could be improved through better estimates of the temporal 

demand at the substations. This could aid in better estimating the demand on secondary 

transformers throughout a network. Further analysis should be undertaken to examine secondary 

transformer overloading on other suburban type networks to see if this trend could be 

widespread. 

An issue associated with distribution networks that was not considered in this thesis is the 

potential impact that electric vehicle charging may have on the total harmonic distortion within a 

network. High harmonic distortion levels can cause excessive harmonic currents leading to 

higher levels of voltage distortion. Staats et al. [40] examined the impact of electric vehicle 

charging at a bus within a distribution network in a probabilistic manner. Their findings suggest 

that total harmonic distortion may be a limiting factor for electric vehicle penetration in certain 

situations. This study was performed a decade ago on the previous generation of vehicle chargers 
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and a similar study using newer vehicle chargers could help to determine if the total harmonic 

distortion from vehicle charging would be significant in the networks studied above.   

For PHEV analysis on a larger scale, an agent based model that simulates the actions of 

large amounts of PHEV drivers as they travel throughout the province could be used to 

determine energy flows and emissions on a broader scale. An agent based model simulates the 

actions and interactions of autonomous individuals within a system to determine their aggregate 

effects on a whole system [41]. This type of modelling approach has been used for determining 

electric vehicle impacts on energy flows within a transmission grid on the large scale [42]. A 

similar approach could be tailored to locations in BC or North America for determining the 

overall impact to generation, transmission and the transportation sector in a jurisdiction. This 

may be a difficult task however, due to the lack of detailed statistics needed for input to these 

types of models.  
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Appendix A. Forward Backward Sweep Algorithm for 

Three Phase Unbalanced Radial Load Flow Solution 

This section describes the forward-backward sweep (FBS) method used to obtain load flow 

solutions and has been adapted from Kersting, 2001 [25].  

A.1. Generalized Line Model  

The first step to initialize the algorithm is to introduce a generic three phase line segment 

model that can be used to represent every type of line encountered. The usual representation is a 

PI model as shown in Figure A1.  

 

Figure A. 1. Generic Three Phase Line 

The notation used throughout the derivation is explained as follows:  

- The notation a, b and c represents the individual phases, g represents the ground or 

neutral 
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- The sending node is designated n, the receiving node is m 

- Zaa is the self-impedance of the line for phase a  

- Zab is the mutual impedance of the line between phase a and b 

- Vagn is the line-to-neutral voltage for phase a at node n.  

- [Yabc] is the 3x3 admittance matrix for the line segment containing self and mutual 

admittances of the line (eq. (A1)) 

- Ilinea  is the line current between node n and m 

- Ian is the node current at node n 

 

Applying Kirchoff’s Current Law (KCL) to Figure A.1 at node m leads to:  

�
𝐼𝐼𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟𝑟𝑟
𝐼𝐼𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟𝑈𝑈
𝐼𝐼𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟𝑐𝑐

�
𝑛𝑛

= �
𝐼𝐼𝑟𝑟
𝐼𝐼𝑈𝑈
𝐼𝐼𝑐𝑐
�
𝑎𝑎

+ 1/2 ∙ �
𝑌𝑌𝑟𝑟𝑟𝑟 𝑌𝑌𝑟𝑟𝑈𝑈 𝑌𝑌𝑟𝑟𝑐𝑐
𝑌𝑌𝑈𝑈𝑟𝑟 𝑌𝑌𝑈𝑈𝑈𝑈 𝑌𝑌𝑈𝑈𝑐𝑐
𝑌𝑌𝑐𝑐𝑟𝑟 𝑌𝑌𝑐𝑐𝑈𝑈 𝑌𝑌𝑐𝑐𝑐𝑐

� ∙ �
𝑃𝑃𝑟𝑟𝑖𝑖
𝑃𝑃𝑈𝑈𝑖𝑖
𝑃𝑃𝑐𝑐𝑖𝑖

�

𝑎𝑎

 (A.1) 

Or, in condensed matrix notation:  

[𝐼𝐼𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑛𝑛 = [𝐼𝐼𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑎𝑎 +
1
2
∙ [𝑌𝑌𝑟𝑟𝑈𝑈𝑐𝑐 ] ∙ [𝑃𝑃𝑉𝑉𝐺𝐺𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑎𝑎  (A.2) 

where VLG is line to ground voltage. Applying Kirchoff’s Voltage law (KVL) to Figure A.1 

yields:  

[𝑃𝑃𝑉𝑉𝐺𝐺𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑛𝑛 = [𝑃𝑃𝑉𝑉𝐺𝐺𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑎𝑎 + [𝑍𝑍𝑟𝑟𝑈𝑈𝑐𝑐 ] ∙ [𝐼𝐼𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑎𝑎  (A.3) 
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By substituting Equation (A.2) into Equation (A.3), rearranging and collecting terms, three 

equations can be found that relate the line to ground voltages ([VLGabc]n, [VLGabc]m) and node 

currents ([Iabc]n, [Iabc]m) to determine the voltage and current in a line section using generalized 

matrices as follows:  

[𝑃𝑃𝑉𝑉𝐺𝐺𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑛𝑛 = [𝑟𝑟][𝑃𝑃𝑉𝑉𝐺𝐺𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑎𝑎 + [𝑈𝑈][𝐼𝐼𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑎𝑎  (A.4) 

[𝐼𝐼𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑛𝑛 = [𝑐𝑐][𝑃𝑃𝑉𝑉𝐺𝐺𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑎𝑎 + [𝑟𝑟][𝐼𝐼𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑎𝑎  (A.5) 

[𝑃𝑃𝑉𝑉𝐺𝐺𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑎𝑎 = [𝑘𝑘][𝑃𝑃𝑉𝑉𝐺𝐺𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑛𝑛 − [𝐵𝐵][𝐼𝐼𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑎𝑎  (A.6) 

[𝑟𝑟] = [𝐼𝐼𝐷𝐷] +
1
2

[𝑍𝑍𝑟𝑟𝑈𝑈𝑐𝑐 ][𝑌𝑌𝑟𝑟𝑈𝑈𝑐𝑐 ], [𝑈𝑈] =  [𝑍𝑍𝑟𝑟𝑈𝑈𝑐𝑐 ] (A.7) 

[𝑐𝑐] = [𝑌𝑌𝑟𝑟𝑈𝑈𝑐𝑐 ] +
1
4

[𝑌𝑌𝑟𝑟𝑈𝑈𝑐𝑐 ][𝑍𝑍𝑟𝑟𝑈𝑈𝑐𝑐 ][𝑌𝑌𝑟𝑟𝑈𝑈𝑐𝑐 ] (A.8) 

[𝑘𝑘] = [𝑟𝑟]−1 , [𝐵𝐵] = [𝑟𝑟]−1[𝑈𝑈] (A.9) 

where [ID] is the 3x3 identity matrix and [a], [b], [c], [A] and [B] are the generalized line 

matrices. These matrices depend only on the impedance and admittance of the line segment 

being considered and as such are constant throughout the calculations. The equations derived 

above are for a three phase line segment and can be easily extended to single or two phase 

sections by replacing the corresponding rows and columns of non-existent phases of the 

impedance and admittance matrices with zeros.  
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A.2. Forward-Backward Sweep Algorithm 

The forward-backward sweep FBS algorithm presented here makes a few simplifying 

assumptions. First, the substation voltage level is assumed to be set at a constant level throughout 

the algorithm. All loads are complex containing real and reactive components, and assumed to be 

in steady-state throughout the power flow solution. Secondary transformers generally have low 

impedances and are not included in the calculations, thus all loads are assumed to be spot loads 

occurring on the primary side of the network.  

The FBS algorithm begins by assuming that the voltages at the terminal (end-point) buses 

are equivalent to the source or substation voltage. Then the end node current (node m) can be 

calculated as: 

[𝐼𝐼𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑎𝑎 = �
[𝑆𝑆𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑎𝑎

[𝑃𝑃𝑉𝑉𝐺𝐺𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑎𝑎
�
∗

 (A.10) 

where the * represents the complex conjugate and [Sabc]n is the three phase complex power at bus 

m. Then, applying Equation (A.4) using the current in each branch [Iabc]n, calculated from 

Equation (A.10) the voltage at the upstream bus is found.  This upstream voltage is then used to 

calculate the current at the upstream bus by applying Equation (A.5).  

If a bus is a junction where two or more branches extend from, then both the downstream 

voltages need to be determined before using Equations (A.4) and (A.5). In this fashion, the bus 

voltages and currents are calculated stepping line by line towards the substation bus. The 

calculated substation bus voltage is compared to the actual known voltage of the substation and, 

if it is within the tolerance of the solution (1x10-4), then the algorithm is considered to be 

converged. If the calculation must continue, the backward sweep begins.  
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The backward sweep works in the opposite direction to the forward sweep. It begins by 

using the known set-point voltage at the substation and proceeds to calculate the downstream bus 

voltage using the line currents calculated during the forward sweep. The backward sweep uses 

Equation (A.6) to update the downstream voltages at each bus and steps through all the buses 

until the terminal nodes have been reached. When all the end node voltages have been 

calculated, the forward sweep can begin again starting with the end nodes and using the updated 

voltages from the backward sweep. The whole process is repeated alternating between forward 

and backward sweeps until convergence is reached. 

After the FBS solution has converged, the power loss in the network can be calculated as 

well as the current flowing in the neutral wire due to the imbalance of the loads. Complex power 

loss, Sloss, can be calculated when the currents and voltages are known by calculating the 

difference in voltage between sending and receiving end, multiplied by the complex conjugate of 

the current in the branch [43]:  

[𝑆𝑆𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜]𝑎𝑎 = ([𝑃𝑃𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑛𝑛 − [𝑃𝑃𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑎𝑎) ∙ [𝐼𝐼𝑟𝑟𝑈𝑈𝑐𝑐 ]𝑛𝑛
∗ (A.11) 

The power loss in each branch can then be summed over all the branches in the network to 

estimate the total network power loss.  
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 Appendix B. The Per-unit System of Calculations 

It is convenient and customary to use the per-unit (p.u.) system when performing load flow 

calculations and examining electrical power systems. The per-unit value of a quantity is defined 

as the ratio of the quantity to its base value expressed as a decimal [44]. In a three phase 

distribution system, the selection of two base variables determines the base values of the other 

two variables (current, voltage, complex power or impedance). The bases values given are 

usually the line-to-line Voltage (kVLL) and complex power (MVA) total over three phases.  

The following equations can be used to calculate the other base quantities: 

𝐵𝐵𝑟𝑟𝑜𝑜𝑟𝑟 𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 (𝑘𝑘) =
1000 ∗ 𝑈𝑈𝑟𝑟𝑜𝑜𝑟𝑟 𝑝𝑝𝑜𝑜𝑙𝑙𝑟𝑟𝑟𝑟 𝑀𝑀𝑃𝑃𝑘𝑘 (3𝑝𝑝ℎ𝑟𝑟𝑜𝑜𝑟𝑟)
√3 ∗ 𝐵𝐵𝑟𝑟𝑜𝑜𝑟𝑟 𝑃𝑃𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟,𝑘𝑘𝑃𝑃 𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟 − 𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟

 (B.1) 

𝐵𝐵𝑟𝑟𝑜𝑜𝑟𝑟 𝑃𝑃𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟 𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟 − 𝑖𝑖𝑟𝑟𝑜𝑜𝑜𝑜𝑛𝑛𝑑𝑑 (𝑘𝑘𝑃𝑃) =  
𝑈𝑈𝑟𝑟𝑜𝑜𝑟𝑟 𝑃𝑃𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟,𝑘𝑘𝑃𝑃 𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟 − 𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟

√3
 (B.2) 

𝐵𝐵𝑟𝑟𝑜𝑜𝑟𝑟 𝐼𝐼𝑎𝑎𝑝𝑝𝑟𝑟𝑑𝑑𝑟𝑟𝑛𝑛𝑐𝑐𝑟𝑟 (Ω) =
(𝐵𝐵𝑟𝑟𝑜𝑜𝑟𝑟 𝑃𝑃𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟,𝑘𝑘𝑃𝑃 𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟 − 𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟)2

𝑈𝑈𝑟𝑟𝑜𝑜𝑟𝑟 𝑀𝑀𝑃𝑃𝑘𝑘 (3 𝑝𝑝ℎ𝑟𝑟𝑜𝑜𝑟𝑟)
 (B.3) 

At the start of the load flow solution all variables are converted into p.u. quantities, then all 

calculations can precede without the need to check units. 
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Appendix C. Hypothesis Testing for Normal Distribution 

of Residential Loads  

This section describes the process used to validate the assumption that the load within an 

hour is normally distributed for a group of customers. In order to make the validation, a series of 

secondary transformer level readings were used for groups of 2 to 20 residential single detached 

dwelling customers. The readings were taken at 15 minute intervals for a period of one month.  

A chi-squared goodness-of-fit test [45] is used to test the null hypothesis that some data is a 

random sample from a normal distribution with the mean and standard deviation estimated from 

the sample. The alternative, i.e. rejection of the null hypothesis occurs when the data is not from 

a normal distribution at the given confidence level, in our case 95%. The transformer data was 

grouped by the 15 minute intervals over the entire month. This lead to 96 vectors (every 15 

minutes for 24 hours) of transformer data with 30 data points in each vector, for each group of 

customers considered. The chi-square test was then performed for each of these data vectors. The 

total number of rejections of the null hypothesis was counted for each customer and compared to 

the total sample. Figure C.1 shows the frequency of rejection of the null hypothesis at the 95% 

confidence level for the range of customers considered.  

Figure C.1 shows that for groups of customers greater than 5, only a small percentage of the 

samples (<10%) rejected the null hypothesis that the data was normally distributed. The 

assumption that the load is normally distributed within an hour for each group of customers 

should then be valid, as it is rare for the networks considered in this study that the number of 

customers connected to a transformer is less than 5.  
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Figure C.1. Frequency of chi-square test null hypothesis rejection for various sized groups 
of residential customers, 95% confidence level 
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Appendix D. Topology and Length of Selected Networks  

This section contains Figures D.1, D.2 and D.3 showing the topology and relative distance of the 

suburban, urban and rural locations.  

 

Figure D. 1. Suburban Network (BCHydro code: GTP2546) 
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Figure D. 2 Urban Feeder (BCH code: SPG12F112) 
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Figure D. 3 Rural Network (BCHydro code: CLD2573) 
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Appendix E. Summary of Transformer Insulation Loss of 

Life Calculations  

The IEEE standard C57.91-1995 [37] sets forth a guide for loading of mineral oil immersed 

transformers in order to estimate the risk associated with application of loads in excess of 

nameplate ratings of distribution and substation (power) transformers. The standard sets a 

guideline for calculating the ageing of insulation material due to high temperatures caused by 

overloading a transformer. The calculations and input data used for the calculations in Section 

5.5.2 are summarized below.  

E.1 Definitions and Equivalent Ageing 

Deterioration of insulation material is a time function of the temperature, moisture content 

and oxygen content. Usually, oxygen content and moisture content are ignored when considering 

deterioration calculations and insulation temperature is the only factor considered as it 

contributes the most deterioration. The temperature distribution within a transformer is not 

uniform and the part of the insulation that is at the highest temperature will undergo the most 

deterioration, this is called the “hottest-spot” temperature. First a number of definitions will be 

made:  

[1] Average winding temperature rise: The arithmetic difference between the average 

winding temperature of the hottest winding and the ambient temperature. Typically this 

value is 65⁰C at rated load.  

[2] Hottest spot temperature: The part of the insulation that is at the highest temperature 

that undergoes the most deterioration.  
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[3] Hottest spot temperature rise: The arithmetic difference between the hottest-spot 

temperature and the top-oil temperature. 

[4] Top-oil rise: The arithmetic difference between hottest oil temperature and ambient 

temperature for a given load. 

[5] Normal Life: The lifetime of a transformer’s insulation when operating with a 65⁰C 

average winding temperature rise, 110⁰C hottest-spot temperature and an ambient 

temperature of 30⁰C. The expected lifetime of a transformer operating in this way with an 

end of life criterion being 25% retained tensile strength of insulation is 180,000 hours or 

20.55 years.  

From experimentally determined evidence, the per unit transformer insulation life curve 

follows an Arrhenius reaction rate theory based on hottest spot temperature TH:  

Per unit life = 9.80x10−18e( 1500
TH +273) (E.1) 

Using the definition of per unit life, for a given load and temperature, an ageing acceleration 

factor (FAA) can be calculated:  

FAA = e(1500
383 − 1500

TH +273) (E.2) 

Then, for a hottest spot temperature of 110⁰C, the ageing acceleration factor calculated in 

Equation (E.2) will give a value of 1. For hottest spot temperatures above 110⁰C, the FAA will be 

greater than 1; for temperatures below 110⁰C, FAA will be below 1. 
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Equation (E.2) can be used to calculate the equivalent ageing of a transformer in hours. The 

equivalent ageing (FEQA) at the reference temperature (110⁰C) that will be consumed in a given 

time period for a given temperature and load cycle is:  

FEQA =
� FAA ,h∆th

N
h=1
∑ ∆th

N
h=1

 (E.3) 

where h is the index of the time interval, N is the total number of time intervals (48) and ∆th  is 

the time interval (0.5 hours). Now, percent loss of life can be calculated by dividing FEQA by the 

total expected lifetime at the reference temperature (180,000 hours) and multiplying by 100:  

% Loss of life =   
FEQA ∙ t ∙ 100

180,000
 (E.4) 

Other reference lifetimes can be used; however, 180,000 hours was selected as it is the longest 

expected lifetime considered in standard C57.91.  

E.2 Calculation of Temperatures  

To evaluate a transformers loss of life by using Equations (E.2) – (E.4), a hottest spot 

temperature must first be calculated for a given load cycle and ambient temperature. The hottest 

spot temperature is assumed to consist of three components: Ambient temperature (TA), top-oil 

rise over ambient (ΔTTO) and winding hot-spot rise over top oil (ΔTH):  

TH =   TA + ∆TTO + ∆TH  (E.5) 
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The temperature calculations assume a constant ambient temperature. First, the equations 

relating to the top-oil rise will be examined. The top-oil temperature rise is given by the 

following exponential expression:  

∆TTO ,h = �∆TTO ,U − ∆TTO ,h−1� ∙ �1 − 𝑟𝑟
− 1
𝜏𝜏𝑇𝑇𝑆𝑆� + ∆𝑇𝑇𝑇𝑇𝑆𝑆,ℎ−1 (E.6) 

where ∆TTO ,U  is the ultimate top-oil rise, ∆TTO ,h  is the top oil rise for the interval h and 𝜏𝜏𝑇𝑇𝑆𝑆  is the 

top-oil time constant. The initial top-oil rise for the first time interval considered is:  

∆TTO ,h=1 = ∆TTO ,R �
𝐾𝐾ℎ=1

2𝐶𝐶 + 1
𝐶𝐶 + 1

�
𝑛𝑛

 (E.7) 

where ∆TTO ,R  is the top oil rise at rated load, Kh is the ratio of the load at h to the rated load, R is 

the ratio of load loss at rated load to no-load loss, and n is an experimentally determined constant 

that accounts for changes in resistance with changes in load. The ultimate top oil rise is found 

using Equation (E.7) with the maximum value of Kh. The top-oil time constant at rated load is 

calculated from a thermal capacity of the transformer (C), the top-oil rise at rated load (∆TTO ,R)  

and the total loss at rated load (LT,R):  

τTO ,R =
∆TTO ,R𝐶𝐶

LT,R
 (E.8) 

The top-oil time constant is:  
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τTO = τTO ,R

⎝

⎜
⎛

∆TTO ,U
∆TTO ,R

−
∆TTO ,h
∆TTO ,R

�
∆TTO ,U
∆TTO ,R

�
1/n

− �
∆TTO ,h
∆TTO ,R

�
1/n

⎠

⎟
⎞

 (E.9) 

Thermal capacity of the transformer can be estimated empirically using the weight of core and 

coil assembly (Wc, kg), weight of tank and fittings (Wt, kg) and volume of oil (Voil, L): 

C = 0.0272Wc + 0.01814Wt +  5.034Voil  (E.10) 

 

To complete the calculation of Equation (E.5), the winding hot spot temperature rise is 

needed:  

∆TH,h = �∆TH,U − ∆TH,h−1� �1 − e−t/τw �+ ∆TH,h−1 (E.11) 

where ∆TH,h  is the hot-spot temperature rise (over top-oil), ∆TH,U  is the ultimate (maximum) hot-

spot temperature rise, and τw  is the winding time constant. The initial hot-spot rise over top-oil is 

given by:  

∆TH,i = ∆TH,RKh
2m  (E.12) 

where ∆TH,R  is the hot-spot rise at rated load, Kh is the ratio of load to rated load at each interval, 

m is an experimentally determined exponent. The ultimate hot-spot rise over top-oil is found 

using Equation (E.12) with the maximum value of Kh. Finally, the rated value of hot-spot rise 

over top oil ∆TH,R , is given by:  
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∆TH,R = ∆TH/A,R − ∆TTO ,R  (E.13) 

The value ∆TH/A,R  is the hot-spot rise over ambient temperature at the rated load which is 

assumed to be 80 ⁰C.  

E.3 Summary of Transformer Constants for Loss of Life Calculations  

The constants needed to calculate the temperature and equivalent ageing of the 

transformers considered in this thesis are shown in Table E.1.  

Table E. 1. Constants used for transformer loss of life calculations 

Parameter 25 kVA transformer 50 kVA transformer 

LT,R (W) 336 605 

WC (kg) 126 204 

WT (kg) 54 88 

Voil (L) 40 84 

R 4.870 5.762 

n/m 0.8 0.8 

τw (hours) 0.05 (h) 0.05 

ΔTTO,R (⁰C) 50.9 50.9 
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