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ABSTRACT

In the effort to reduce the release of harmful gases associated with the transporta-

tion sector, Plug-in Electric Vehicles (PEV) have been deployed on the account of

zero-tail pipe emissions. With electrification of transport it is imperative to address

the electrical grid emissions during vehicle charging by motivating the use of dis-

tributed generation. This thesis employs optimal charging strategies based on solar

availability and electrical grid tariffs to minimize the cost of retrofitting an existing

parking lot with photovoltaic (PV) and PEV infrastructure. The optimization is cast

as a unit-commitment problem using the CPLEX optimization tool to determine the

optimal charge scheduling. The model determines the optimal capacity of system

components and assesses the techno-economic feasibility of PV infrastructure in the

microgrid by minimizing the net present cost (NPC) in two case studies: Victoria,

BC and Los Angeles, CA. It was determined that due to a relatively low grid tariff

and scarcity of solar irradiation, it is not economically feasible to install solar panels

and coordination of charging reduces the operating cost by 11% in Victoria. Alter-

natively, with a high grid tariff and abundance of solar radiation, it shown that Los

Angeles is a promising candidate for PV installations. With the implementation of

a charging coordination scheme in this region, NPC savings of 8-16% are simulated

with the current prices of solar infrastructure. Additionally, coordinated charging was

assessed in conjunction with various commercial buildings posing as a base load and

it was determined that the effects of coordination were more prominent with smaller

base loads.
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Chapter 1

Introduction

1.1 Motivation

It is known that plug-in electric vehicles (PEV) have an advantage over internal com-

bustion engines in terms of their potential to reduce fossil fuel dependence, eliminate

tailpipe emissions and improve energy efficiency [5, 6]. However, the amount of pol-

lution from powering a PEV is dependent on the source of electrical generation or

the fuel mix of the region. Bloomberg New Energy Finance (BNEF) estimates a

54% increase in electric light-duty vehicles sales by 2040 globally, which would reduce

transport fuel consumption by 8 million barrels per day and increases global electric-

ity consumption by 5% [7]. In the US, BNEF projected that 58% of total vehicle

sales will be electric, despite low oil prices [7].

Currently, California has the highest PEV adoption rate [8], however upwards of

40% of the fuel mix in California is dependent on fossil fuels and increased penetration

of PEVs in this market would result in additional grid-side emissions [9]. California’s

geographical location favours the implementation of solar technology, which can offset

greenhouse gas (GHG) emissions from additional PEV electrical demand. Neverthe-

less, National Renewable Energy Laboratory (NREL) projected that too much solar

can lead to an over-generation risk during peak solar times resulting in curtailment

and problems coping with the rapid generation ramping required to meet the high

demand peak between 6 pm and 10 pm when solar energy is no longer available as

shown in Fig. 1.1. The ramping problem is further aggravated by increased pene-

tration of PEVs in the market due to the residential PEV charging load. Methods

such as demand response and coordinated scheduling have been studied to level out

and shift the additional demand to off-peak hours [10, 11, 12]. Two notable pilot
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projects that have been implemented to support and validate the research are (1)

Olympic peninsula demonstration project [13, 14], and (2) American electric power

gridSMART demonstration [15]. Even with demand response, PEVs choosing to

charge overnight at home present a new load on the existing primary and secondary

distribution networks, in turn limiting the opportunity for equipment to ramp down

at night and cause premature equipment failure [16].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (h)

1.1

1.6

2.1

2.6

3.1
104

 Ramp rate: 
 ~ 7161 MW in 3hrs

Figure 1.1: Net Demand (demand minus solar and wind) on March 12, 2018 from
CAISO. [3]

Home charging is potentially available to 42% of US households equipped with

Electric Vehicle Supply Equipment (EVSE) [17] and, is arguably the most convenient

option for powering a PEV. Alternatively, workplace day-time charging: (a) does

not require the home owner to retrofit their house with a charging facility and (b)

presents an opportunity for customers living in multi-unit residential buildings who

face challenges charging while street parking. Regardless, day-time charging creates

an additional load, which could lead to load shedding and disruption of grid sta-

bility. A synergistic opportunity is to integrate renewable energy with the charging

infrastructure to shave the load peaks [18]. A case study at University of California,

Los Angeles has shown the successful performance of a two-tier energy management

system for smart PEV charging [19]. Studies have also shown that photovoltaic (PV)

powered work place charging has favourable economic and environmental impacts

[20].
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In major US cities a third of the surface area is dedicated to parking and roughly

3 non-residential parking spaces are available for each car comprising a total area

larger than Puerto Rico [21]. Statistically, most private vehicles remain parked for

95% of the time and follow a schedule conducive to solar charging during the time

the vehicle is parked [22].

There are a number of benefits from coupling PEV charging with PV solar gener-

ation and placing them in publicly available areas called electric vehicle solar parking

lots (EVSPL). The PEV can be directly supplied with clean energy and avoid the

majority of transmission losses. The addition of chargers in public locations is pre-

dicted to stimulate the local economy through promotion of PEV uptake which is

limited by customer range anxiety. In addition, the US department of energy advises

that hot weather decreases vehicle efficiencies by upwards of 25% due to increased

air conditioning loads when the car is turned on [23, 24]. A viable solution is a PV

equipped parking lot which provides sun shade and additional protection from other

elements for the vehicles charging underneath them. Since existing parking lots can

be retrofitted with solar panels and charging equipment, there is no competition for

land or high capital investment costs.

Moreover, deployment of PEVs requires a highly capable distribution grid in-

frastructure [25, 26]. Approaches such as centralized control and transactive power

control, where the peak load is reduced by posing PEV agents as bidders in a real-time

market have been explored [10]. Other approaches take advantage of solar to reduce

the grid-side emissions by implementing the concept of smart parking lots through

matching PEV demand to solar production. Smart EVSPLs may be equipped with

a control system that can act as a PEV aggregator to optimally allocate energy with

minimal cost to the parking lot owner [27].

1.2 Description of System Components

1.2.1 Configuration of EVSPL

A typical solar equipped parking lot consists of two sets of rows of 12-16 m2 parking

spaces separated by charging equipment as seen in Fig.1.2. These sets are built

parallel to each other with a separation for driveways and vehicle access. Solar panels

are placed overhead in three common configurations: fixed angle, multiple fixed angles

or equipped with tracking. Alternatively, a less common and more costly configuration
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is a solar tree where 4-6 vehicles park around a common tracking PV system in an

island arrangement. Some parking structures maximize the solar yield by covering

the entire lot with PV arrays, which is favoured in areas that connect to adjacent

buildings or employ storage to consume the excess energy left over from primary load.

Figure 1.2: A typical solar equipped parking lot configuration. [4]

1.2.2 Photovoltaic Technology

To convert sunlight into electricity a PV cell is used, which is essentially an adaptation

of an electrical semiconductor. The cells convert the light photons to electrons that

are then channeled into an external circuit. To perform the conversion process, the

cell must have a specific molecular structure that is lined with semiconductors at the

edge of the cell. Roughly 20-50 PV cells connect together into a PV panel, which

forms an electrical circuit as shown in Fig.1.3, connecting to an external electrical

load at a single point. To meet the needs of a load at a specific voltage, an array of

panels is integrated into a system that delivers energy to the demand.

The photoelectric effect is the phenomenon whereby sunlight striking a particu-

lar material generates electrical current which is the fundamental principle behind

PV technology. The manufacturing of PV cells is subdivided into two methods:
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Figure 1.3: Electrical circuit representing a PV cell.

crystalline and thin-film. In the process of creating crystalline cells a silicon wafer

is designed to harnesses the photovoltaic effect. Cells manufactured from a single

crystal are called monocrystalline and manufacturing from multiple crystals refers to

multicrystalline solar cells. These crystals are grown and sliced into thin pieces for

panel production. Monocrystalline technology is more efficient at converting sunlight

into usable electricity compared to multicrystalline cells, however they are costly.

Thin-film panels are manufactured by laying down a thin film of photovoltaic

effect material (amorphous, silicon or nonsilicon combination of metals) on a backing

material. Mass manufacturing capability and cost efficient scalability of thin-film

panels facilitate the economic superiority of the technology, however this comes with

compromised efficiency in contrast to crystalline type cells.

PV cell Performance

To stimulate the conversion of sunlight (photons) to electrical energy (electrons) using

the photovoltaic effect, layers of silicon are modified to produce either loose electrons

or holes in the molecular matrix for electron reattachment. In a common PV cell

design, the silicon atom (4 valence electrons) is doped with phosphorus (5 valence

electrons) to create n-type layer, or doped with boron (3 valence electrons) to create

p-type layer, together forming a p-n junction. The transfer of free electrons to holes

is the essence of the permanent electrical field, which creates a path for the electrons

to and from the external circuit and load.

An illustration of the design is presented in Fig.1.4 where the upper layer is an

n-type silicon doped with phosphorus (with excess electrons) and the lower layer is
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a p-type silicon doped with boron (with extra holes). The rightmost photon breaks

an electron loose in the n-type layer projecting the electron into the collector comb

and the electron hole is gathered by the conductive backing which contributes to the

current flow to the load. The collectors are generally laid out in a comb pattern

since they block the entrance of the photons into the PV cell. However, there has

to be sufficient area to collect as many electrons as possible posing a design trade-off

between collector area and open PV cell area.

n-type Si layer

p-type Si layer

Elements of metal 
collector comb

Photons incident on PV cell

Solid conductive backing 

Load

+

-

Photon Electron hole Electron

Figure 1.4: A cross section of a PV cell.

Only the photons with energy greater than the bandgap energy 1 are able to break

the bond between the electron-hole pair in the PV cell. Eq.1.1 shows that energy is

inversely proportional to the wavelength (λ) of the photon.

Eph =
hc

λ
(1.1)

1Bandgap energy is the energy range where no electron states can exist between the top of the
valence band and the bottom of the conduction band
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where h is Plank’s constant, and c is the speed of light, meaning that photons with

wavelengths greater than the bandgap wavelength do not possess enough energy to

convert to an electron.

At 100% efficiency a PV cell could convert all the incoming light into electrical

current and the magnitude of this current would be equivalent to the energy avail-

able in the light per unit surface area. Outside of Earth’s atmosphere that value is

equivalent to 1.37 kW/m2, at the Earth’s surface the value reduces to 1 kW/m2 due

to refraction and absorption in the atmosphere. Additional losses pertain to the solar

cell itself as follows:

1. Quantum losses are due to the cell’s inability to gather the energy from the

photons that have insufficient energy for the photoelectric effect, in turn losing

the opportunity for conversion of photons to electrons.

2. Reflection losses are due to fractional reflection loss at the surface of the PV

cell which is proportional to the energy of the photon. To minimize these losses,

PV cells are covered with antireflective coating.

3. Transmission losses are due to the anomaly when the photon passes through

the structure and avoids the collision with an atom in the structure. The mag-

nitude of the transmission losses is a function of cell width and the energy of

the photon.

4. Collection losses are due to certain electrons getting permanently absorbed

by the collector before they are able to leave the cell. These losses are more

prominent for photons with very high energy.

A number of other factors affect the performance of a PV cell such as temperature,

concentration, resistance in series or in parallel with other PV cells in a panel, and

age of the device.

The leading PV panel manufacturers aim to either increase efficiency or reduce

the cost of manufacturing. Most notable efforts are: (1) Concentrating PV (CPV),

(2) Multi-junction PV, and (3) Nanotechnology. CPV uses the fundamentals of a

conventional PV cell and retrofits it with a light concentrating system to increase the

efficiency of the cell. The additional cost due to the concentrating technology is offset

by the higher rated output of the cell. To take full advantage of the CPV, the panel

must be equipped with tracking capability in order to follow the sun throughout the

day. Another method, multi-junction technology, combines multiple single-junctions
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(traditionally used) into one panel with the top layer responsible for conversion of

the highest energy photons and layers underneath target the lower energy photons

for conversion to maximize efficiency. The cost of manufacturing these cells is so high

that they can only be viable in applications that prioritize efficiency such as space

flight. Alternatively, nanotechnology involves manipulating components in a cell on

a nanometer scale, focusing on thin-films technology to maximize the efficiency of

the PV cell and reduce cost per Watt. At this level the cell can be designed with

the desired structural qualities that maximize photon to electron conversion while

minimizing losses.

1.2.3 Microgrid Inverters

PV solar panels inherently use Direct Current (DC), while the electrical grid uses

Alternative Current (AC). To inject the excess energy generated by the PV panels to

the grid a converter must be deployed. A converter, or solar inverter, adapts variable

DC output of a PV panel into a utility frequency AC employed by the electrical grid

as shown in Fig.1.5. Additional features can be included in the inverter design such

as maximum power point tracking (MPPT) and anti-islanding protection.

Solar inverters equipped with MPPT can increase amount of energy from the

PV array [28]. Due to solar cells having a complicated relationship between solar

irradiation, temperature and total resistance, the efficiency of the cells is non-linear

and characterized by current-voltage, or I-V, curves. The MPPT system is able to

sample the output of the cells to match the load to receive the maximum power

regardless of the environmental conditions.

Islanding occurs when a distributed generator, such as PV panel array, continues

to provide power to the load even though electrical grid power is unavailable which

becomes dangerous to the utility workers, who are unaware of the powered circuit,

and leads to lack of frequency control responsible for the frequency balance between

load and generation. Inverters with anti-islanding protection immediately disconnect

the circuit when islanding is detected to preserve safety and frequency control.

1.2.4 Charger types

There are several charger connection types due to lack of consensus between PEV

manufacturers as in Fig.1.6a. The connector types correlate to the types of chargers

installed and in the US, charger types are categorized into 3 levels. Level 1, the
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AC Demand

PV Modules

MeterFuse Box
DC to AC 
inverter

Grid

Battery

Optional

Figure 1.5: A simplified schematic of a grid connected PV-equipped parking lot power
system.

slowest rate of charging congruent with the standard household outlet, supplies 15-

20 A current through 120 V AC plug connected to the vehicle through SAE J1772

(Fig.1.6b) port providing 1.8-2.4 kW of power (2-5 miles per hour) to the vehicle.

Level 2 uses the same connector type as Level 1 and provides power at 30 A and at

voltage of either 220 V or 240 V; adding 10-25 miles of range per hour of charging.

This type of charger can be used at home or in public areas since they are relatively

inexpensive compared to Level 3 chargers. DC fast chargers or Level 3 chargers

are capable of rapid recharging of vehicles appropriate for near freeway installations.

Unlike Level 1 and Level 2, Level 3 chargers employ DC at 50-62.5 kW of power.

There is no standard connector type for a DC fast charger. Tesla uses a proprietary

Supercharger network (Fig.1.6c), where Nissan, Toyota and Mitsubishi connects via

CHAdeMO, and SAE Combo connector is used by BMW and Chevrolet (Fig.1.6a).
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(a) Charging stations for different vehicle brands. [29]

(b) SAE J1772 connector. [30] (c) Tesla Supercharger station. [31]

Figure 1.6: Examples of various types of chargers.

1.3 Demonstration Projects

The first EVSPL was piloted in California with 7 parking spots and a 2.1 kWp PV

array in 1996 [32]. This was followed by several other case studies that explore the

benefits and challenges of implementing an EVSPL. The most current and significant

results are mentioned below.

The Solar-to-Vehicle (S2V) concept was first introduced by arguing that two thirds

of the commuters in the US reside within 25 km of their workplace which benefits

the idea of installing solar panels in parkings lots where they can be optimally placed
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contrast to a residential building [33]. This was extended to a vehicle-solar roof

concept and it was determined that two charging resources must be coordinated to

take advantage of the solar resource [34].

British Columbia Institute of Technology has implemented a pilot project that

integrates PV renewable energy and a Li-Ion energy storage system with a Level

3 electric vehicle charge station in a microgrid scenario [35]. This study employs

controls that mitigate power transfer, however only a single costly charging station

was present that can power one vehicle at a time.

A case study in Tehran [36] considers a movie theatre parking lot with a capacity

of 1000 vehicles equipped with PV, wind turbines and a diesel generator. The study

demonstrates a methodology for determining the optimal site location, battery charg-

ing rate, sizing of renewable energy infrastructure and hybrid system capacity for a

worst case solar and wind scenario. With an optimal system of 190 kWp PV, 30 kW

wind and a 520 kW diesel generator, power quality improvements and lower power

losses were observed while charging at a higher rate during off-peak hours and lower

rate during peak hours. Full charge, however was not guaranteed to the vehicles.

A smart city in Malaga, Spain was demonstrated as the largest vehicle to grid

(V2G) pilot project called Zem2All. It featured 23 CHAdeMO DC fast charging

stations with 6 bidirectional chargers capable of V2G functionality, 229 charging

points around the city and 200 PEVs (Nissan Leafs and Mitsubishi iMiEVs) capable

of DC fast charging [37]. PEVs support the integration of intermittent renewable

energy sources by transferring excess power to the grid through V2G.

1.4 Optimization Studies

To charge a fleet of vehicles in an EVSPL, smart or coordinated charging strategies

are being investigated to prevent overloading of the electrical network or posing ad-

ditional investment cost to the power distribution system [38, 39, 40]. Unlike the

uncontrolled method, smart charging can delay the supply of power until certain

technical or economical objectives are met. Two main approaches to formulate a

controlled charging scheme are identified: (1) grid impact minimization and (2) cost

minimization.

The grid impact minimization formulation avoids unnecessary stress on the grid

by minimizing system losses, charging costs or GHG emissions. To maximize the

economic benefit for the distribution system, an optimization scheme was formulated
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using a genetic algorithm to determine the parking lot capacity and location in the

distribution network [41]. In this scenario the investment costs and power losses were

minimized to enhance energy reliability. Since V2G is employed, the utility provides

free energy for driving and reimburses the costs incurred by the owner of the vehicle

through PEV battery degradation. A 9 bus distribution system and 15 kWp PV

panel for each PEV was considered and it was determined that vehicle availability

below 35% has negative benefits and smaller optimal sizing leads to smaller total

benefits but the reliability increases. Another study aims to minimize power losses

and improve voltage profiles through a controlled load charging of a PEV fleet [42].

The methodology was tested on a modified IEEE 23kV distribution system connected

to a number of low voltage residential buildings with PEVs. This approach was able

to reduce the generation costs by incorporating time-varying market energy prices

and PEV owner preferred charging time zones. The study demonstrates that with

uncontrolled charging and high or low PEV penetration, the system’s voltage profile is

subject to high deviations of up to 0.07 p.u. below an acceptable margin. In addition,

the uncontrolled charging scheme results in high power losses and high generation fees.

Alternatively, controlled charging improves the voltage profile to meet standards and

losses are reduced.

A real-time smart energy management algorithm is developed in Ref.[43] to mini-

mize the PEV charging costs and grid impacts in a 350 car parking lot with a 75 kWp

PV installation. It was shown that the grid impacts were reduced by 0.20 p.u. through

scheduling the charging of the vehicles. Another real-time smart energy management

algorithm was explored in Ref.[44] with 1500 cars and a 1500 kWp PV installation

connected to a IEEE 69-radial distribution system. Using a dynamic charging rate,

V2G or Vehicle-to-vehicle (V2V) and scheduling, the authors were able to minimize

power losses and achieve 12-16% charging cost reduction.

In contrast to the minimization of the grid impact approach, cost minimization

formulation focusses on modelling the electrical supply and demand through valley-

filling type schemes for PEV charging. Day ahead methodology for scheduling energy

resources for a smart grid was developed by considering distributed energy resources

(DERs) and V2G through a particle swarm optimization approach [45]. Additionally,

the PEVs participate in demand response programs. As a result, the intelligent charg-

ing methodology was proved effective in a smart grid environment by demonstrating

a reduction in operating costs. Another study explored cost minimization in relation

to charging PEVs and V2G operation with implementation of Radio Frequency Iden-
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tification (RFID) tag technology to acquire information and obtain control over PEV

charging [46]. The methodology was able to achieve 10% cost savings for drivers with

flexible charging needs, 7% cost savings for enterprise commuters and a 56% demand

power peak reduction.

In Ref.[47], a parking lot with and without PV was considered for two types of

PEV models with stochastic modelling of demand, supply, time of arrival and time

of departure. The study concludes that V2G concept can bring economic benefits to

the parking lot owner and improve grid stability by diminishing stress on the grid.

In Ref.[48], the grid autonomy potential of a parking lot with three Nissan Leafs

(10 kWh battery capacity) in Netherlands was studied by implementing a 10 kWp

PV with optimal orientation and inclination of modules. PV modules with tracking

were considered an economically inviable option. The study explores eight dynamic

scheduling profiles of three types: (1) four Gaussian, (2) two fixed and (3) two rect-

angular and determines that Gaussian charge distribution is most favourable. Addi-

tionally, it was found that even a small amount of storage dedicated solely to PEV

charging significantly improves grid independence and at larger capacities returns

start to diminish.

The energy economics and emissions of a PV equipped workplace charging station

are analyzed with both uncoordinated and coordinated charging in Ref.[20]. The

coordinated charging algorithm employs a stochastic systems dynamic programming

algorithm for real-time charge scheduling. The study advises on the preferred cost

of parking, and solar dependent optimal parking locations. In conclusion, a 55%

reduction in emissions is recorded with a PV powered workplace charger compared to a

residential charger. Notably, the study only accounts for two types of vehicles, neglects

charging power losses, employs a coarse 1 hour time step and uses a computationally

expensive algorithm to predict economic feasibility.

The objective of this thesis is to reduce range anxiety and provide publicly avail-

able, low cost charging solutions for PEVs. To accomplish this, a lifetime cost min-

imization methodology is employed to demonstrate the techno-economic feasibility

of EVSPLs with the intention that the cost savings acquired by the EVSPL owner

will be passed on to the PEV owners through free or affordable charging. A modified

unit-commitment strategy developed by Ref.[20] is applied with real-world driving

patterns and solar irradiation data for system optimization and cost minimization on

a 15 minute time scale using mixed-integer linear programming (MILP).
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1.5 Software Overview

To implement the system and cost optimization model using real-world data for an

EVSPL, a number of software packages were explored before a bespoke numerical

model was developed. Hybrid Optimization Model for Multiple Energy Resources

(HOMER) is a micropower optimization package developed by NREL and distributed

by HOMER Energy. HOMER simulates electric and thermal demand by implement-

ing the energy balance equations for each hour in a year and determines the flows of

energy in and out of each microgrid component. HOMER, then determines whether

the given configuration of components is feasible by calculating the electrical demand

requirements. An estimate of the overall optimized lifetime system costs is calculated

by considering costs such as capital, replacement, operation, maintenance, fuel and

interest while meeting the energy demand. This work seeks to reduce the operating

costs, therefore the required software must be able to exert control over the electrical

load. HOMER is constrained by manual user entry of demand profiles for the system

feasibility study, which can not be controlled using the user interface provided. This

characteristic deems HOMER unsuitable for the work in this thesis due lack of access

to the internal components, which prevents the user from implementing demand re-

sponse and control strategies required for smart charging. In addition, the time step

is limited to 1 hour intervals resulting in significant inaccuracies in the final system

cost estimate. This is discussed further in section 2.6, where HOMER is used as a

validation tool for simplified components and an invariable demand profile formulated

by uncontrolled charging to determine the reliability of the developed method using

in-house code.

Since the existing models are not well-suited for this specific application, devel-

opment environments were explored that allow for full control of the model. General

Algebraic Modeling System (GAMS) is capable of high-level system modeling for

mathematical optimization. It is capable of solving linear, nonlinear, and mixed-

integer optimization problems. The development environment is capable of integrat-

ing with third-party optimization solvers such as IBM ILOG CPLEX Optimization

studio for problems with high complexity. The downfall is that GAMS is a costly

software package, therefore an alternative is explored.

Matrix Laboratory (MATLAB) is a multi-paradigm numerical computing envi-

ronment for matrix manipulation, implementation of algorithms and creation of user

interfaces. MATLAB has an in-house optimization package, however it was deemed
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unfit for MILP problem with binary decision variables due to the computational

complexity of the internal algorithm used. MATLAB allows for seamless integration

with CPLEX that implements optimized methods for handling binary and continuous

MILP problems. The software combination creates full control of the model compo-

nents and allows for a reduced time step to reflect realistic conditions. It is capable of

handling parallel processes and has unrestricted database access. Similarly to GAMS,

MATLAB is not an open-source software, however the University of Victoria provides

a number of licenses for educational purposes, therefore the in-house model of the cost

components of an EVSPL was built in MATLAB with a third-party optimization tool

to handle MILP with binary and continuous decision variables.

GridLAB-D is an open-source power distribution system simulation and analysis

tool for a wide array of components from the distribution system to end-use appli-

cations. Unfortunately, the PEV charger object within the software is designed for

residential applications and does not support large fleet aggregation for optimal con-

trol schemes in a commercial scenario. However, GridLAB-D is a valuable tool for

further exploration of this topic beyond the scope of this thesis, since it can provide

insights into the power quality of the EVSPL and optimal size and location of the

EVSPLs on the distribution network.
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1.6 Scope and Contributions

The literature explores various avenues of PEV integration into the grid, however

there is a lack of investigations of real-world scenarios and driving patterns based

on recorded data. In addition, the effect of demand charges is not fully analysed.

This thesis uses real-world charging data coupled with grid tariffs that contain high

demand charges to determine the techno-economic feasibility of solar infrastructure in

conjunction with a coordinated charging scheme. In this work the main contributions

are as follows:

1. Formulation of a cost minimization scheme of the Net Present Cost (NPC)

based on the electricity price, demand charge, solar availability and a base load.

2. Application of real world charging data and solar data to accurately predict the

grid purchases required by the EVSPL.

3. Investigation of coordinated charging compared to the uncoordinated charging.

4. Parametric study of system costs on the cost feasibility of the EVSPL.

1.7 Overview

The thesis outline is as follows:

Chapter 1 describes the background information pertaining to EVSPLs and moti-

vation for the research. In addition, overview of the technology referred to the

thesis is mentioned.

Chapter 2 outlines the modelling techniques used to determine the feasibility of the

EVSPL. A verification of the model is illustrated in this section.

Chapter 3 presents the results and discusses insights developed in this work.

Chapter 4 summarizes the main findings and conclusions based on the results ob-

tained and presents an outlook for future work.
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Chapter 2

Model Definition

The model defined in this work employs a unit-commitment strategy to minimize the

cost of installing an EVSPL by minimizing the NPC through optimal allocation of

charging profiles for a PEV fleet. The coordination is performed by considering the

grid tariff, solar profiles and system constraints at each time step. This work considers

two types of charging strategies: uncoordinated and coordinated. The two methods

are contrasted through an in-depth cost analysis of both strategies. The portion of

the methodology pertaining to operating cost minimization was published in IEEE

ISGT Europe 2017 conference proceedings [49].

2.1 Cost Minimization Formulation

In the effort to reduce the cost to both the consumer and the parking lot owner

the problem was formulated as a cost minimization of NPC. The total NPC is the

difference between the present value of all costs the system incurs over the lifetime

and the present value all the revenue generated by the business. Eq.2.1 breaks down

the components of the total cost of owning the parking lot equipped with charging

stations.

CNPC = (OC + CAP − Csalvage) (2.1)

where OC is the operating cost over the lifetime of the project, Csalvage is the sal-

vage value and CAP is the capital investment cost of the charger equipped parking

structure as defined below:

CAP = CAPPV + CAPconn + CAPst (2.2)
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where CAPPV is the cost of solar panels and the mechanical shelter structure, DC/AC

inverter , CAPconn is the cost for grid connectivity and CAPst is the total cost of

charging stations. The total NPC is calculated by summing the total discounted cash

flows for each year over the duration of the project’s lifetime through time value of

money. The real discount rate is calculated as follows:

i =
i′ − if
1 + if

(2.3)

where i is the real discount rate, i′ is nominal discount rate or the rate at which the

money is borrowed and if is the expected inflation rate. The real discount rate is

then used in calculating the capital recovery factor (CRF) to determine the present

value of an annuity as below:

CRF (i,D) =
i(1 + i)D

(1 + i)D − 1
(2.4)

where D is project lifetime.

2.2 Optimization

To maximize the benefit of an EVSPL this study explores the impact of coordinated

charging by minimizing the operating cost through MILP. In this work MILP is

performed using MATLAB 2016b coupled with IBM ILOG CPLEX Optimizer Single

User Edition 12.7 with 32GB RAM and AMD eight-core processor.

The fundamental concept of linear programming (LP) assumes the objective func-

tion and the constraints are linear. This type of programming has four basic compo-

nents: (1) decision variables or the elements the optimizer determines, (2) an objective

function with certain related quantities targeted to either minimize or maximize the

value of the function, (3) the decision variables that are limited through a set of

constraints which determine their distribution, and (4) additional data that can be

included to quantify the relationship built in the objective function and constraints.

The particular deviation of linear programming is restricted to mixed integer pro-

gramming, which allows for both discrete and continuous decisions. Since the charg-

ing station can either provide electricity or remain on stand-by, the decision variables

associated with the state of the chargers must be not only integers but also binary

variables. MILP is a fairly complex problem to solve compared to a linear problem,
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therefore a more sophisticated tool, such as CPLEX, is required to implement tech-

niques that systematically search over many possible combinations of discrete decision

variables using linear or quadratic programming relaxations to compute bounds on

the value of the optimal solution. In addition, the linear components are solved using

LP to eliminate solutions that violate the constraints. CPLEX Single User Edition

is capable of handling 1000 decision variables and 1000 of constraints with superior

performance by using the Branch and Bound methods of optimization. [50]

Branch and Bound optimization relies on two subroutines that compute upper and

lower bounds on the optimal value over a given region by partitioning the feasible

set into convex sets. Global upper and lower bounds are then found. If the result

is not within the region of optimality, the problem is refined and repeated until the

solution is within the error bound. Generally, the upper bound is found by choosing

a point in the region or by a local optimization method, where the lower bound is

found through convex relaxation, duality or Lipschitz bounds.

2.3 PV Array Power Output

For the optimization to be able to minimize the cost of charging, the solar array

output must be known given the global horizontal irradiation (GHI) data at each

time step. The power output of PV array is calculated as follows:

PPV = YPV fPV

(
Gt

GSTC

)
(2.5)

where YPV is the rated capacity of the PV array, fPV is the PV derating factor, GSTC

is the incident radiation under standard test conditions (1 kW/m2) and GT is the

solar radiation incident on the PV array in the current time step, t, (kW/m2) as

shown in the next section. The derating factor is a scaling factor that accounts for

reduced output in real-world operating conditions compared to the conditions which

the PV panel was rated. Note, that in this work the effect of temperature on the

array is neglected.

2.3.1 Incident Radiation

To calculate the power output from a PV array, incident radiation must be deter-

mined. Using the typical GHI in a region, which is the total amount of radiation
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striking the Earth’s surface at a specific location for each time step, geographical

location and PV panel orientation, the total amount of solar radiation incident on a

surface can be calculated based on the methods described in Ref.[51]. A PV panel’s

N

Azimuth Normal

Solar Azimuth

Surface Normal

Figure 2.1: Solar panel with terrain and solar angles.

orientation is a function of two parameters: slope, β, and azimuth γ. The slope is

the angle between the panel and the horizontal surface, where the azimuth is the

direction the panel faces with respect to the North. These values are optimized based

on the geographical region for optimal PV power output. First, solar declination is

calculated for each day of the year, d, as in the equation below:

δ = 23.45osin

(
360o284 + d

365

)
(2.6)

Next, the hour angle, w, is determined which describes the location of the sun in

the sky throughout the day assuming the sun moves across the sky in 15o per hour
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increments.

w = (ts − 12hr)15o/hr (2.7)

where ts is the solar time in (hr). To convert from civil time, in which data is usually

presented, to solar time equation below is used:

ts = tc +
λL

15o/hr
− Zc + E (2.8)

where tc is the civil time corresponding to the midpoint of the time step (hr), λL is

the longitude (o), Zc is the time zone in hours east of GMT (hr) and E is the equation

of time. The equation of time as shown in Fig.2.2 accounts for the tilt of the Earth’s

axis of rotation relative to the place of the ecliptic and eccentricity of the Earth’s

orbit as follows:

E = 3.82

(
0.000075 + 0.001868cosB − 0.032077sinB (2.9)

− 0.014615cos2B − 0.04089sin2B

)
where

B = 360od− 1

365
(2.10)

Next, the angle of incidence, θ, the angle the sun’s beam radiation makes with the

Figure 2.2: Equation of time.
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normal of the surface, is defined based on the angles calculated above as shown in

Fig.2.1.

cos(θ) = sin(δ)sin(φ)cos(β)

− sin(δ)cos(φ)sin(β)cos(γ)

+ cos(δ)cos(φ)cos(β)cos(w) (2.11)

+ cos(δ)sin(φ)sin(β)cos(γ)cos(w)

+ cos(δ)sin(β)sin(γ)sin(w)

where φ is the latitude of the panel’s location. The zenith angle, θz, is the incidence

angle that describes the angle between the vertical line and the line to the sun as in

Fig.2.1. The equation for the zenith angle is derived from Eq.2.11 by setting β = 0,

since zenith angle is 0o when the sun is directly overhead and 90o when the sun is at

the horizon, yielding:

cos(θz) = cosφcos(δ)cos(w) + sin(φ)sin(δ) (2.12)

Calculating the extraterrestrial normal radiation or the amount of solar radiation

striking the surface perpendicular to the sun’s rays at the top of Earth’s atmosphere,

Gon, in (kW/m2), using the equation below:

Gon = Gsc

(
1 + 0.033cos

360d

365

)
(2.13)

where Gsc is the solar constant (1.367 kW/m2). The extraterrestrial horizontal radi-

ation or the amount of solar radiation striking a horizontal surface at the top of the

atmosphere, Go, in (kW/m2) is as follows:

Go = Goncos(θz) (2.14)

The average extraterrestrial horizontal radiation over a time step is obtained by in-

tegrating:

Go =
12

π
Gon[cos(φ)cos(δ)(sin(w2)− sin(w1)) +

π(w2 − w1)

180o
sin(φ)sin(δ)] (2.15)
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where w1 is the hour angle at the beginning of the time step (o) and w2 is the hour

angle at the end of the time step (o). Next, the clearness index is determined, which

is the ratio of the surface radiation to the extraterrestrial radiation.

kT =
G

Go

(2.16)

where G is the GHI on Earth’s surface averaged over the time step (kW/m2). Once

the extraterrestrial radiation penetrates Earth’s atmosphere it is broken down into

components due to photon scattering and absorption out of the beam into random

paths in the atmosphere as shown in Fig.2.3. Photons whose direction has been

changed by Earth’s atmosphere become scattered in turn forming the diffuse sky

radiation, Gd, which comes from all parts of the sky and can not cast a shadow.

The unabsorbed and unscattered photons (nearly collimated) that cast a shadow are

defined as direct beam radiation, Gb. Both diffuse and direct beam radiation combine

together to form GHI. Note, the ground reflected radiation component is added later

to the total global radiation, GT .

In the cases where beam and diffuse radiation are not given by component, the

clearness index is used to determine the diffuse fraction as below.

Gd

G
=


1.0− 0.09kT , for kT ≤ 0.22

0.9511− 0.1604kT + 4.388k2T − 16.638k3T + 12.336k4T , for 0.22 < kT ≤ 0.80

0.165, for kT > 0.80

Then, the beam radiation is calculated as follows,

Gb = G−Gd (2.17)

The total global radiation on a PV surface is calculated using the Hay, Davies,

Klucher, Reindl (HDKR) model [51] which involves three distinct components: (1)

isotropic component from all parts of the sky, (2) circumsolar component related to

the direction of the sun, and (3) horizon brightening component from the horizon.

These components are dependent on three factors: ratio of beam radiation on tilted

surface to beam radiation on the horizontal surface, Rb, anisotropy index, Ai, and

the horizon brightening factor, f as described in the following equations Eq.2.18-2.20.

The anisotropy index is the measure of atmospheric transmittance of beam radiation,
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Figure 2.3: Solar radiation components.

which is used to calculate the amount of circumsolar or scattered radiation. The

horizon brightening factor accounts for the fact that more diffuse radiation comes

from the horizon than from the rest of the sky, which is related to cloudiness as

below.

Rb =
cosθ

cosθz
(2.18)

Ai =
Gb

Go

(2.19)

f =

√
Gb

G
(2.20)

The HDKR model combines the above mentioned components to determine the solar
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radiation incident on a PV array as follows:

GT = (Gb+GdAi)Rb+Gd(1−Ai)

(
1 + cos(β)

2

)[
1+fsin3

(
β

2

)]
+Gρg

(
1− cos(β)

2

)
(2.21)

where ρg is the ground reflectance, or the albedo (%).

2.4 Uncoordinated Charging

Uncoordinated charging or charging upon request is the simplest form of charging

that is widely used today. As the vehicle arrives at the charging station the power

is provided immediately until the station receives a full capacity signal or the vehicle

is unplugged from the charging station. This strategy does not involve any control

and does not match the installed renewable energy generation. Any renewable energy

generated either contributes to charging if requested or is injected directly into the

grid.

2.5 Coordinated Charging

Coordinated charging implements unit-commitment strategies to determine the opti-

mal load profile, while ensuring full charge at minimal cost to both the customer and

parking lot owner.

2.5.1 Objective Function

The optimization problem is formulated using MILP with the target of minimizing

the OC as defined per day, d, in Eqn. 2.22. The decision vector contains: solar surplus

sold to the grid for each time step, t (S+
net,t), net power used by the load from grid

and/or PV installation at time t (S−net,t), load at time t (Lt), a binary state matrix

(1-charging or 0-stand-by) for each vehicle entered, n, at time t (sn,t) and amount of

power that exceeds the demand charge threshold at time t (S+
demand).

OCd =
T∑
t=1

(Cin,tS
−
net,t − Cout,tS

+
net,t) + CdemandS

+
demand,t (2.22)

where Cin,t and Cout,t are the cost of purchasing the deficit electricity at time t and

the profit earning surplus electricity back to the grid at time t, respectively. Cdemand
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Figure 2.4: The system power allocation.

is the demand charge for penalizing the objective function when the maximum peak

is high and S+
demand,t is the positive semidefinite matrix of electricity surpassing the

threshold beyond which the demand charge is penalizes the objective function. Fig.

2.4 illustrates the power balance flow as defined below:

Sgen,t − Lt = ηinverterS
+
net,t −

S−net,t
ηinverter

(2.23)

where ηinverter is the efficiency of the AC/DC inverter.

Note, that S+
net,t is a positive semidefinite variable and S−net,t is a negative semidef-

inite variable. The load is defined as follows:

Lt = ηchargerPch

Nd∑
n=1

sn,t (2.24)

where Pch is the nominal charging rate of the charging stations limited by the on-

board PEV charger, Nd is the number of cars that enter during the day and ηcharger

is the PEV charger efficiency.
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2.5.2 Operational Constraints

In addition to Eqn. 2.1 - 2.24, the MILP is programmed given a number of constraints

to ensure proper operation of the load scheduling algorithm. The algorithm must

ensure that at the time of departure, each car is charged up to an acceptable State

of Charge (percentage), SOCmax
n , as shown below,

Pch

CAP b
n

∆T
T∑
t=1

sn,t ≤ SOCarr
n − SOCmax

n (2.25)

where CAP b
n is the capacity of the battery for each vehicle n, ∆T is the time step,

and SOCarr
n is the SOC of vehicle n at the time of arrival, tarr,n. Note, that if the

battery capacity and SOC information is unavailable and only the energy consumed

is provided the Eq.2.25 is reduced to

− Pch

T∑
t=1

sn,t ≤ −En
consumed (2.26)

where En
consumed is the amount of energy consumed by vehicle n.

The lower and upper boundary constraints are defined to create a capacity limit

on the feeders. Lmax is a limiting constant of the amount of power transferred to

the load (S−net,t), and Smax limits the amount of solar power sold to the grid (S+
net,t).

To account for the charging only during the period when the car is present, sn,t is

bounded as shown below:

0 ≤ sn,t ≤

1, tarr,n ≤ t ≤ tdep,n

0, otherwise
(2.27)

where tdep,n is the vehicle’s departure time. For the case study in Victoria, BC

additional logic is added to cope with the demand charge structure. The region

abides by a tiered system of demand charges. There are no demand charges if the

peak power usage is under a certain threshold, therefore an additional constraint as

shown in Eq.2.28 is added to ensure global minimum when determining the operation

charges.

S−net,t + S+
demand,t − S

−
demand,t = δthresh (2.28)

where δthresh is the power threshold determined by the electric utility above which

a demand charge is applied, S−d and S+
d is the negative and positive component of
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the power difference between the required power and δthresh that ensures feasibility

of the problem while penalizing the solution that surpasses the threshold as seen in

Eqn.2.22.

2.6 Model Verification

Due to lack of infrastructure available to test the methodology in a real world scenario,

the model was compared to an existing validated model available in HOMER Legacy

v2.68. HOMER is a powerful tool, however it has limitations in this application. The

software uses a graphical user interface where the inputs are entered manually, and

the internal components of the program are protected, hence the electrical demand

control can not be implemented within HOMER. Additionally, HOMER uses a 1 hr

time step for all of the component simulations, while the service provider in California,

Pacific Gas and Electric (PG&E), uses a fine 15 min time step for demand charge

recording. A simplified system with a coarse 1 hr time scale is used in this thesis as

shown in Fig.2.5.

To test the methodology demand profiles built based on the vehicles arriving

at the parking lot were used as input into the HOMER model. Additional vari-

ables such as electricity tariff, capital costs and specification of the equipment were

matched between the two models. For verification purposes a net-metered grid tariff

of 0.34$/kWh and a demand charge of 19.743 $/kW with geographical specifications

for Los Angeles, CA were defined. Fig.2.6a shows the difference in NPC between the

HOMER model and the in-house MATLAB model for a range of PV carport prices

(3.6-7.2$/kW). The most costly NPC curve correlating to the highest cost of the PV

carport. Similarly, in Fig.2.6b analogous results were obtained for NPC with peak

demand recorded every 15 min with the in-house MATLAB model and every 1 hr with

HOMER. The averaging error leading to cost under-estimation using the HOMER

result is emphasized in this scenario.
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Figure 2.5: Sample model output using HOMER Legacy v2.68.

Even though HOMER is a well-tested and validated software it has shortcom-

ings in this application. The effect of this is especially obvious in Fig.2.6b. In ad-

dition, the PG&E grid tariff implements a 30 minute interval time of use pricing,

increasing the error differences between the HOMER model and the realistic sce-
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nario. Finally, HOMER lacks input/output interface and access to internal system

components, which poses an issue when implementing control schemes and demand

optimization strategies necessary for coordinated charging. Hence, the coordinated

charging techniques described in Sec.2.5 were designed in MATLAB.
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(a) NPC comparison with demand charges
recorded at 1hr interval.
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(b) NPC comparison with demand charges
recorded at 15min interval.

Figure 2.6: Comparison of NPC formulated by HOMER model and by MATLAB
model. Each curve represents a different capital investment cost for PV carport;
increasing from 3.6$/W (top curve) to 7.2 $/kW (bottom curve).
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Chapter 3

Results

Using the methodology described in Chapter 2, two case studies, exploring EVSPLs

with widely different electricity tariff structures and geographic characteristics, are

compared: Victoria, BC and Los Angeles, CA. In this chapter the results for techno-

economical feasibility of an EVSPL are presented based on real-world parameters

for driving patterns, solar resource, grid tariffs and typical base loads pertained to

the two cities. Additionally, the effects of coordinated charging are quantified and

component optimization is conducted. Lastly, a parametric study is carried out to

determine the limits of economic feasibility.

3.1 Parameter Definitions

3.1.1 Driving Patterns Parameters

To test the methodology, a dataset was collected from individual EVSE in various

zip codes in Southern California in 2013 from ChargePoint [52]. Each charging sta-

tion provides information regarding time of arrival and departure, average power,

maximum power on 15 minute time interval, charging port type, zip code and non-

residential building category.

The distribution of arrival and departure times is shown in Figs. 3.1a and 3.1b,

respectively. Note, that the majority of cars arrive in the morning between 7 am and

9 am with another peak in the afternoon between 12 pm and 1 pm. The amount of

energy each car requires to complete full charge is shown in Fig. 3.2. It is evident

that a majority of the cars that park in this area do not require more than 20 kWh

of charge to reach full capacity.
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Figure 3.1: Arrival and departure time characteristics
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Figure 3.2: Distribution of energy required to reach full charge by each car.

3.1.2 Charger Specifications

As suggested in Ref.[53], Level 2 and DC chargers are most suitable for the EVSPL

scenario since Level 1 chargers can not provide sufficient current to charge PEVs

quickly. The ChargePoint data presented in the previous section shows that 17% of

vehicles do not reach full charge at the time of the departure with Level 2 charging

however the majority of the vehicles leave with over 75% capacity as seen in Fig.3.3.

In contrast DC chargers can ensure all vehicles are at full battery capacity upon

departure; however the cost of installation and equipment of a DC charger is much

higher than a Level 2 charger as shown in Table.3.1. In this work it is assumed that
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each station is able to provide power when plugged in and a plug is available for each

vehicle parked in the lot. In other words, the vehicles remain connected regardless

of the state of charge of the battery, hence the same amount of charging stations is

required regardless of the charging level.
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Figure 3.3: Distribution of vehicles that leave the parking lot with incomplete charge
in a parking lot with Level 2 chargers.

Table 3.1: Cost break down of charging stations.

Level 2 DC Charger

Station Cost $500-700 $10,000
Parts & Labour $1200-2000 $40,000-50,000

Total $1700-2700 $50,000-60,000

The ChargePoint data is subject to a vehicle queueing algorithm that determines

the minimum number of charging stations required to ensure an acceptable level

of customer satisfaction. To illustrate the relationship between number of charging

stations and customer acceptance, Fig.3.4 depicts 100 vehicles of one realization of

normally distributed time of arrival, departure, state of charge and 5 kW on-board

peak charging charging power. In this configuration coordinated charging scheme

mandates a 60 kW feeder to abide by feasibility limits of the problem resulting in a

maximum of 12 vehicles capable of charging in one time slot. However, as shown in
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Fig.3.4, 12 charging stations are associated with 31% refusal rate and 45% of vehicles

with incomplete charge. This outcome is due to the time restrictions of each vehicle

and the assumption that vehicle power connectors remain plugged-in until the time of

departure. Even though only 12 charging stations are powered at once, 30 charging

stations are required to accommodate all the parking lot customers. Since the number

of vehicles and their specifications vary daily, the algorithm to assess the number of

stations is applied to each day to find the minimum amount of stations required each

day of the year. Then, using the largest value of the array, the queueing algorithm

reorders the vehicles according to the final number of stations required to ensure

maximum customer satisfaction.
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Figure 3.4: Percent of vehicles refused and those not fully charged versus number of
charging stations.

3.1.3 Solar Parameters

Solar Irradiation

Time-varying solar irradiation data was obtained for Southern Los Angeles, CA for

a typical meteorological year (TMY3) from NREL as shown in Fig. 3.5a [54]. For

comparison, a Northern location was chosen in Victoria, BC to demonstrate the

geographical dependence of time-varying solar irradiation as shown in Fig.3.5b. This

data was provided on a minute scale by a School-Based Weather Network for 2014

[55].
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(b) Typical seasonal solar profiles in Victoria,
BC

Figure 3.5: Typical solar profiles comparison in Southern Los Angeles, CA and Vic-
toria, BC

Due to the southern geographic positioning, Los Angeles receives more solar irra-

diation compared to Victoria. In addition, Victoria is subjected to more intermittency

due to cloud coverage as shown in the summer and spring months in Fig. 3.5b.

PV specifications

In this study, state of the art Sunpower X-series PV panels we analysed. Their

specifications are shown in Table. 3.2.

Table 3.2: PV Panel Specifications

Panel Specification Value

Panel name SunPower X-series
Efficiency 22.2%
Area of Panel 1.6 m2

Tilt in Los Angeles 28.81 deg
Tilt in Victoria 39.9 deg
Warranty 25 years
Cost of shelter 4.5$/W-6.0$/W
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3.1.4 Electricity Tariffs

In Victoria, BC Hydro is the main service provider with the tariff for commercial

applications as shown in Table.3.5 1. The electricity tariffs included in this study

for Los Angeles are obtained from PG&E rate structure E-19 for solar customers as

depicted in Table.3.3. In addition, California customers are subject to a Time of Use

(TOU) demand charge as in Table. 3.4. Note, the summer rates apply starting May

1st until October 31st.

Table 3.3: E-19 electricity tariff structure in Los Angeles, CA.[1]

Energy Charges $/kWh Time Period

Peak Summer 0.34020 12:00 PM-6:00 PM

Part-Peak Summer 0.15997
8:30 AM-12:00 PM
6:00 PM-9:30 PM

Off-Peak Summer 0.08512 9:30 PM-8:30 AM
Part-Peak Winter 0.10689 8:30 AM-9:30 PM
Off-peak Winter 0.09178 9:30 PM-8:30 AM

Table 3.4: E-19 electricity demand charges structure in Los Angeles, CA.[1]

Demand Charges $/kW Time Period

Max. Peak Demand Summer 17.71253 12:00 PM-6:00 PM

Max. Part-Peak Summer 0.51
8:30 AM-12:00 PM
6:00 PM-9:30 PM

Max. Demand Summer 19.71253 Any time
Max. Part-Peak Demand Winter 0.03 8:30 AM-9:30 PM
Max. Demand Winter 19.71253 Any time

Table 3.5: BC Hydro Commercial Electricity Rates. [2]

Max. Demand
Electricity Tariff

($/kWh)
Base Demand

Charge ($/kW)
Demand Charge

($/kW)

Under 35 kW 0.1139 0.3312 0
Between 35kW-150kW 0.088 0.2429 4.92

Above 150kW 0.055 0.2429 11.21

1The Canadian Dollar is assumed to be on par with the US Dollar.
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3.1.5 Base Load

To explore the effects of coordination, five types of base loads are identified: no base

load, small office load, large office load, strip mall and a full-service restaurant. The

data was obtained from NREL repository for Los Angeles, CA and Seattle, WA as

shown in Fig.3.6. Note, that NREL does not gather such information in Canada,

therefore data from Seattle, WA was used to represent a similar economic and cli-

mactic environment to Victoria, BC 2. The office buildings vary in load seasonally

with higher demand depending on the region. In the summer, Los Angeles has in-

creased electrical consumption due to the HVAC demand, where Seattle has increased

electrical consumption in the winter due to heating. The low demand days are at-

tributed to weekends and holidays in the office buildings. Alternatively, restaurants

and strip malls maintain the same level of demand throughout the year with slight

seasonal variation.

2Seattle, WA and Victoria, BC have similar average yearly sunshine hours
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(c) Strip mall base load in Los Angeles, CA.
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(f) Large office base load in Seattle, WA.
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(h) Restaurant base load in Seattle, WA.

Figure 3.6: Types of base load profiles near large parking structures in Los Angeles,
CA and Seattle, WA; each curve represents day of year.
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3.2 Coordinated Charging

Using the parameters defined in Section 3.1 two techno-economic studies were con-

ducted comparing the viability of installing solar equipped parking lots for charging

electric vehicles in Victoria, BC and Los Angeles, CA.

3.2.1 Load on the grid

Applying the algorithm described in Section 2, for the case of TOU tariffs, reveals

the impact on grid load of coordinated versus uncoordinated charging in Fig.3.7. Car

1 and Car 4 are parked in the lot for a short duration and require the full time slot

to charge. In contrast, Car 2 is parked for a longer duration and remains plugged-in

during peak and part peak tariff. To abide by the cost minimization scheme the

second car begins to charge during the morning part peak, halts during peak hours

and resumes in the evening part peak. Similarly to Car 2, Car 3 is parked during peak

and part peak hours. However, since the vehicle requires more time to charge than

the amount of time available in the part peak hours, it is forced to partially charge

during peak hours to make up for the difference. Addition of solar further exemplifies

the methodology in Fig.3.8 for uncoordinated charging and Fig.3.9 for coordinated

charging. It is clear that with coordination the algorithm takes advantage of solar

when available by shifting the demand while simultaneously reducing load peaks and

cost of charging.

3.2.2 Operating Costs

The formulation of cost minimization is resolved on a 15 minute time scale for each

day of year and integrated over the project lifetime of 25 years. The operating costs

comprise of two components: electricity charges and demand charges as specified in

section 3.1.4. These costs include losses due to energy conversion for both AC/DC

and DC/AC conversion. Both case studies, Victoria and Los Angeles, implement

a net-metering strategy; however, the billing structures for the two locations differ.

Victoria breaks down the electricity price based on peak demand recorded each year

in-turn, categorizing the business as small, medium or large. Once the business is

classified, the same price of electricity is maintained until next year’s evaluation of

the business category. Since the electricity tariff abides by net-metering rules and

remains the same regardless of TOU there is effectively no savings in cumulative
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Figure 3.7: Comparison of uncoordinated charging to coordinated charging under
TOU tariff.



41

1 3 6 9 12 15 18 21 24
Time (h)

-12

-9

-6

-3

0

3

6

9

12

Figure 3.8: Power transfer (S−net−S+
net) for uncoordinated charging with different PV

penetrations.
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Figure 3.9: Power transfer (S−net − S+
net) for coordinated charging with different PV

penetrations.

electricity costs with coordination. However, with coordination the system is able to

bypass a fraction of the demand charges as shown in Table.3.6. On the other hand,

Los Angeles uses a TOU tariff structure, which gives the opportunity for coordinated

charging to have a higher impact on both electricity charges and demand charges by

shifting the load to a more cost favourable region as shown in Table.3.7. The savings
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accumulated by implementing coordination increase with higher PV capacities. This

increase is expected since solar has zero marginal costs, which at higher capacities

with more room for coordination can bring down the operating costs.

Table 3.6: Operating Costs in Victoria, BC

PV
Capacity

(kW)

Electricity
Charges
($/yr)

Uncoordinated charging Coordinated charging Cost
Savings

(%)
Demand
Charges
($/yr)

Operating
Costs
($/yr)

Demand
Charges
($/yr)

Operating
Costs
($/yr)

0 10,539 6,600 17,139 4,622 15,161 11.5
5 9,966 6,537 16,503 4,560 14,526 12.0
10 9,397 6,486 15,883 4,500 13,897 12.5
15 8,835 6,444 15,279 4,399 13,234 13.4
20 8,282 6,404 14,686 4,385 12,667 13.7
25 7,741 6,369 14,110 4,491 12,232 13.3
30 7,209 6,334 13,543 4,417 11,626 14.2
35 6,688 6,300 12,988 4,429 11,117 14.4
40 6,174 6,270 12,444 4,377 10,551 15.2
45 5,668 6,250 11,918 4,348 10,016 16.0
50 5,167 6,234 11,401 4,411 9,578 16.0
55 4,670 6,221 10,891 4,395 9,065 16.8
60 4,177 6,210 10,387 4,308 8,485 18.3
65 3,688 6,199 9,887 4,339 8,027 18.8
70 3,200 6,187 9,387 4,323 7,523 19.9
75 2,714 6,176 8,890 4,335 7,049 20.7
80 2,231 6,165 8,396 4,355 6,586 21.6
85 1,748 6,153 7,901 4,324 6,072 23.1
90 1,267 6,142 7,409 4,287 5,554 25.0
95 787 6,132 6,919 4,274 5,061 26.9
100 308 6,122 6,430 4,298 4,606 28.4
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Table 3.7: Operating Costs, Los Angles, CA

PV

Capacity

(kW)

Uncoordinated Charging Coordinated Charging Cost

Savings

(%)
Electricity

Charges

($/yr)

Demand

Charges

($/yr)

Operating

Costs

($/yr)

Electricity

Charges

($/yr)

Demand

Charges

($/yr)

Operating

Costs

($/yr)

0 19,604 42,534 62,138 16,168 40,479 56,647 8.8

5 17,508 41,990 59,498 14,288 39,810 54,098 9.1

10 15,436 41,523 56,959 12,424 39,602 52,025 8.7

15 13,410 41,149 54,559 10,618 39,158 49,776 8.8

20 11,441 40,869 52,310 8,823 38,129 46,952 10.2

25 9,532 40,633 50,164 6,978 37,206 44,184 11.9

30 7,670 40,397 48,066 5,107 36,885 41,992 12.6

35 5,845 40,191 46,035 3,239 36,504 39,743 13.7

40 4,045 40,004 44,049 1,380 36,438 37,817 14.1

45 2,265 39,837 42,102 -484 36,048 35,564 15.5

50 499 39,691 40,190 -2,350 35,569 33,219 17.3

55 -1,257 39,556 38,299 -4,217 35,476 31,259 18.4

60 -3,006 39,422 36,416 -6,086 35,235 29,149 20.0

65 -4,749 39,292 34,542 -7,959 35,142 27,183 21.3

70 -6,487 39,176 32,689 -9,837 34,481 24,645 24.6

75 -8,221 39,068 30,847 -11,720 34,045 22,325 27.6

80 -9,952 38,961 29,009 -13,603 34,071 20,468 29.4

85 -11,681 38,854 27,173 -15,485 33,450 17,965 33.9

90 -13,408 38,747 25,339 -17,362 33,160 15,798 37.7

95 -15,133 38,639 23,507 -19,246 32,990 13,743 41.5

100 -16,857 38,532 21,676 -21,130 33,387 12,257 43.5

3.3 Net Present Cost

To determine the NPC, all the costs are summarized and discounted to present value

while accounting for inflation for a 25 year amortization period. The NPC for Victoria

and Los Angeles without a base-load are shown in Fig.3.10 and Fig.3.11 assuming the

parking lot is already retrofitted with Level 2 charging equipment. Evidently, Victoria
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does not receive enough sunlight to take full advantage of PV. In addition, with net-

metering and uniform grid tariff in Victoria, coordination is not able significantly

reduce the NPC.

Alternatively, Los Angeles typically has higher levels of GHI which makes PV

arrays a feasible option. The TOU grid tariff allows for coordination to play a higher

role in reducing the NPC by shifting the load to off-peak or part-peak hours. The

irregularities in the trend when using coordination are related to TOU demand charge

scheme. With uncoordinated charging the demand peak decreases linearly with in-

creased PV, however with coordinated charging the peak may appear elsewhere caus-

ing a non-smooth transition in the trend.

Notably, the savings from coordination diminish as PV capacity increases. This is

to be expected since PV resource is effectively free, therefore when capacity of solar

power is not limited, coordination becomes ineffective because grid participation is

no longer required.

3.4 Component Optimization

To ensure the lowest cost to the EVSPL owner each system component is optimized.

Retrofitting an existing parking structure may require additional electrical capacity

which is quantified by a distribution feeder size. Lack of infrastructure to support

additional electrical load can be a costly improvement, therefore feeder requirements

are explored in the next section to quantify the effect of coordination of the distribu-

tion feeder size. Determining the optimal PV size is also crucial for cost minimization

of the overall system. The optimal size depends on the geographic location, cost of

the panels, grid tariff and the demand profile. The determined PV panel sizes for

Victoria and Los Angeles are explored in this section.

3.4.1 Distribution Feeder

As electrical power is delivered from the transmission system to the individual cus-

tomer, in this case an EVSPL, through a distribution feeder. This electrical wiring

circuit, or feeder, carries power from the transformer or switch gear to a distribution

panel. The feeder size determines the maximum amount of power that can be trans-

ferred to the network, which is measured by the electrical company on 15 minute

intervals. Size requirement for each system varies based on the load profile. An over-

sized feeder for the demand profile has economic implications, such as costly electrical
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equipment upgrades and additional permits. Alternatively, feeders limit the potential

of economic savings stemmed from the coordination algorithm in undersized config-

urations, since the algorithm can not take advantage of the off-peak or part-peak

electricity tariff as effectively, which leads to an overall increased cost of operation.

The feeder sizes required for this case study are shown in Table.3.8, and were deter-

mined based on feasibility of the system optimization. The values are determined

without a PV installation to ensure reliable operation of the system despite lack of

GHI. In Victoria, the feeder size can only be reduced through coordination with a

small load. Alternatively, due to the TOU grid tariff in Los Angeles, coordination

reduces the feeder size in all base load types but the biggest impact is with smaller

loads since the algorithm has control over the entire demand profile rather than just

a small portion, as in the case of the larger base loads.

Table 3.8: Feeder size requirements.

No
base load

Small
Office

Large
Office

Strip
mall

Restaurant

Feeder size in
Victoria (kW)

Uncoordinated 109 112 1639 150 150
Coordinated 90 95 1639 150 150

% Reduction 17 15 0 0 0

Feeder size in
Los Angeles (kW)

Uncoordinated 110 113 770 126 144
Coordinated 105 109 762 120 140

% Reduction 4.5 3.5 1.0 4.8 2.8

3.4.2 PV Optimization

To minimize the cost of retrofitting an existing parking lot with PV array an opti-

mization was performed to determine the cost sensitive solution. With small amount

of solar irradiation in Victoria, PV arrays are not feasible with current capital cost of

PV panels and relatively low electricity prices. Without PV arrays in Victoria, the

NPC is determined to be $327,496 with uncoordinated charging and $308,780 with

coordinated charging yielding 5.7% cost savings.

In Los Angeles, where solar irradiation is abundant and the prices of electricity

are high, a PV array equipped parking lot is feasible. Table.3.9 presents the opti-

mization results for a span of PV array prices. Due to computational complexity of

the algorithm the optimization was bounded by 100 kW limit, therefore for a PV



48

carport costing less than 3.60$/W, EVSPL owners are profitable at any PV array

capacity. The inverse is true for prices higher than 6.75$/W. Above this price, PV

arrays are no longer economically feasible. With coordination, the EVSPL is able to

take advantage of higher PV array capacities without compromising the NPC. The

cost savings range from 8-17% with addition of coordination. Note, that the current

cost of PV carports is between 4.5-6.0$/W and the extended range of values was

investigated to determine the system’s economic limits and the effect of PV car port

costs on the size of the system.

Table 3.9: Optimal PV array sizes and the corresponding NPC for Los Angeles, CA.

PV
Cost

($/W)

Uncoordinated charging Coordinated charging

Optimal
PV array

(kW)
NPC ($)

Optimal
PV array

(kW)
NPC ($) Cost Savings (%)

3.60 100 686,088 100 565,692 17.5
4.05 100 731,088 95 609,437 16.6
4.50 100 776,088 95 652,187 16.0
4.95 45 809,956 95 694,937 14.2
5.40 25 825,268 90 736,948 10.7
5.85 15 834,195 25 760,074 8.9
6.30 10 840,127 25 771,324 8.2
6.75 0 843,329 0 773,139 8.3
7.20 0 843,329 0 773,139 8.3

Effect of a base load

This section explores the possibility of a parking lot sharing a common connection

with a nearby business. Four types of base loads are employed with uncoordinated and

coordinated schemes: small office building, large office building, full-service restaurant

and a strip mall. In Victoria the optimal PV size is 0 kW regardless of the base load

for cost of PV between 3.6 $/W-7.2$/W. The savings from coordination of charging

are negligible in every base load scenario. In Los Angeles, PV car ports become

an economically feasible option. With assistance of coordination, NPC is further

reduced.

Table.3.11 shows the optimal PV capacity for an EVSPL merged with a large

office. Note, the optimization for large office base load was bounded by 200 kW. At
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PV car port cost between 3.6$/W-6.3$/W any PV capacity is feasible. In this price

range there is a linear relationship between cost of PV car ports and NPC. With

increasing PV capacity, the NPC decreases linearly, therefore it is advised to install

the maximum PV capacity allowable. This behaviour is extended up to 6.75 $/W

with coordinated charging. As PV car port prices increase beyond 6.3$/W without

coordination and 6.75$/W with coordination the PV capacity optimization results

dictate that smaller capacities are advantageous. However, since the base load is

much higher than the PEV demand, the effects of coordination are minimal.

When considering a small office base load, the PV capacity optimization was

bounded by 120 kW. Similarly, to large office scenario, the PV car ports are advanta-

geous at prices between 3.6$/W-4.5$/W. At higher prices, smaller PV capacities are

suggested as in Table.3.12. Since the baseload is comparable to the PEV demand,

the savings from coordination are between 2%-7%, proportional to the price of PV

carports.

Results achieved for a scenario with a full service restaurant serving as a base

load, shown in Table.3.13, determine that coordination for this scheme achieved 0-

1.6% NPC cost reduction. Note, the simulation was bound by 90 kW PV capacity.

For PV carport prices up to 4.95$/W any PV capacity is economically feasible for

both uncoordinated and coordinated charging scenarios. If charging is uncoordinated,

at the highest PV carport price PV arrays are no longer feasible but with coordination

a small 5 kW array has an economical advantage.

The optimal PV capacity for a strip mall EVSPL is summarized in Table.3.14.

The simulation was bounded by 120 kW and the result indicates that any PV capacity

is feasible for PV carport prices higher than 4.5$/W. If charging is uncoordinated, at

the highest PV carport price, PV arrays are no longer feasible but with coordination

a small 5 kW array has an economical advantage. In this scenario cost savings for

coordination are between 2.25% and 4.8%.

Table 3.10: Optimal PV size and NPC with base load consideration for cost of PV
car port between 3.6 $/W and 7.2 $/W in Victoria, BC.

Optimal
PV Size (kW)

NPC ($) Cost
Savings (%)Uncoordinated Coordinated

Large office 0 4,666,791 4,661,129 0.12
Small office 0 375,214 375,214 0
Strip mall 0 4,693,057 4,687,577 0.12
Restaurant 0 645,423 645,423 0
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It is notable that the highest economical savings are without the base load scenario

since the algorithm minimizes cost across the entire load. With a base load the cost

minimization algorithm can only control a portion of the load rendering the effects

of coordination less effective. With smaller base loads the coordination impacts are

more prominent and as the base load increases the PEV demand becomes insignificant

rendering coordination insignificant as well.

Table 3.11: Optimal PV size and NPC with a large office base load consideration for
cost of PV car port between 3.6 $/W and 7.2 $/W in Los Angeles, BC.

PV cost
($/W)

Uncoordinated Coordinated Cost savings
(%)PV size

(kW)
NPC
($)

PV size
(kW)

NPC
($)

3.6 200 13,339,897 200 13,313,469 0.12
4.05 200 13,429,897 200 13,403,469 0.2
4.5 200 13,519,897 200 13,493,469 0.2
4.95 200 13,609,897 200 13,583,469 0.19
5.4 200 13,699,897 200 13,673,469 0.19
5.85 200 13,789,897 200 13,763,469 0.19
6.3 200 13,879,897 200 13,853,469 0.19
6.75 190 13,969,195 200 13,943,468 0.18
7.2 80 14,021,452 80 13,994,785 0.19

Table 3.12: Optimal PV size and NPC with a small office base load consideration for
cost of PV car port between 3.6 $/W and 7.2 $/W in Los Angeles, BC.

PV cost
($/W)

Uncoordinated Coordinated Cost savings
(%)PV size

(kW)
NPC
($)

PV size
(kW)

NPC
($)

3.6 120 748,314 120 694,605 7.18
4.05 120 802,314 120 748,605 6.69
4.5 120 856,314 120 802,605 6.27
4.95 50 896,327 50 854,036 4.72
5.4 30 914,597 50 876,536 4.16
5.85 25 927,043 30 891,838 3.8
6.3 20 936,529 30 905,338 3.33
6.75 5 941,414 5 913,665 2.95
7.2 0 942,276 5 915,915 2.8
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Table 3.13: Optimal PV size and NPC with a restaurant base load consideration for
cost of PV car port between 3.6 $/W and 7.2 $/W in Los Angeles, BC.

PV cost
($/W)

Uncoordinated Coordinated Cost savings
(%)PV size

(kW)
NPC
($)

PV size
(kW)

NPC
($)

3.6 90 1,614,657 90 1,589,377 1.57
4.05 90 1,655,157 90 1,629,877 1.53
4.5 90 1,695,657 90 1,670,377 1.49
4.95 90 1,736,157 90 1,710,877 1.46
5.4 70 1,773,482 85 1,750,770 1.28
5.85 50 1,800,137 50 1,785,249 0.83
6.3 20 1,818,136 50 1,807,749 0.57
6.75 10 1,823,972 20 1,822,915 0.06
7.2 0 1,830,479 5 1,829,040 0.08

Table 3.14: Optimal PV size and NPC with a strip mall base load consideration for
cost of PV car port between 3.6 $/W and 7.2 $/W in Los Angeles, BC.

PV cost
($/W)

Uncoordinated Coordinated Cost savings
(%)PV size

(kW)
NPC
($)

PV size
(kW)

NPC
($)

3.6 120 1,135,201 120 1,080,986 4.78
4.05 120 1,189,201 120 1,134,986 4.56
4.5 120 1,243,201 120 1,188,986 4.36
4.95 80 1,346,394 115 1,237,517 8.09
5.4 60 1,325,451 60 1,275,454 3.77
5.85 40 1,346,799 55 1,297,857 3.63
6.3 35 1,362,587 35 1,319,617 3.15
6.75 10 1,374,199 35 1,335,367 2.83
7.2 0 1,377,456 5 1,346,394 2.25
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3.5 Parametric Study

3.5.1 Grid Tariff

From the NPC results it is clear that addition of solar to an EVSPL in Victoria, BC

is not feasible, therefore a parametric study of the grid tariff on the total NPC was

completed. Three tariff limits to assess solar feasibility are addressed for a boundary

of PV car port costs: (1) Feed-in tariff (FIT), (2) Net-metering tariff, (3) Demand

charge limits. With a FIT tariff the cost of purchasing electricity is higher than

the sell price. To ensure economic feasibility the price of purchasing electricity has

to be over three times higher than the current lowest price of PV carport and over

four times higher for the current highest price of PV carport as shown in Table.3.15.

Net-metering implies that the cost of purchasing electricity remains equivalent to

sell price, therefore both values were scaled together for this parametric study. Net-

metering tariff does not need to increase as much as the FIT tariff to ensure economic

feasibility of the PV carports. Coordination has no effect in this scenario. Lastly,

demand charges were explored to determine their effect on the feasibility of PV car

ports. As a result demand charges have to increase upwards of 20 times to meet the

economic feasibility requirements.

Table 3.15: Grid tariff sensitivity analysis for a EVSPL feasibility in Victoria, BC.

Uncoordinated Coordinated

PV Cost 4.5$/kW 6.0 $/kW 4.5 $/kW 6.0 $/kW

Feasible electricity cost
to current electricity cost (FIT)

3.1:1 4.1:1 3.1:1 4.1:1

Feasible electricity price
with net-metering

3.0:1 4.0:1 3.0:1 4.0:1

Demand cost ratio 23:1 29:1 23:1 29:1

3.5.2 Cost of PV

The feasibility of the EVSPL is highly dependent on the capital cost of the PV car

port. Given the grid tariff for Victoria, the addition of solar becomes feasible at

prices lower than 3.0$/W for uncoordinated and coordinated charging as shown in

Fig.3.12. Even though it is not currently advantageous to equip the parking lot with

solar panels, government incentives can play a major role in the economic feasibility
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of such project if the capital cost reduction amounts to 33%. According to BNEF’s

projections the cost of solar is projected to drop 33% by 2020 [7], at which price the

economic feasibility of PV will become viable in Victoria. At 3.0$/W the optimal PV

size is 25 kW with uncoordinated charging and 30 kW with coordinated charging.

With addition of optimally sized PV carports, a 2.2% NPC reduction using unco-

ordinated charging and 2.7% NPC reduction is achieved with coordinated charging.

Overall, a 4.4% NPC reduction is achieved with coordination and optimally sized PV

carports.

Figure 3.12: NPC comparison of uncoordinated charging to coordinated charging
for variable PV capacities and variable cost of PV car port between 2.0-4.0$/W in
Victoria, BC.

3.5.3 Impact of Solar Irradiation

The economic feasibility of PV equipped parking lots is highly dependent on the

amount of power that can be generated by the PV panels, which is dependent on
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the amount of raw solar irradiation available in the region and the efficiency of the

panels. Raw solar irradiation varies greatly according to the geographic location,

local landscape and climatic conditions of the region studied. Cloud coverage or fog

can cause intermittency of insolation seen by the solar panel in turn yielding irregular

power profiles provided to the load. To assess the impact of solar irradiation on the

economic feasibility of the EVSPL four insolation profiles: (1) Kelowna, BC and (2)

Winnipeg, MB (3) Los Angeles, CA and (4) Death Valley, CA are considered while

maintaining the remaining model parameters as in Victoria, BC. Kelowna is a sunnier

interior location compared to Victoria, while Winnipeg demonstrates favourable clear

sky conditions. Los Angeles solar irradiation and grid tariffs deemed the region to

be economically feasible, therefore the insolation profiles for Los Angeles was tested

with Victoria conditions to determine the impact of solar irradiation on the NPC.

Lastly, Death Valley, an area that receives over 2000 kWh/m2/yr of incoming solar

energy, was also compared. Conclusively, all four solar irradiation profiles yielded PV

carports economically infeasible with both uncoordinated and coordinated charging

schemes and upper limit of the derating factor. This result dictates that economic

feasibility of PV carports in areas with relatively low grid tariffs is only marginally

affected by the amount of irradiation in the region.
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Chapter 4

Conclusion and Future Work

4.1 Key Findings

To reduce the impact of the transportation sector on climate change, plug-in elec-

tric vehicles have been widely deployed due to their characteristic of zero-emissions.

Supplying the electric vehicles with clean power, however can only be done in regions

with clean energy generation. Nonetheless, PEVs create a surplus demand which can

create electrical grid inefficiencies and reliability problems. To deal with both of these

issues, this thesis developed a methodology to determine the feasibility of retrofitting

an existing parking lot with solar power and smart charging coordination schemes.

The methodology was applied to two case studies in Victoria, BC and Los Angeles,

CA. Both regions have widely different grid tariff structures and solar availability.

It was determined that in Victoria, with business as usual, solar power is not cost

optimal. However, the grid tariff and geographic positioning of Los Angeles allows

costs to be reduced. Furthermore, with coordination, larger PV capacities can be

installed with over 10% reduction in net present cost and an overall reduced impact

on the electrical grid. These cost reductions can be extended over a large amount of

parking lots resulting in significant cumulative savings to the district.

With the current prices of solar technology, Victoria is not yet economically po-

sitioned to take advantage of PV carports. The combination of relatively low elec-

tricity prices, high capital investment costs, deficiency in GHI, and insufficient panel

efficiency prevents an EVSPL from becoming an economically feasible solution in

Victoria. In addition, coordination did not make a significant impact on the overall

cost of the system. Coordinated charging affects the operating costs only, and since

Victoria has a uniform electricity price independent of time, there is lack of opportu-
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nity for coordination to make a significant impact on the electricity prices. However,

by reducing the demand charges through coordination, the overall operating costs

were reduced in excess of 11%. If the cost of solar panels was lower, the cutback of

demand charges can grow significantly with solar implementation due to the tiered

grid tariff. With sufficient solar irradiation, the peak demand is reduced, which can

change the demand category of the microgrid (from medium business (35kW-150kW)

to small business (<35 kW)). With this shift the demand charges are less than 50%

of the cost, in turn reducing the operating costs even further. In Victoria, the effect

of coordination with the presence of a base load is marginal. PV carports are not

economically viable in this region, regardless of the base load based on the given PV

array cost and grid tariff.

Alternatively, Los Angeles is an economically viable candidate for implementation

of solar in a parking lot. With the current prices of solar technology, the cost savings

of retrofitting a parking lot with PV panel is upwards of 4%. The negatively trending

slope of levelized cost of electricity (LCOE) for solar indicates that installing large

capacities of panels can be cost beneficial to the owner of the parking lot. With

addition of control and coordination, larger PV capacities can be installed and lower

NPC can be achieved. The savings start at 8% given the highest cost of the PV

carports and 20% with the lowest cost of the PV carports. Coordination makes a

more significant impact in Los Angeles due to the TOU electricity tariff. By shifting

the load into off-peak or part-peak hours, cumulative cost of electricity and demand

charges are largely reduced. In Los Angeles, the smaller the base load, the more

prominent the effects of coordination. EVSPLs are feasible at maximum allowable

capacity when the cost of the PV carport is at the lowest boundary. When considering

the highest cost of PV carports with uncoordinated charging, PV infrastructure is

no longer viable, where with coordination a small 5 kW PV carport is economically

feasible.

The highest cost savings from coordination are achieved without a base load due

to the coordination algorithm having full control of the load. As the base load or

uncontrollable load increases, the PEV demand becomes increasingly insignificant

rendering coordination insignificant as well.
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4.2 Future Outlook

In the efforts to promote PEV uptake and reduce range anxiety, charging stations

must become publicly available at low cost to the consumer and the owner. This

thesis demonstrates that EVSPLs in locations combining large solar irradiation with

relatively high electricity tariffs, such as Los Angeles, can integrate renewable energy

with PEV charging with economical advantages.

To complement the presented work, it is suggested to shift this algorithm into a

real-time scheduling scheme to be used in a physical application of the system with

the optimized system components.

Additionally, large scale storage system solutions have not been fully explored in

this work due to the high cost of batteries. To continue the research, it is suggested to

enhance the optimization by considering battery storage and determining the bound-

aries of feasibility for the component. Other renewable sources such as wind, wave and

geothermal were not considered in this work. The economic and physical feasibility

of these sources should be explored further.

The research presented focuses on the advantages and disadvantages of an EVSPL

on a microgrid scale, however understanding the higher scale impacts can be very

valuable. It is suggested to integrate the current model with a distribution system

modelling software such as GridLAB-D to study the effects of power quality on the

distribution grid. Understanding effects of vehicle fleet scale coordination can lead to

important insights to infrastructure design. In addition an optimization, facilitated

by GridLAB-D, of the most favourable distribution grid locations of the EVSPLs

would be a valuable tool for city planning studies.

Lastly, the sociological component should be considered before building an ap-

plication of an EVSPL. It is important to understand how the public will respond

to availability of such structures and whether the average person will find value in

publicly available charging on a day-to-day basis.
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Appendix A

Model Code

The code used in this thesis is attached below. The general component breakdown is

shown in Fig.A.1. The implementation of the model is shown in Fig.A.2.

Grid Tariff

Common inputs

PEV Parameters

SOC (arrival)

SOC (departure)

Time (arrival)

Time (departure)

Charge Rate

Feeder Limitations

Battery Capacity

Number of charging stations 

Other inputs

Storage Device Parameters

Regional Irradiance

Area limitation

PV panel characteristics

Wind Parameters

Load Scheduling 
(MATLAB/CPLEX)

Optimal technology size

Output

Optimal number of charging 
stations

Feasibility Study 
(MATLAB)

Optimal grid tariff

Post processing 
(MATLAB)

Optimal feeder size

Demand Charge

Figure A.1: Model overview.
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Start

Input acquisition

Load Scheduling 
(Uncoordinated) 

NPC calculation

Stop/Print 
Solution

Feasibility Analysis           

main.m

parameters.m

unscheduled.m

main.m

main.m

Load Scheduling 
(Coordinated)

schedulingopt.m

Constraint definitions 
Aeqgen.m, ABgen.m, 

lbubgen.m

Data processing 
queueing.m, Cali.m, 
baseload.m, Sgen.m, 

demandcharge.m, 
demandTOU.m

Validation 
modelvalidation.m

Figure A.2: Flow diagram of the model.
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A.1 main.m

This file is the executable file for the model. The notable components are the pa-

rameter acquisition, unscheduled model and scheduled model. Once the outputs are

gathered from both models the capital investment cost is calculated and discounted

to present value here.

1 c l c , c l e a r , c l o s e a l l ;

2 Ppv vect = [ 0 : 5 : 5 0 ] ;

3 Cinv =49000;

4 %Parameters

5 t i c

6 [N, N stat ions , T, T dur , Y, S max , L max , Energy rqrd , ...

7 P charger , GHI cal i , GHI vic , A, PV eff , P nom ,

t a r r annua l , t dep annual , ...

8 C ch , C i n c a l i , C in v i c , C out ca l i , C out vic , ...

9 C d ca l i , C d bas e ca l i , ...

10 C tax ca l i , C tax vic , ...

11 Cf , Cst , Cpv , i n f l , f , C o s t i n i n c r , Cos t out inc r ,

C d i n c r c a l i , C d inc r v i c , ...

12 D penalty med , D pena l ty la rge , Demand thresh med ,

Demand thresh large , ...

13 d e l t a t h r e s h c a l i , d e l t a t h r e s h v i c , s a l v a g e c o s t ,

I n v e f f ]= parameters ( ) ;

14 Cpv = [ 4 5 0 0 : 5 0 0 : 6 0 0 0 ] ;

15 Capex so lar=ze ro s ( l ength (Cpv) , l ength ( Ppv vect ) ) ;

16 Capex stat ions=Cst*N sta t i on s ;

17 %Capex stat ions =0;

18 D i s co un t f a c t o r=ones (Y, 1 ) ;

19 f o r y e a r d i s c =1:Y

20 D i s co un t f a c t o r ( y ea r d i s c , 1 ) =1/(1+ i n f l ) ˆ y e a r d i s c ;

21 end

22 s a l v a g e c o s t=s a l v a g e c o s t *D i s co un t f a c t o r (Y, 1 ) ;

23 D i s co un t f a c t o r=repmat ( Di s count fac to r , 1 , l ength ( Ppv vect ) )

;

24 nom int r ra t e =( i n f l−f ) /(1+ f ) ;
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25 CRF=( nom int r ra t e *(1+ nom int r ra t e ) ˆY) /(((1+ nom int r ra t e

) ˆY)−1) ;

26

27 %% CALIFORNIA

28 %Unscheduled model

29 [ OP sum unsched cali , Co s t pe r cha rge uns ched ca l i ,

l o a d o n l y u n s c h e d c a l i , Demand charge unsched cal i ,

S s o l a r p l o t , ...

30 u t i l r a t e u n s h e d c a l i ] ...

31 =unscheduled ( T, T dur , Energy rqrd , t a r r annua l , ...

32 P charger , GHI cal i , A, PV eff , P nom , C i n c a l i ,

C out ca l i , C d ca l i , C d bas e ca l i , Ppv vect , 1 ,

C o s t i n i n c r , Cos t out inc r , C ch , N stat ions ,

I n v e f f ) ;

33 %Scheduled model

34

35 [ OP sum sched cal i , C o s t p e r c h a r g e s c h e d c a l i ,

l oad sum ca l i , Demand charge sched ca l i ]=...

36 s chedu l i ng opt (N, T, T dur , S max , L max , ...

37 P charger , GHI cal i , A, PV eff , P nom , t a r r annua l ,

t dep annual , Energy rqrd , ...

38 C i n c a l i , C out ca l i , C d ca l i , C d bas e ca l i ,

Ppv vect , 1 , C o s t i n i n c r , Cos t out inc r , C ch ,

C d i n c r c a l i , 0 ,0 , 0 , 0 , N stat ions , I n v e f f ) ;

39 i f sum(sum( l o a d o n l y u n s c h e d c a l i−l o a d s u m c a l i ) )>5

40 f p r i n t f ( 'ERROR: Loads DO NOT MATCH\n' ) ;

41 end

42

43 %%

44 f i g u r e (1 ) ;

45 NPC unsched cal i=ze ro s ( l ength (Cpv) , l ength ( Ppv vect ) ) ;

46 NPC sched cal i=ze ro s ( l ength (Cpv) , l ength ( Ppv vect ) ) ;

47 OP sum unsched ca l i d i sc=Di s co un t f a c t o r .* repmat (

OP sum unsched cali ' ,Y, 1 ) ;
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48 OP sum sched ca l i d i s c=D i s co u n t f a c t o r .* repmat (

OP sum sched cal i ' , Y, 1 ) ;

49 Demand charge unsched ca l i d i s c=Di s c ou n t f a c t o r .* repmat (

Demand charge unsched cal i ' ,Y, 1 ) ;

50 Demand charge sched ca l i d i s c=Di s c o un t f a c t o r .* repmat (

Demand charge sched cal i ' ,Y, 1 ) ;

51 C o s t p e r c h a r g e u n s c h e d c a l i=Di s co un t f a c t o r ( : , 1 ) .* repmat

( Cos t pe r cha rge uns ched ca l i ' ,Y, 1 ) ;

52 C o s t p e r c h a r g e s c h e d c a l i=D i s co u n t f a c t o r ( : , 1 ) .* repmat (

C o s t p e r c h a r g e s c h e d c a l i ' ,Y, 1 ) ;

53 OP tota l uns ched ca l i=OP sum unsched ca l i d i sc+

Demand charge unsched ca l i d i sc−
C o s t p e r c h a r g e u n s c h e d c a l i ;

54 O P t o t a l s c h e d c a l i=OP sum sched ca l i d i s c+

Demand charge sched ca l i d i s c−
C o s t p e r c h a r g e s c h e d c a l i ;

55 OP tota l sum unsched ca l i=sum( OP to ta l un s ched ca l i ) ;

56 OP tota l sum sched ca l i=sum( O P t o t a l s c h e d c a l i ) ;

57

58 f o r i =1: l ength (Cpv)

59 Capex so lar=Cpv( i ) .* Ppv vect ;

60 Capex stat ions =0; %%% FIX THIS LATER

61 %UNSCHEDULED

62 Capex tota l=Capex stat ions+Capex so lar+Cinv ;

63

64 NPC unsched cal i ( i , : ) =(OP tota l sum unsched ca l i+

Capex tota l ) ;

65 %−s a l v a g e c o s t .* Ppv vect ;

66 NPC sched cal i ( i , : ) =( OP tota l sum sched ca l i+

Capex tota l ) ;

67 %−s a l v a g e c o s t .* Ppv vect ;

68 f i g u r e (1 )

69 p lo t ( Ppv vect , NPC sched cal i ( i , : ) , ' r ' ) ;

70 hold on

71 p lo t ( Ppv vect , NPC unsched cal i ( i , : ) , 'b' ) ;
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72 hold on

73 l egend ( 'Scheduled C a l i f o r n i a ' , 'Unscheduled

C a l i f o r n i a ' )

74 end

75

76 %%

77 %%VICTORIA

78

79 %Unscheduled model

80 [ OP sum unsched vic , Cos t pe r charge unsched v i c ,

l oad on ly unsched v i c , ...

81 Demand charge unsched vic , u t i l r a t e u n s c h e d v i c ] ...

82 =unscheduled ( T, T dur , Energy rqrd , t a r r annua l , ...

83 P charger , GHI vic , A, PV eff , P nom , C in v i c ,

C out vic , C d ca l i , ...

84 C d base ca l i , Ppv vect , 2 , C o s t i n i n c r ,

Cos t out inc r , C ch , N stat ions , I n v e f f ) ;

85 %Scheduled model

86 t i c

87 [ OP sum sched vic , Cos t pe r cha rge s ched v i c ,

load sum vic , Demand charge sched vic ]=...

88 s chedu l i ng opt (N, T, T dur , S max , L max , ...

89 P charger , GHI vic , A, PV eff , P nom , t a r r annua l ,

t dep annual , Energy rqrd , ...

90 C in v i c , C out vic , C d ca l i , C d bas e ca l i ,

Ppv vect , 2 , C o s t i n i n c r , Cos t out inc r , ...

91 C ch , C d inc r v i c , ...

92 D penalty med , D pena l ty la rge , Demand thresh med ,

Demand thresh large , ...

93 N stat ions , I n v e f f ) ;

94 toc

95 i f sum(sum( load on ly unsched v i c−l oad sum vic ) )>5

96 f p r i n t f ( 'ERROR: Loads DO NOT MATCH\n' ) ;

97 end

98 C ch =0.25 ./(T/24) ;
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99 C ch=0;

100 Cost per charge =0;

101

102 f i g u r e (2 ) ;

103 NPC unsched vic=ze ro s ( l ength (Cpv) , l ength ( Ppv vect ) ) ;

104 %NPC sched vic=ze ro s ( l ength (Cpv) , l ength ( Ppv vect ) ) ;

105 OP sum unsched vic disc=Di s c ou n t f a c t o r .* repmat (

OP sum unsched vic ' ,Y, 1 ) ;

106 %OP sum sched vic d i sc=Di s c o un t f a c t o r .* repmat (

OP sum sched vic ' ,Y, 1 ) ;

107 Demand charge unsched vic d i sc=D i s c ou n t f a c t o r .* repmat (

Demand charge unsched vic ' ,Y, 1 ) ;

108 %Demand charge sched v ic d i sc=Di s co un t f a c t o r .* repmat (

Demand charge sched vic ' ,Y, 1 ) ;

109 Cos t pe r cha rge unsched v i c=Di s c o un t f a c t o r ( : , 1 ) .* repmat (

Cos t pe r charge unsched v i c ' ,Y, 1 ) ;

110 %C o s t p e r c h a r g e s c h e d v i c=D i s co u n t f a c t o r ( : , 1 ) .* repmat (

Cos t pe r cha rge s ched v i c ' ,Y, 1 ) ;

111 OP tota l unsched v ic=OP sum unsched vic disc+

Demand charge unsched vic disc−
Cos t pe r cha rge unsched v i c ;

112 %OP tota l s ched v i c=OP sum sched vic d i sc+

Demand charge sched vic d i sc−C o s t p e r c h a r g e s c h e d v i c ;

113 OP tota l sum unsched vic=sum( OP tota l unsched v ic ) ;

114 %OP tota l sum sched v ic=sum( OP tota l s ched v i c ) ;

115 f o r i =1: l ength (Cpv)

116 Capex so lar=Cpv( i ) .* Ppv vect+Cinv ;

117 %UNSCHEDULED

118 Capex tota l=Capex stat ions+Capex so lar ;

119 NPC unsched vic ( i , : ) =(OP tota l sum unsched vic+

Capex tota l ) ;

120 NPC sched vic ( i , : ) =(OP tota l sum sched v ic+Capex tota l

) ;

121
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122 NPC unsched cali norm=NPC unsched cal i . / (

NPC unsched cal i ( 1 ) ) ;

123 NPC sched cal i norm=NPC sched cal i . / ( NPC sched cal i

( 1 ) ) ;

124 NPC unsched vic norm=NPC unsched vic . / (

NPC unsched vic (1 ) ) ;

125 NPC sched vic norm=NPC sched vic . / ( NPC sched vic (1 ) ) ;

126

127

128 f i g u r e (2 )

129 p lo t ( Ppv vect , NPC sched vic ( i , : ) , ' r ' ) ;

130 hold on

131 p lo t ( Ppv vect , NPC unsched vic ( i , : ) , 'b' ) ;

132 l egend ( 'Scheduled V i c t o r i a ' , 'Unscheduled V i c t o r i a ' )

133 hold on

134

135 end
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A.2 parameters.m

This function gathers all the required parameters needed to define the particular case

study.

1 f unc t i on [N, N stat ions , T, T dur , Y, S max , L max ,

Energy rqrd new , ...

2 P ch new , I c a l c c a l i , I c a l c v i c , A, PV eff , P nom ,

t arr new , t dep new , ...

3 C ch , C i n c a l i , C in v i c , C out ca l i , C out vic , ...

4 C d ca l i , C d bas e ca l i , ...

5 C tax ca l i , C tax vic , ...

6 Cf , Cst , Cpv , i n f l , f , C o s t i n i n c r , Cos t out inc r ,

C d i n c r c a l i , C d inc r v i c , ...

7 D penalty med , D pena l ty la rge , Demand thresh med ,

Demand thresh large , ...

8 d e l t a t h r e s h c a l i , d e l t a t h r e s h v i c , Sa lvage cos t ,

I n v e f f ]= parameters ( )

9 N=150; %number o f ca r s wa i t ing to be served ( a r b i t r a r y

number )

10 T=96; %us ing 15 minute i n t e r v a l s

11 T dur =365;

12 Y=25; %number o f years

13 i n f l =0.06; %Discount ra t e

14 f =0.02; %i n f l a t i o n

15 L max=2000;

16 % SOLAR POWER SPECS − SUNPOWER X−SERIES

17 A=1.6; %area o f 1 panel (mˆ2)

18 P nom=360./10ˆ3; % (kWp) per panel

19 PV eff =0.222; % SUNPOWER X−SERIES

20 LAT cali =33.83;

21 LON cali =118;

22 LON vic=118;

23 LAT vic =48.4284;

24 %For f i x e d t i l t
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25 TILT cal i=LAT cali *0 .76+3.1 ; %%% EXPAND TO MULTIPLE TILT

ADJUSTMENTS

26 TILT vic=LAT vic *0 .76+3.1 ;

27 S max=1000000000; %assume that f e e d e r capac i ty i s the same

bi−d i r e c t i o n a l l y

28 %cap batte ry − 1xN vecto r o f a l l car ' s bat te ry c a p a c i t i e s

29 %already i n c o r p o r a t e s e f f i e n c y : break t h i s apart in to e f f *

cap char i f needed

30 %Sola r s p e c i f i c a t i o n s

31 %fpv =0.85; %dera t ing f a c t o r [%]

32 d e l t a t h r e s h c a l i=ze ro s (T,T) ;

33 d e l t a t h r e s h v i c=eye (T) ;

34 C i n v i c p r i c e =0.1139/(T/24) ; %s t a r t i n g value − adjusted

a f t e r the energy c a l c f o r v i c t o r i a ( t i e r e d r a t e s )

35 C o s t i n i n c r =1; % how much h igher does Cin have to be f o r

an NPC curve

36 C o s t o u t i n c r =1;

37 [ t a r r , t dep , P charger , Energy rqrd ]= Ca l i da ta (N, T dur )

;

38 Energy rqrd=Energy rqrd .* (T/24) −0.00001;

39 I n v e f f =0.90;

40 [ N stat ions , t arr new , t dep new , Energy rqrd new ,

P ch new]=...

41 queueing (N, T dur , t a r r , t dep , Energy rqrd ,

P charger ) ;

42 N sta t i on s

43 % Post p r o c e s s i n g o f the data

44 f o r kk=1: s i z e ( P ch new , 1 )

45 f o r l l =1: s i z e ( P ch new , 2 )

46 i f kk==3 && l l ==343

47 f p r i n t f ( 'here ' ) ;

48 end

49 % i f charger power i s 0 or l e s s and energy i s not

0 − do not

50 % charge
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51 i f P ch new ( kk , l l )<=0 && Energy rqrd new ( kk , l l )˜=0

52 Energy rqrd new ( kk , l l ) =0;

53 end

54 %i f amount o f time a v a i l a b l e i s l e s s than the

r equ i r ed time

55 % to reach f u l l charge

56 i f ( t dep new ( kk , l l )−t a r r new ( kk , l l ) )<c e i l (

Energy rqrd new ( kk , l l ) /P ch new ( kk , l l ) )

57 Energy rqrd new ( kk , l l )=P ch new ( kk , l l ) *(

t dep new ( kk , l l )−t a r r new ( kk , l l ) ) −0.001;

58 end

59

60 %i f charg ing power was mis−recorded − d e l e t e entry

61 i f P ch new ( kk , l l )<=0.01 | | ( c e i l ( Energy rqrd new (

kk , l l ) /P ch new ( kk , l l ) ) )>50

62 t a r r new ( kk , l l ) =0;

63 t dep new ( kk , l l ) =0;

64 P ch new ( kk , l l ) =0;

65 Energy rqrd new ( kk , l l ) =0;

66 end

67 % i f the car needs to charge l onge r than the

l ength o f the day

68 char dura t i on=c e i l ( Energy rqrd new ( kk , l l ) . /

P ch new ( kk , l l ) ) ;

69 i f ( t a r r new ( kk , l l )+char dura t i on )>T

70 char dura t i on=T−t a r r new ( kk , l l ) ;

71 P ch new ( kk , l l )=Energy rqrd new ( kk , l l ) . /

char dura t i on ;

72 end

73 c l e a r char dura t i on

74 end

75 end

76 %i f the car a r r i v e s in the l a s t time s l o t o f the day

77 t dep new ( t ar r new==T) =0;

78 Energy rqrd new ( t ar r new==T) =0;
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79 P ch new ( t ar r new==T) =0;

80 t a r r new ( t ar r new==T) =0;

81 %Sola r gene ra t i on power p r o f i l e

82 day year =1:365;

83 [ I c a l i , I v i c ]=Sgen (T, T dur ) ; %power output from the

panel

84 I c a l i=reshape ( I c a l i , 4 ,96*365/4) ;

85 I c a l i=sum( I c a l i ) . / 4 ;

86 I c a l i=reshape ( I c a l i , 2 4 , 365 ) ;

87 I v i c=reshape ( I v i c , 4 ,96*365/4) ;

88 I v i c=sum( I v i c ) . / 4 ;

89 I v i c=reshape ( I v i c , 24 , 365 ) ;

90 b azimuth =0;

91 g r n d r e f =0.2 ;

92 fpv =0.8 ;

93 I c a l c c a l i=PV out ( LON cali , LAT cali , TILT cali ,

b azimuth , I c a l i , g rnd re f , fpv ) ;

94 I c a l c v i c=PV out ( LON vic , LAT vic , TILT vic , b azimuth ,

I v i c , g rnd re f , fpv ) ;

95

96 %% CALIFORNIA PRICE OF ELECTRICITY

97 C i n c a l i=ze ro s (T, 1 ) ;

98 % %ToU

99 % %peak 11am−5pm

100 i f T==288

101 C i n c a l i ( 132 : 203 ) =0.18*(1/(T/24) ) ;

102 %shou lder

103 C i n c a l i ( 85 : 131 ) =0.132*(1/(T/24) ) ;

104 C i n c a l i ( 204 : 227 ) =0.132*(1/(T/24) ) ;

105 %o f f peak 7pm−7am

106 C i n c a l i ( 228 : 288 ) =0.087*(1/(T/24) ) ;

107 C i n c a l i ( 1 : 8 4 ) =0.087*(1/(T/24) ) ;

108 C i n c a l i=repmat ( C i n c a l i , 1 , T dur ) ;

109 e l s e i f T==24

110 C i n c a l i ( 1 1 : 1 6 ) =0.132*(1/(T/24) ) ;
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111 %shou lder

112 C i n c a l i ( 7 : 1 0 ) =0.095*(1/(T/24) ) ;

113 C i n c a l i ( 1 7 : 1 8 ) =0.095*(1/(T/24) ) ;

114 %o f f peak 7pm−7am

115 C i n c a l i ( 1 9 : 2 4 ) =0.065*(1/(T/24) ) ;

116 C i n c a l i ( 1 : 6 ) =0.065*(1/(T/24) ) ;

117 C i n c a l i=repmat ( C i n c a l i , 1 , T dur ) ;

118 e l s e i f T==96

119 C in summer ca l i=ze ro s (T, 1 ) ;

120 C i n w i n t e r c a l i=ze ro s (T, 1 ) ;

121 %summer peak

122 C in summer ca l i ( 4 8 : 7 1 ) =0.34020*(1/(T/24) ) ; %12 pm to

6pm

123 %summer part−peak

124 C in summer ca l i ( 3 4 : 4 7 ) =0.15997*(1/(T/24) ) ; %8 :30 am

to 12pm

125 C in summer ca l i ( 7 2 : 8 5 ) =0.15997*(1/(T/24) ) ; %6pm to

9 :30pm

126 %summer o f fpeak

127 C in summer ca l i ( 8 6 : 9 6 ) =0.08512*(1/(T/24) ) ; %6pm to

8 :30 am

128 C in summer ca l i ( 1 : 3 3 ) =0.08512*(1/(T/24) ) ;

129 %winter part−peak

130 C i n w i n t e r c a l i ( 3 4 : 8 5 ) =0.10689*(1/(T/24) ) ;

131 %winter o f fpeak

132 C i n w i n t e r c a l i ( 8 6 : 9 6 ) =0.09178*(1/(T/24) ) ;

133 C i n w i n t e r c a l i ( 1 : 3 3 ) =0.09178*(1/(T/24) ) ;

134 C i n A c a l i=repmat ( C i n w i n t e r c a l i , 1 , 120) ;

135 C i n B c a l i=repmat ( C i n w i n t e r c a l i , 1 , 61) ;

136 C i n C c a l i=repmat ( C in summer cal i , 1 , 184) ;

137 C i n c a l i =[ C in A ca l i , C in C ca l i , C i n B c a l i ] ;

138 end

139

140 % Demand charges TOU

141 C d b a s e c a l i =19.71253;
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142 %summer peak

143 C d summer peak cal i =17.57; %12 pm to 6pm

144 %summer part−peak

145 C d summer part ca l i =0.51;

146 %winter part−peak

147 C d w i n t e r c a l i =0.03; %8 :30am to 9 :30pm

148 C d c a l i =[ C d summer peak cal i , C d summer part ca l i ,

C d w i n t e r c a l i ] ;

149 C d A ca l i=repmat ( C d w in t e r ca l i , 9 6 , 120 ) ;

150 C d A ca l i ( 1 : 3 3 , : ) =0;

151 C d A ca l i ( 8 6 : 9 6 , : ) =0;

152 C d B ca l i=repmat ( C d summer peak cal i , 9 6 , 6 1 ) ;

153 C d B ca l i ( 3 4 : 4 7 , : )=C d summer part ca l i ;

154 C d B ca l i ( 7 2 : 8 5 , : )=C d summer part ca l i ;

155 C d B ca l i ( 1 : 3 3 , : ) =0;

156 C d B ca l i ( 8 6 : 9 6 , : ) =0;

157 C d C ca l i=repmat ( C d w in t e r ca l i , 9 6 , 184 ) ;

158 C d C ca l i ( 1 : 3 3 , : ) =0;

159 C d C ca l i ( 8 6 : 9 6 , : ) =0;

160 C d i n c r c a l i =[ C d A cal i , C d B ca l i C d C ca l i ] ;

161 C d i n c r v i c =10.* ones (T, T dur ) ;

162 C o u t c a l i=C i n c a l i ; %net meter ing

163

164 C t a x c a l i =0;

165 % VICTORIA PRICE OF ELECTRICITY IS TIERED − RECALCULATED

IN ENERGYCALC FUNCTIONS

166 %% VICTORIA PRICE OF ELECTRICITY

167 C i n v i c=C i n v i c p r i c e .* ones (T, T dur ) ;

168 C out v i c=C i n v i c ;

169 C r a t e r i d e r =0.05;

170 C tax v i c =0.12+ C r a t e r i d e r ;

171 %% Equipment co s t

172 Cf=50; %f e e d e r co s t /W

173 Cpv=4500;

174 Cst =2700;
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175 C ch=0;

176 D penalty med =4.92;%4.92

177 D pena l ty l a rge =11.21;

178 Demand thresh med=35;%35

179 Demand thresh large =150;

180 Sa lvage co s t =0.33*1000;

181 end
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A.3 queueing.m

The queueing function is responsible for ordering the vehicles and determining the

optimal number of charging stations required by the parking lot.

1 f unc t i on [ N st , t arr new , t dep new , Energy rqrd new ,

P ch new]= queueing (N, T dur , t a r r , t dep , Energy rqrd

, P ch )

2 %s t a r t by assuming that the re i s one s t a t i o n r equ i r ed

f o r each day

3 N temp=N;

4 N sta t i on s=ones ( T dur , 1 ) ;

5 t a r r new=ze ro s ( s i z e ( t a r r ) ) ;

6 t dep new=ze ro s ( s i z e ( t dep ) ) ;

7 Energy rqrd new=ze ro s ( s i z e ( Energy rqrd ) ) ;

8 P ch new=ze ro s ( s i z e ( P ch ) ) ;

9 c r e f u s e d a r r a y=ones (100 ,1 ) ;

10 f o r x=1: s i z e ( t a r r , 1 )

11 f o r y=1: s i z e ( t a r r , 2 )

12 i f t a r r (x , y )˜=0 && ( t dep (x , y )−t a r r (x , y ) )==0

13 t a r r (x , y ) =0;

14 t dep (x , y ) =0;

15 Energy rqrd (x , y ) =0;

16 P ch (x , y ) =0;

17 end

18 i f ( t dep (x , y )−t a r r (x , y ) )<(Energy rqrd (x , y ) /

P ch (x , y ) )

19 Energy rqrd (x , y )=(P ch (x , y ) *( t dep (x , y )−
t a r r (x , y ) ) ) ;

20 end

21 end

22 end

23 %s o r t i n g in order o f a r r i v a l

24 f o r i =1:T dur

25 f p r i n t f ( 'Queueing day p r o c e s s i n g : %d \n' , i ) ;
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26 t ime vec to r =[ t a r r ( : , i ) , t dep ( : , i ) , Energy rqrd ( : , i ) ,

P ch ( : , i ) ] ;

27 N=s i z e ( t ime vector , 1 ) ;

28 t ime vec to r=sort rows ( t ime vector , 1) ;

29 t d a y a r r=t ime vec to r ( : , 1 ) ;

30 t d a y a r r ( t d a y a r r==0) = [ ] ;

31 i f sum( t d a y a r r )˜=0

32 t day dep=t ime vec to r ( : , 2 ) ;

33 t day dep ( t day dep==0) = [ ] ;

34 Energy rqrd day=t ime vec to r ( : , 3 ) ;

35 P ch day=t ime vec to r ( : , 4 ) ;

36 Energy rqrd day ( t d a y a r r==0) = [ ] ;

37 P ch day ( t d a y a r r==0) = [ ] ;

38 t d a y a r r ( t d a y a r r==0) = [ ] ;

39 %a r r i v a l time replacement based on charger

a v a i l a b i l i t y

40 count r e fu s ed =1;

41 %ensure s the row i s zeroed out

42 N=length ( t d a y a r r ) ;

43 whi le ( count r e fu s ed ˜=0)

44 count r e fu s ed =0; %r e s e t a l l v a r i a b l e s f o r that day

45

46 t a r r new ( : , i )=ze ro s (N temp , 1 ) ;

47 t dep new ( : , i )=ze ro s (N temp , 1 ) ;

48 Energy rqrd new ( : , i )=ze ro s (N temp , 1 ) ;

49 P ch new ( : , i )=ze ro s (N temp , 1 ) ;

50 %matrix with ca r s c u r r e n t l y in the parking l o t

51 charg ing matr ix =[ t d a y a r r ( 1 : N s ta t i on s ( i ) ) ,

t day dep ( 1 : N s ta t i on s ( i ) ) , ...

52 Energy rqrd day ( ( 1 : N s ta t i on s ( i ) ) )

, P ch day ( ( 1 : N s ta t i on s ( i ) ) ) ] ;

53 %populate with f i r s t v e h i c l e s to charge

54 %matrix that did not f i t i n to the charg ing

s t a t i o n s
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55 queue ing matr ix =[ t d a y a r r ( ( ( N s ta t i on s ( i )+1) :N) ) ,

t day dep ( ( ( N s ta t i on s ( i )+1) :N) ) , ...

56 Energy rqrd day ( ( ( N s ta t i on s ( i )+1)

:N) ) , ...

57 P ch day ( ( ( N s ta t i on s ( i )+1) :N) ) ] ;

58 %cons tant ly updating matrix o f charge r s

59 %check f o r ca r s that are a l r eady f u l l y charged at

a r r i v a l

60 charg ing matr ix=sort rows ( charg ing matr ix , 2) ; %

s o r t accord ing to t dep

61 f o r j =1:(N−N sta t i on s ( i ) )

62

63 % i f the car a r r i v e s and there i s no spot s

l e f t

64 i f ( charg ing matr ix (1 , 2 )>=queue ing matr ix

(1 , 1 ) )

65 % i f the departure time o f the f i r s t

car to l eave the f u l l l o t

66 % i s sooner than the departure time o f

the next queueing car

67 i f ( charg ing matr ix (1 , 2 ) +1)<

queue ing matr ix (1 , 2 )

68 % record the next queueing car

t imes

69 t a r r new ( j , i )=charg ing matr ix

(1 , 1 ) ;

70 t dep new ( j , i )=charg ing matr ix

(1 , 2 ) ;

71 Energy rqrd new ( j , i )=

charg ing matr ix (1 , 3 ) ;

72 P ch new ( j , i )=charg ing matr ix (1 , 4 )

;

73 % r e p l a c e the f i r s t car to l eave

with the queueing car
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74 % a r r i v a l time changed to l a s t car

' s departure time

75 charg ing matr ix (1 , 1 )=

charg ing matr ix (1 , 2 ) +1;

76 %departure time i s from the

queueing car

77 charg ing matr ix (1 , 2 )=

queue ing matr ix (1 , 2 ) ;

78 charg ing matr ix (1 , 3 )=

queue ing matr ix (1 , 3 ) ; %energy

update

79 charg ing matr ix (1 , 4 )=

queue ing matr ix (1 , 4 ) ; %Pch

update

80 e l s e

81 % f p r i n t f ('%d car did not charge (

not enough time )\n' , i ) ;

82 count r e fu s ed=count r e fu s ed +1;

83 end

84 % i f the re i s f r e e spaces in the parking

l o t

85 e l s e

86 t a r r new ( j , i )=charg ing matr ix (1 , 1 ) ;

87 t dep new ( j , i )=charg ing matr ix (1 , 2 ) ;

88 Energy rqrd new ( j , i )=charg ing matr ix

(1 , 3 ) ;

89 P ch new ( j , i )=charg ing matr ix (1 , 4 ) ;

90 charg ing matr ix (1 , 1 )=queue ing matr ix

(1 , 1 ) ;

91 charg ing matr ix (1 , 2 )=queue ing matr ix

(1 , 2 ) ;

92 charg ing matr ix (1 , 3 )=queue ing matr ix

(1 , 3 ) ;

93 charg ing matr ix (1 , 4 )=queue ing matr ix

(1 , 4 ) ;
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94 end

95 % d e l e t e the item from the queue

96 queue ing matr ix ( 1 , : ) = [ ] ;

97 % s o r t the matrix o f charge r s again depending

on the departure time

98 charg ing matr ix=sort rows ( charg ing matr ix , 2) ;

99 end

100 t a r r new ( (N−N sta t i on s ( i )+1) :N, i )=

charg ing matr ix ( : , 1 ) ; % add the ca r s charg ing

f i r s t

101 t dep new ( (N−N sta t i on s ( i )+1) :N, i )=

charg ing matr ix ( : , 2 ) ;

102 Energy rqrd new ( (N−N sta t i on s ( i )+1) :N, i )=

charg ing matr ix ( : , 3 ) ;

103 P ch new ( (N−N sta t i on s ( i )+1) :N, i )=charg ing matr ix

( : , 4 ) ;

104 % f p r i n t f ('%d car s did not f i t i n to the parking

l o t .\n' , c ount r e fu s ed ) ;

105 N sta t i on s ( i )=N sta t i on s ( i ) +1;

106 c l e a r charg ing matr ix ;

107 end

108 end

109 count r e fu s ed =0;

110 N sta t i on s ( i )=N sta t i on s ( i )−1;

111 % f p r i n t f ('%d car s did not f i t i n to the parking l o t .\
n' , c ount r e fu s ed ) ;

112 end

113 %%FINAL QUEUE WITH MINIMUM NUMBER OF CHARGING STATIONS

114 %N st=max( N s ta t i on s ) ; %max amount o f s t a t i o n s needed to

s e rve o f a l l customers

115 N st=round (mean( N s ta t i on s ) ) ; %max amount o f s t a t i o n s

needed to s e rve o f a l l customers

116 %r e c a l c u l a t e the t imes o f a r r i v a l and departure with the

f i n a l s t a t i o n

117 %number
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118 t a r r new=ze ro s ( s i z e ( t a r r ) ) ;

119 t dep new=ze ro s ( s i z e ( t dep ) ) ;

120 %SOC arr new=ze ro s ( s i z e ( SOC arr ) ) ;

121 Energy rqrd new=ze ro s ( s i z e ( Energy rqrd ) ) ;

122 P ch new=ze ro s ( s i z e ( P ch ) ) ;

123 i f ( N st>=N)

124 t a r r new=t a r r ;

125 t dep new=t dep ;

126 Energy rqrd new=Energy rqrd ;

127 P ch new=P ch ;

128 e l s e

129 f o r i =1:T dur

130 %populate with f i r s t v e h i c l e s to charge

131 i f sum( t a r r ( : , i ) )˜=0

132 t a r r t emp=t a r r ( : , i ) ;

133 t dep temp=t dep ( : , i ) ;

134 Energy rqrd temp=Energy rqrd ( : , i ) ;

135 P ch temp=P ch ( : , i ) ;

136 t dep temp ( t ar r t emp==0) = [ ] ;

137 Energy rqrd temp ( t ar r t emp==0) = [ ] ;

138 P ch temp ( t ar r t emp==0) = [ ] ;

139 t a r r t emp ( t ar r t emp==0) = [ ] ;

140 i f N st>=length ( t ar r t emp )

141 t a r r new ( 1 : l ength ( t ar r t emp ) , i )=

t ar r temp ;

142 t dep new ( 1 : l ength ( t dep temp ) , i )=

t dep temp ;

143 Energy rqrd new ( 1 : l ength ( Energy rqrd temp )

, i )=Energy rqrd temp ;

144 P ch new ( 1 : l ength ( P ch temp ) , i )=P ch temp ;

145 e l s e

146 charg ing matr ix =[ t ar r t emp ( 1 : N st ) , t dep temp ( 1 :

N st ) , ...

147 Energy rqrd temp ( 1 : N st ) ,

P ch temp ( 1 : N st ) ] ; %f i r s t
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100 ca r s to a r r i v e so r t ed

accord ing to t a r r

148 queue ing matr ix =[ t ar r t emp ( ( ( N st+1) : l ength (

t ar r t emp ) ) ) , ...

149 t dep temp ( ( ( N st+1) : l ength ( t ar r t emp ) ) ) , ...

150 Energy rqrd temp ( ( ( N st+1) : l ength ( t ar r t emp ) )

) , ...

151 P ch temp ( ( ( N st+1) : l ength ( t ar r t emp ) ) ) ] ;

152 %cons tant ly updating matrix o f charge r s

153 charg ing matr ix=sort rows ( charg ing matr ix , 2) ; %

s o r t accord ing to t dep

154 f o r j =1:( l ength ( t ar r t emp )−N st )

155 i f ( charg ing matr ix (1 , 2 )>=queue ing matr ix

(1 , 1 ) )

156 i f ( charg ing matr ix (1 , 2 ) +1)<

queue ing matr ix (1 , 2 )

157 % record the next queueing car

t imes

158 t a r r new ( j , i )=charg ing matr ix

(1 , 1 ) ;

159 t dep new ( j , i )=charg ing matr ix

(1 , 2 ) ;

160 Energy rqrd new ( j , i )=

charg ing matr ix (1 , 3 ) ;

161 P ch new ( j , i )=charg ing matr ix (1 , 4 )

;

162 % r e p l a c e the f i r s t car to l eave

with the queueing car

163 % a r r i v a l time changed to l a s t car

' s departure time

164 charg ing matr ix (1 , 1 )=

charg ing matr ix (1 , 2 ) +1;

165 %departure time i s from the

queueing car



86

166 charg ing matr ix (1 , 2 )=

queue ing matr ix (1 , 2 ) ;

167 charg ing matr ix (1 , 3 )=

queue ing matr ix (1 , 3 ) ;

168 charg ing matr ix (1 , 4 )=

queue ing matr ix (1 , 4 ) ;

169 e l s e

170 count r e fu s ed=count r e fu s ed +1;

171 end

172 e l s e

173 t a r r new ( j , i )=charg ing matr ix (1 , 1 ) ;

174 t dep new ( j , i )=charg ing matr ix (1 , 2 ) ;

175 Energy rqrd new ( j , i )=charg ing matr ix

(1 , 3 ) ;

176 P ch new ( j , i )=charg ing matr ix (1 , 4 ) ;

177 charg ing matr ix (1 , 1 )=queue ing matr ix

(1 , 1 ) ;

178 charg ing matr ix (1 , 2 )=queue ing matr ix

(1 , 2 ) ;

179 charg ing matr ix (1 , 3 )=queue ing matr ix

(1 , 3 ) ;

180 charg ing matr ix (1 , 4 )=queue ing matr ix

(1 , 4 ) ;

181 end

182 % d e l e t e the item from the queue

183 queue ing matr ix ( 1 , : ) = [ ] ;

184 % s o r t the matrix o f charge r s again depending

on the departure time

185 charg ing matr ix=sort rows ( charg ing matr ix , 2) ;

186 end

187 t a r r new ( (N−N st+1) :N, i )=charg ing matr ix ( : , 1 )

; % add the ca r s charg ing f i r s t

188 t dep new ( (N−N st+1) :N, i )=charg ing matr ix ( : , 2 )

;
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189 Energy rqrd new ( (N−N st+1) :N, i )=

charg ing matr ix ( : , 3 ) ;

190 P ch new ( (N−N st+1) :N, i )=charg ing matr ix ( : , 4 ) ;

191 end

192 end

193 c l e a r t a r r t emp t dep temp Energy rqrd temp

P ch temp ;

194 end

195 end

196

197 end
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A.4 Sgen.m

This function is responsible for post processing the solar irradiation data.

1 f unc t i on [ S g e n c a l i , S g en v i c ]=Sgen ( Time Incr , T dur )

2 %% CALIFORNIA

3 f i l ename='38 .84 −117.9 p s m s a t e l l i t e 6 0 t m y . csv ' ;

4 % Year , Month , Day , Hour , Min , Dew Point , DHI (W/m2) , DNI

(W/m2) , Col 9 − GHI (W/m2) , Pres sure (mbar ) ,

5 % Temperature (C) , Wind Direct ion , Wind Speed

6 T=csvread ( f i l ename , 3 ,0) ;

7 S gen hour=ze ro s (24 , T dur ) ;

8 month=T( : , 2 ) ;

9 day=T( : , 3 ) ;

10 hour=T( : , 4 ) ;

11 GHI=T( : , 9 ) ;

12 m= [ 3 1 , 59 , 90 , 120 , 151 , 181 , 212 , 243 , 273 , 304 , 334 ,

3 6 5 ] ;

13 month(month==1)=ze ro s ( l ength (month(month==1)) ,1 ) ;

14 f o r mnth=1:11

15 month(month==(mnth+1) )=m(mnth)*ones ( l ength (month(month

==(mnth+1) ) ) ,1 ) ;

16 end

17 day year=month+day ; % day o f the year 1 :365

18

19 % ASSUMING THE DATA IS AT AN HOUR FREQUENCY

20 S gen hour ( : , 1 )=GHI( 1 : 2 4 , 1 ) ;

21 f o r i =2:365

22 S gen hour ( : , i )=GHI( ( ( i −1)*24+1) : ( i *24) ,1 ) ;

23 end

24 S gen hour=reshape ( ( S gen hour . / ( Time Incr /24) ) , T dur

*24 ,1) ;

25 S gen hour=(repmat ( S gen hour , 1 , Time Incr /24) ) ' ;

26 S g e n c a l i n o d a y l i g h t=reshape ( S gen hour , Time Incr , T dur ) ;

27 S g e n c a l i d a y l i g h t=c i r c s h i f t ( S g e n c a l i n o d a y l i g h t

( : , 7 0 : 3 0 8 ) ,4 ) ; %day l i gh t sav ings por t i on
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28 S g e n c a l i =[ S g e n c a l i n o d a y l i g h t ( : , 1 : 6 9 ) ,

S g e n c a l i d a y l i g h t , S g e n c a l i n o d a y l i g h t ( : , 3 0 9 : 3 6 5 )

] . / 1 0 0 0 ; % CONVERSION TO KW/mˆ2

29 c l e a r f i l ename T S gen hour month day hour GHI m mnth

day year i

30 %% VICTORIA

31 s o l a r v i c=dlmread ( 'Sgen Vic . txt ' ) ;

32 s o l a r v i c=reshape ( s o l a r v i c , 288*T dur , 1 ) ;

33 s o l a r v i c=sum( reshape ( s o l a r v i c , 3 ,288*T dur /3) ) ;

34 s o l a r v i c=reshape ( s o l a r v i c , Time Incr , T dur ) . / 3 ;

35 s o l a r v i c d a y l i g h t=c i r c s h i f t ( s o l a r v i c ( : , 7 0 : 3 0 8 ) ,4 ) ;

36 S gen v i c =[ s o l a r v i c ( : , 1 : 6 9 ) , s o l a r v i c d a y l i g h t ,

s o l a r v i c ( : , 3 0 9 : 3 6 5 ) ] ;

37 end
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A.5 unscheduled.m

The function outputs the demand profile for uncoordinated charging.

1 f unc t i on [ OP final , Cost per charge , load on ly ,

Demand charge total , S s o l a r p l o t , u t i l r a t e ] ...

2 =unscheduled ( T, T dur , Energy rqrd , t a r r annua l , ...

3 P charger , I c a l c , A, PV eff , P nom , C in , C out , C d ,

C d base , Ppv vect , loc , C o s t i n i n c r ,

Cos t out inc r , C ch , N st , I n v e f f , ...

4 C d base v ic , C in vic new , C d vic )

5 Load annual=ze ro s (T, T dur ) ;

6 OP annual=ze ro s (T, T dur ) ;

7 Snet day=ze ro s ( T dur , l ength ( Ppv vect ) ) ;

8 OP fina l=ze ro s ( l ength ( Ppv vect ) , 1 ) ;

9 S s o l a r p l o t=ze ro s (96 , l ength ( Ppv vect ) ) ;

10 %Demand charge=ze ro s ( l ength (m) , T dur /365) ;

11 Demand charge total=ze ro s ( l ength ( Ppv vect ) , 1 ) ;

12 Cost per charge=ze ro s ( l ength ( Ppv vect ) , 1 ) ;

13 F e e d e r s i z e=ze ro s ( l ength ( Ppv vect ) , 1 ) ;

14 Load monthly=ze ro s (12 , T dur /365) ;

15 P charger ( P charger==0)=0.001;

16 E te s t=ze ro s (96 ,365) ;

17 u t i l r a t e=ze ro s (T, T dur ) ;

18 c a r u t i l=ze ro s (T, 1 ) ;

19 c a r u t i l t e m p=ze ro s (T, 1 ) ;

20 %Demand curve

21 %load on ly=sum( Energy rqrd ) ;

22 f o r i i =1:T dur %go through every day

23 i f i i ==240

24 f p r i n t f ( 'here \n' ) ;

25 end

26 t a r r=t a r r a n n u a l ( : , i i ) ;

27 E day=Energy rqrd ( : , i i ) ;

28 E day ( t a r r ==0) = [ ] ;

29 E day ( t a r r==T) = [ ] ;
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30 P ch=P charger ( : , i i ) ;

31 P ch ( t a r r ==0) = [ ] ;

32 P ch ( t a r r==T) = [ ] ;

33 t a r r ( t a r r ==0) = [ ] ;

34 t a r r ( t a r r==T) = [ ] ;

35 Load per car=ze ro s (T, l ength ( t a r r ) ) ;

36 f o r x=1: l ength ( t a r r ) % go through N car s

37 char dura t i on=c e i l ( E day (x , 1 ) . / P ch (x , 1 ) ) ;

38 Load per car ( t a r r ( x ) : ( t a r r ( x )+char durat ion −1) , x

)=...

39 P ch (x , 1 ) *ones ( l ength ( t a r r ( x ) : ( t a r r ( x )+

char durat ion −1) ) ,1 ) ;

40 c a r u t i l t e m p ( t a r r ( x ) : ( t a r r ( x )+char durat ion −1)

,1 )=ones ( l ength ( t a r r ( x ) : ( t a r r ( x )+

char durat ion −1) ) ,1 ) ;

41 c a r u t i l=c a r u t i l+c a r u t i l t e m p ;

42 c a r u t i l t e m p=ze ro s (T, 1 ) ;

43 end

44 u t i l r a t e ( : , i i )=c a r u t i l / N st ;

45 f p r i n t f ( 'Day %d\n' , i i ) ;

46 Load annual ( : , i i )=sum( Load per car , 2 ) ;

47 E te s t ( 1 : l ength ( E day ) , i i )=E day ;

48 c l e a r Load per car char dura t i on P ch t a r r

49 c a r u t i l=ze ro s (T, 1 ) ;

50 end

51 [ base load day , b a s e l oad y ea r ]= base l oad (1 ) ;

52 l o ad on ly=sum( Load annual ) ;

53 c l e a r I c a l c

54 i f l o c==1

55 f i l e t e m p=readtab l e ( 'mode l va l id output40 . txt ' ) ;

56 s c a l e f a c t o r =40;

57 end

58 i f l o c==2

59 f i l e t e m p=readtab l e ( 'h o m e r v i c s o l a r . txt ' ) ; %v i c t o r i a

60 s c a l e f a c t o r =5;
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61 end

62 I c a l c=f i l e t e m p . kW 4 ;

63 I c a l c=I c a l c ' ;

64 I c a l c=repmat ( I c a l c , 4 , 1 ) ;

65 I c a l c=reshape ( I c a l c , 96 , 365 ) . / s c a l e f a c t o r ;

66 f o r p=1: l ength ( Ppv vect )

67 Ppv=Ppv vect (p) ;

68 S gen=Ppv vect (p) .* I c a l c ;

69 S net=Load annual−S gen+bas e l oad ye a r ;

70 S net ( S net>0)=S net ( S net>0) . / ( I n v e f f ) ;

71 S net ( S net<0)=S net ( S net<0) .* ( I n v e f f ) ;

72 F e e d e r s i z e (p , 1 )=max(max( S net ) ) ;

73 S s o l a r p l o t ( : , p )=S net ( : , 1 7 2 ) ;

74 Snet day ( : , p )=sum( S net ) ;

75 Snet neg annual=S net ;

76 Snet neg annual ( Snet neg annual <0)=0; %Take only the

load that ' s from the g r id f o r demand charge

c a l c u l a t i o n s

77 i f ( l o c==2) % i f v i c t o r i a

78 c l e a r C in C d C d base

79 % Demand charges c a l c u l a t e d − t i e r e d usage

80 i f (max(max( Snet neg annual ) )<35) %smal l g ene ra l

s e r v i c e ra t e

81 C d base =0.3312; % bas i c charge per day

82 C in =(1/(T/24) ) .*0 . 1 1 3 9 .* ones (T, T dur ) ;

83 C d=ze ro s (1 , 3 ) ;

84 f p r i n t f ( 'Small Bus iness C l a s s i f i c a t i o n with %d

kWp PV\n' , Ppv) ;

85 e l s e i f (max(max( Snet neg annual ) )<135 && max(max(

Snet neg annual ) )>=35) % medium gene ra l s e r v i c e

ra t e

86 C d base=C d base v i c ;

87 C in=C in v ic new .* ones (T, T dur ) ;

88 C d=C d vic ;
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89 f p r i n t f ( 'Medium Bus iness C l a s s i f i c a t i o n with %

d kWp PV\n' , Ppv) ;

90 e l s e % l a r g e gene ra l s e r v i c e ra t e

91 C d base =0.2429;

92 C in =(1/(T/24) ) .* 0 . 0 5 5 .* ones (T, T dur ) ;

93 C d =11.21.* ones (1 , 3 ) ;

94 f p r i n t f ( 'Large Bus iness C l a s s i f i c a t i o n with %d

kWp PV\n' , Ppv) ;

95 end

96 [ Demand charge ]=demand charge ( Snet neg annual , C d

, C d base ) ;

97 Demand charge total (p)=(Demand charge ) ;

98 C out=C in ;

99 e l s e

100 [ Demand charge ]=demand charge ( Snet neg annual , C d

, C d base ) ;

101 Demand charge total (p)=(Demand charge ) ;

102

103 end

104 Cost per charge (p)=C ch*sum(sum( Load annual ) ) ;

105 OP annual ( S net>0)=C o s t i n i n c r *C in ( S net>0) .* ( S net (

S net>0) ) ;

106 OP annual ( S net<0)=C o s t o u t i n c r *C out ( S net<0) .* (

S net ( S net<0) ) ;

107 OP annual sum=sum( OP annual ) ;

108 OP fina l (p)=sum( OP annual sum ) ;

109 c l e a r Load monthly Demand charge S gen OP annual S net

peak load

110 OP annual=ze ro s (T, T dur ) ;

111

112 end

113 end
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A.6 schedulingopt.m

This function is responsible for calculating the demand profile for coordinated charg-

ing.

1 f unc t i on [ OP sum , Cost per charge , load sum ,

Demand charge total ]=...

2 s chedu l i ng opt (N, T, T dur , S max , L max , ...

3 P charger , I c a l c , Area per pane l , PV eff , P nom ,

t a r r , t dep , Energy rqrd , ...

4 C in , C out , C d , C d base , Ppv vect , loc ,

C o s t i n i n c r , Cos t out inc r , ...

5 C ch , C d incr , D penalty med , D pena l ty la rge ,

Demand thresh med , Demand thresh large , N st ,

I n v e f f , ...

6 C d base v ic , C in vic new , C d vic )

7 %opt ions=cp lexopt imset ('Display ' , 'on ' , 'Algorithm ' , 'auto

' , 'MaxNodes' ,4000000000000 , 'TolXInteger ' , 1e−3) ;

8 opt ions = [ ] ;

9 m= [ 3 1 , 59 , 90 , 120 , 151 , 181 , 212 , 243 , 273 , 304 , 334 ,

3 6 5 ] ;

10 Demand charge total=ze ro s ( l ength ( Ppv vect ) , 1 ) ;

11 %Output annual=ze ro s ((3*T+N*T+2*T+2) , T dur ) ;

12 Output annual=ze ro s (3*T, T dur ) ;

13 OP annual base pr ice=ze ro s ( T dur , 1 ) ;

14 OP sum=ze ro s ( l ength ( Ppv vect ) , 1 ) ;

15 F e e d e r s i z e=ze ro s ( l ength ( Ppv vect ) , 1 ) ;

16 Cost per charge=ze ro s ( l ength ( Ppv vect ) , 1 ) ;

17 i f l o c==1

18 C d summer cal i=ze ro s (T, 1 ) ;

19 C d w i n t e r c a l i=ze ro s (T, 1 ) ;

20 C d summer cal i ( 4 8 : 7 1 ) =10*ones (24 ,1 ) ; %12 pm to 6pm

21 %summer part−peak

22 C d summer cal i ( 3 4 : 4 7 ) =5*ones (14 ,1 ) ; %8 :30 am to 12pm

23 C d summer cal i ( 7 2 : 8 5 ) =5*ones (14 ,1 ) ; %6pm to 9 :30pm

24 %summer o f fpeak
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25 C d summer cal i ( 8 6 : 9 6 )=ze ro s (11 ,1 ) ; %6pm to 8 :30 am

26 C d summer cal i ( 1 : 3 3 )=ze ro s (33 ,1 ) ;

27 %winter part−peak

28 C d w i n t e r c a l i ( 3 4 : 8 5 )=C d (3) *ones (52 ,1 ) ;

29 %winter o f fpeak

30 C d w i n t e r c a l i ( 8 6 : 9 6 )=ze ro s (11 ,1 ) ;

31 C d w i n t e r c a l i ( 1 : 3 3 )=ze ro s (33 ,1 ) ;

32 C d A ca l i=repmat ( C d w in t e r ca l i , 1 , 120) ;

33 C d B ca l i=repmat ( C d w in t e r ca l i , 1 , 61) ;

34 C d C ca l i=repmat ( C d summer cal i , 1 , 184) ;

35 C d c a l i =[ C d A cal i , C d C cal i , C d B ca l i ] ;

36 C in demand=C o s t i n i n c r .* ( C in+C d base+C d c a l i ) ;

37 end

38 i f l o c==2

39 C in demand=C o s t i n i n c r .* ( C in+C d base ) ;

40 end

41 u t i l r a t e=ze ro s (T, T dur ) ;

42 %% TEMP

43 c l e a r I c a l c

44 i f l o c==1

45 f i l e t e m p=readtab l e ( 'mode l va l id output40 . txt ' ) ; %

c a l i f o r n i a

46 s c a l e f a c t o r =40;

47 end

48 i f l o c==2

49 f i l e t e m p=readtab l e ( 'h o m e r v i c s o l a r . txt ' ) ; %v i c t o r i a

50 s c a l e f a c t o r =5;

51 end

52 I c a l c=f i l e t e m p . kW 4 ;

53 I c a l c=I c a l c ' ;

54 I c a l c=repmat ( I c a l c , 4 , 1 ) ;

55 I c a l c=reshape ( I c a l c , 96 , 365 ) . / s c a l e f a c t o r ;

56 f o r i i =1: l ength ( Ppv vect )

57 Ppv=Ppv vect ( i i ) ;

58 S gen=Ppv .* I c a l c ;
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59 c l e a r C out new

60 C out new=C out ;

61 C out new ( S gen==0)=0;

62 Count f lag =0;

63 %par f o r i =1:T dur

64 i f i i ==1

65 S net max=L max .* ones (1 , T dur ) ;

66 end

67 f o r i =1:T dur

68 t a r r d a y=t a r r ( : , i ) ;

69 t dep day=t dep ( : , i ) ;

70 Energy rqrd day=Energy rqrd ( : , i ) ;

71 P ch day=P charger ( : , i ) ;

72 t a r r d a y ( t a r r d a y==0) = [ ] ;

73 t dep day ( t dep day==0) = [ ] ;

74 Energy rqrd day ( Energy rqrd day==0) = [ ] ;

75 P ch day ( P ch day==0) = [ ] ;

76 N=length ( t a r r d a y ) ;

77 ctype =[ 67* ones (1 , (3*T) ) , 66* ones (1 , (2*T+N*T) )

, 67* ones (1 , (2*T) ) ] ; %s e t s f i r s t 1+4T to

cont inuous and s t a t e s to Binary in ASCII

78 ctype=char ( ctype ) ;

79 f =[( C in demand ( : , i ) ') , −C o s t o u t i n c r *

C out new ( : , i ) ' , z e r o s (1 , ( (T+N*T) ) ) , z e r o s

(1 ,2*T) , ...

80 D penalty med .* ones (1 ,T) , z e r o s (1 ,T) ] ;

81 [A, b]=AB gen (N, T, P ch day , S net max ( i ) ,

S max , Energy rqrd day ) ;

82 [ A eq , b eq ]=AB eq gen (N, T, P ch day , S gen

( : , i ) , i , Demand thresh med ,

Demand thresh large , l o c ) ;

83 [ lb , ub]= lb ub gen (N, T, S max , S net max ( i ) ,

t a r r day , t dep day , i , Ppv , l o c ) ;

84 [ x , f va l , e x i t f l a g , output ]= cplexmi lp ( f ,A, b , A eq ,

b eq , [ ] , [ ] , [ ] , lb , ub , ctype , [ ] , opt i ons ) ;
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85 f p r i n t f ( 'Solved with e x i t f l a g %d \n' , e x i t f l a g

) ;

86 i f ( e x i t f l a g ==5)

87 Count f lag=Count f lag +1;

88 f p r i n t f ( 'So lu t i on with numerica l i s s u e s on

Day %d \n' , i ) ;

89 end

90 i f ( e x i t f l a g ==−2)

91 f p r i n t f ( ' I n t e g e r i n f e a s i b l e on Day %d \n' ,

i ) ;

92 end

93 Output annual ( : , i )=x (1 : 3*T) ;

94 OP annual base pr ice ( i )=f v a l ;

95 s t a t e s annua l day=x((1+3*T) : ( 3*T+N*T) , : ) ;

96 s t a t e s annua l day=reshape ( s ta te s annua l day ,T,

N) ; %96xN

97 u t i l r a t e ( : , i )=sum( sta te s annua l day , 2 ) . / N st ;

98 c l e a r s t a t e s annua l day

99 end

100 %% PARAMETER OUTPUT

101 Snet neg annual=Output annual ( 1 :T , : ) ;

102 Snet max=max( Snet neg annual ) ;

103 Snet neg annual=Snet neg annual . / ( I n v e f f ) ;

104 Snet pos annua l=Output annual ( (T+1) :2*T, : ) ;

105 Snet pos annua l=Snet pos annua l .* ( I n v e f f ) ;

106 Load annual=Output annual ( (2*T+1) : ( 3*T) , : ) ;

107 load sum=sum( Load annual ) ;

108 i f ( l o c==2) % i f v i c t o r i a

109 c l e a r C d C d base

110 % Demand charges c a l c u l a t e d − t i e r e d usage

111 i f (max(max( Snet neg annual ) )<35) %smal l

g ene ra l s e r v i c e ra t e

112 C d base =0.3312; % bas i c charge per day

113 C i n v i c =(1/(T/24) ) .* 0 . 1 1 3 9 ;

114 C d=ze ro s (T, T dur ) ;
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115 e l s e i f (max(max( Snet neg annual ) )<135 && max(

max( Snet neg annual ) )>=35) % medium gene ra l

s e r v i c e ra t e

116 C d base=C d base v i c ;

117 C i n v i c=C in v ic new ;

118 C d=C d vic ;

119 e l s e % l a r g e gene ra l s e r v i c e ra t e

120 C d base =0.2429;

121 C i n v i c =(1/(T/24) ) . * 0 . 0 5 5 ;

122 C d =11.21.* ones (T, T dur ) ;

123 end

124 C out v i c=C i n v i c ;

125 [ Demand charge , month max]=demand charge (

Snet neg annual , C d , C d base ) ;

126 Demand charge total ( i i )=sum( Demand charge ) ;

127 OP sum( i i )=sum(sum( C o s t i n i n c r *C i n v i c .*

Snet neg annual ) )−sum(sum( C o s t o u t i n c r *

C out v i c .* Snet pos annua l ) ) ;

128 e l s e

129 [ Demand charge , month max]=demand charge (

Snet neg annual , C d , C d base ) ;

130 Demand charge total ( i i )=sum( Demand charge ) ;

131 OP sum( i i )=sum(sum( C o s t i n i n c r *C in .*

Snet neg annual ) )−sum(sum( C o s t o u t i n c r *

C out new .* Snet pos annua l ) ) ;

132 end

133 c l e a r Load monthly Demand charge S gen S net

peak load

134 Cost per charge ( i i )=C ch .* sum(sum( Load annual ) ) ;

135 end

136 end



99

A.7 ABeqgen.m

This function is embedded into the coordinated charging algorithm for constraint

definition.

1 f unc t i on [ A eq , b eq ]=AB eq gen (N, T, P charger , S gen , day

, Demand thresh med , Demand thresh large , l o c )

2 P ch=ze ro s (T,T*N) ;

3 P ch ( : , 1 :T)=P charger (1 ) * eye (T) ;

4 f o r i =2: l ength ( P charger )

5 P ch ( : , ( ( i −1)*T+1) : ( i *T) )=P charger ( i )* eye (T) ;

6 end

7 i f l o c==1

8 demand delta A = [ ] ;

9 demand delta b = [ ] ;

10 e l s e i f l o c==2

11 demand delta A=[ eye (T) , z e r o s (T,2*T) , z e r o s (T, (N*T) ) ,

z e r o s (T,T) , z e r o s (T,T) , −eye (T) , eye (T,T) ] ;

12 demand delta b =[Demand thresh med .* ones (T, 1 )+base l oad

(1 ) ] ;

13 end

14 A eq=[−1*eye (T) , eye (T) , eye (T) , z e r o s (T, (N*T) ) ,

z e r o s (T,4*T) ; ...

15 z e r o s (T,2*T) , −1*eye (T) , P ch ,

z e r o s (T,4*T) ; demand delta A ] ;

16 b eq =[ S gen−base l oad ( day ) ; z e r o s (T, 1 ) ; demand delta b ] ;

17 end
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A.8 ABgen.m

This function is embedded into the coordinated charging algorithm for constraint

definition.

1 f unc t i on [A, b]= AB gen (N, T, P charger , L max , S max ,

Energy rqrd )

2 %cap bat te ry=cap bat te ry *ones (T, 1 ) ;

3 % c r e a t e s a TxN repeated vec to r o f bat te ry c a p a c i t i e s f o r

v e c t o r d i a g

4 % al l ows f o r d i f f e r e n t bat te ry c a p a c i t i e s

5 A=[ ze ro s (N,3*T) , v e c t o r d i a g (N,T, P charger ) , z e r o s (N,4*T)

; ...

6 z e r o s (T,T) , eye (T) , z e r o s (T, (T+N*T) ) , −S max .* eye (T) ,

z e r o s (T,3*T) ; ...

7 eye (T) , z e r o s (T,2*T) , z e r o s (T, (N*T) ) , z e r o s (T,T) , −
L max .* eye (T) , z e r o s (T,2*T) ; ...

8 z e r o s (T,3*T) , z e r o s (T, (N*T) ) , eye (T) , eye (T) , z e r o s (T

,2*T) ] ;

9 b=[−Energy rqrd ; z e r o s (2*T, 1 ) ; ones (T, 1 ) ] ;

10 end
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A.9 lbubgen.m

This function is embedded into the coordinated charging algorithm for constraint

definition.

1 f unc t i on [ lb , ub ] = lb ub gen (N, T, S max , L max , t a r r ,

t dep , day , Ppv , l o c )

2 s t a t e l i m=ze ro s (T,N) ;

3 ca r s sk ipped =0;

4 i f l o c==1

5 ub de l ta=ze ro s (2*T, 1 ) ;

6 e l s e i f l o c==2

7 ub de l ta =[L max*ones (T, 1 ) ; I n f (T, 1 ) ] ;

8 end

9 f o r i =1:N

10 i f t a r r ( i )==0

11 s t a t e l i m ( : , i )=ze ro s (T, 1 ) ;

12 e l s e

13 s t a t e l i m ( : , i ) =[ z e r o s ( t a r r ( i ) −1 ,1) ; ones ( ( t dep ( i

)−t a r r ( i ) ) , 1 ) ; z e r o s (T−t dep ( i ) +1 ,1) ] ;

14 end

15 end

16 s t a t e l i m=reshape ( s t a t e l im , N*T, 1 ) ;

17 %i n f − no l i m i t on the load

18 % T+1 T − f o r a l l the load ; 1 f o r the f i r s t d e c i s i o n

v a r i a b l e 'w'

19 lb =[ z e r o s (T, 1 ) ; z e r o s (T, 1 ) ; z e r o s (T, 1 ) ; z e r o s ( (N*T) ,1) ;

z e r o s (2*T, 1) ; z e r o s (2*T, 1 ) ] ;

20 ub=[ L max .* ones (T, 1 ) ; S max .* ones (T, 1 ) ; I n f (T, 1 ) ;

s t a t e l i m ; ones (2*T, 1 ) ; ...

21 ub de l ta ] ;

22 f p r i n t f ( '%d skipped ca r s ' , c a r s sk ipped )

23 f p r i n t f ( 'on day %d ' , day )

24 f p r i n t f ( 'with %d kW capac i ty \n' , Ppv)

25 end
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A.10 vectordiag.m

This function is embedded into ABgen.m to generate a diagonal matrix of horizontal

vectors.

1 f unc t i on [ out mat ]= v e c t o r d i a g (N, T, P charger )

2 mat=ze ro s (N,N*T) ;

3 mat ( : , 1 :T)=ones (N, T) ;

4 X=[0:T: (N*T−1) ] ' ;

5 r = rem(X,N*T) ;

6 c = [ mat , mat ] ;

7 % c r e a t e s a d iagona l matrix o f h o r i z o n t a l array o f ones

8 out mat ones = c ( bsxfun(@plus , bsxfun(@plus ,N*T − r , 0 : (N*T

−1) )*N, ( 1 :N) ') ) ;

9 out mat ra t i o=diag(−P charger ) ;

10 out mat=out mat ra t i o *out mat ones ;

11 end
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A.11 baseload.m

This function is responsible for the defining the base load.

1 f unc t i on [ base load day b a s e l o ad ye a r ]= base l oad (D)

2 f i l e d a t a=csvread ( '

RefBldgFullServiceRestaurantNew2004 7 1 5 0 3B USA CA LOS ANGELES

. csv ' , 2 , 1 ) ;

3 total kW=ze ro s (8760 ,1) ;

4 total kW (1 : 8759 , 1 )=f i l e d a t a ( : , 1 )+f i l e d a t a ( : , 2 )+

f i l e d a t a ( : , 3 ) ...

5 +f i l e d a t a ( : , 4 )+f i l e d a t a ( : , 5 )+f i l e d a t a ( : , 6 ) ...

6 +f i l e d a t a ( : , 7 )+f i l e d a t a ( : , 8 )+f i l e d a t a ( : , 9 ) ;

7 total kW (8760 ,1)=total kW (8759 ,1) ;

8 total kW=total kW ' ;

9 total kW=repmat ( total kW , 4 , 1 ) . / 4 ;

10 total kW=reshape ( total kW , 35040 ,1) ;

11 b a s e l o ad ye a r=reshape ( total kW , 96 ,365) ;

12 b a s e l o ad ye a r =0.* ba s e l oad ye a r ;

13 base load day=b as e l o ad ye a r ( : ,D) ;

14 end
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A.12 Calidata.m

This function is responsible for post-processing the ChargePoint data.

1 f unc t i on [ t a r r , t dep , P ch , Energy rqrd ]= Ca l i da ta (N,

T dur )

2 m= [ 3 1 , 59 , 90 , 120 , 151 , 181 , 212 , 243 , 273 , 304 , 334 ,

3 6 5 ] ;

3 incrm =15;

4 t a r r=ze ro s (N, T dur ) ;

5 t dep=ze ro s (N, T dur ) ;

6 P ch=ze ro s (N, T dur ) ;

7 Energy rqrd=ze ro s (N, T dur ) ;

8 T=readtab l e ( 'EV total . dat' ) ;

9 T. P r o pe r t i e s . VariableNames = {'EVSE ID' 'PORT TYPE' '

DRIVER ID' ...

10 'EVENT ID' 'TIME ZONE' 'PEAK POWER' 'AVERAGEPOWER

' 'ENERGY' 'EVSE ZIP' ' sublap '...

11 'INTERVAL start datetime' 'INTERVAL stop datetime'

} ;

12 %T=readtab l e ( E V f i l e s ( i i ) . name) ;

13 % INPUT ALL PARAMETERS

14 EVSE id=T. EVSE ID ;

15 DRIVER id=T. DRIVER ID ;

16 DRIVER id=c e l l f u n (@str2num , DRIVER id) ;

17 EVENT id=T.EVENT ID;

18 EVENT id=c e l l f u n (@str2num , EVENT id) ;

19 %TIME zone=T.INTERVAL TIME ZONE;

20 PEAK PWR=T.PEAK POWER;

21 %PEAK PWR=c e l l f u n (@str2num ,PEAK PWR) ;

22 AVGPWR=T.AVERAGEPOWER;

23 ENERGY RQRD=T.ENERGY;

24 t ime a r r=T. INTERVAL start datetime ;

25 t ime dep=T. INTERVAL stop datetime ;

26 % PULL OUT ONLY TIME OF ARRIVAL AND DEPARTURE

27 t a r r t emp=c e l l ( l ength ( EVSE id ) ,1 ) ;
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28 t dep temp=c e l l ( l ength ( EVSE id ) ,1 ) ;

29 energy consumed=c e l l ( l ength (EVENT id) ,1 ) ;

30 power peak=c e l l ( l ength (EVENT id) ,1 ) ;

31 power avg=c e l l ( l ength (EVENT id) ,1 ) ;

32

33 t a r r t emp (1 , 1 )=t ime a r r (1 , 1 ) ;

34 power peak (1 , 1 )=PEAK PWR(1 ,1 ) ;

35 power avg (1 , 1 )=AVGPWR(1 ,1 ) ;

36 %s u p r e s s e s a l l the va lue s that are in between s t a r t

and stop time

37 f o r i =1:( l ength (EVENT id)−1)

38 i f EVENT id( i , 1 )˜=EVENT id( i +1 ,1) && c e l l f u n (@

str2num , ENERGY RQRD( i , 1 ) )>c e l l f u n (@str2num ,

ENERGY RQRD( i +1 ,1) )

39 %l a s t va lue s o f the per iod

40 t dep temp ( i , 1 )=time dep ( i , 1 ) ;

41 energy consumed ( i , 1 )=ENERGY RQRD( i , 1 ) ;

42 %f i r s t va lue s o f the per iod

43 t a r r t emp ( i +1 ,1)=t ime ar r ( i +1 ,1) ;

44 i f c e l l f u n (@str2num , PEAK PWR( i +1 ,1) )<1

45 power peak ( i +1 ,1)=PEAK PWR( i +2 ,1) ;

46 power avg ( i +1 ,1)=AVGPWR( i +2 ,1) ;

47 e l s e

48 power peak ( i +1 ,1)=PEAK PWR( i +1 ,1) ;

49 power avg ( i +1 ,1)=AVGPWR( i +1 ,1) ;

50 end

51 end

52 end

53 % record the l a s t va lue s in to the tab l e

54 t dep temp ( l ength (EVENT id) ,1 )=time dep ( l ength (

EVENT id) ,1 ) ;

55 energy consumed ( l ength (EVENT id) ,1 )=ENERGY RQRD( length

(EVENT id) ,1 ) ;

56 % d e l e t i n g a l l the empty c e l l s

57 t ime a r r=t ar r temp (˜ c e l l f u n ( ' isempty' , t a r r t emp ) ) ;
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58 t ime dep=t dep temp (˜ c e l l f u n ( ' isempty' , t dep temp ) ) ;

59 energy consumed=energy consumed (˜ c e l l f u n ( ' isempty' ,

energy consumed ) ) ;

60 energy consumed=c e l l f u n (@str2num , energy consumed ) ;

61 power peak=power peak (˜ c e l l f u n ( ' isempty' , power peak ) ) ;

62 power peak=c e l l f u n (@str2num , power peak ) ;

63 power avg=power avg (˜ c e l l f u n ( ' isempty' , power avg ) ) ;

64 t ime a r r=datevec ( t ime arr , 'yyyy−mm−dd HH:MM: SS' ) ;

65 t ime dep=datevec ( time dep , 'yyyy−mm−dd HH:MM: SS' ) ;

66 t m in a r r=c e i l ( ( t ime a r r ( : , 5 ) +60.* t ime a r r ( : , 4 ) ) . /

incrm ) ;

67 t min dep=c e i l ( ( t ime dep ( : , 5 ) +60.* t ime dep ( : , 4 ) ) . /

incrm ) ;

68 c l e a r AVGPWR ENERGY RQRD PEAK PWR t arr temp

t dep temp

69 month arr=t ime ar r ( : , 2 ) ;

70 %f i r s t month s t a r t s at 0

71 month arr ( month arr==1)=ze ro s ( l ength ( month arr (

month arr==1)) ,1 ) ;

72 month dep=time dep ( : , 2 ) ;

73 month dep ( month dep==1)=ze ro s ( l ength ( month dep (

month dep==1)) ,1 ) ;

74 %Multi−day parker s − FIX THIS

75

76 f o r mnth=1:11

77 month arr ( month arr==(mnth+1) )=m(mnth)*ones ( l ength

( month arr ( month arr==(mnth+1) ) ) ,1 ) ;

78 month dep ( month dep==(mnth+1) )=m(mnth)*ones ( l ength

( month dep ( month dep==(mnth+1) ) ) ,1 ) ;

79 end

80 day arr=month arr+t ime ar r ( : , 3 ) ;

81 day dep=month dep+time dep ( : , 3 ) ;

82 d a y d i f f=day dep−day arr ;

83 t min dep ( d a y d i f f >0)=96;

84 day dep ( d a y d i f f >0)=day arr ( d a y d i f f >0) ;
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85

86 %erroneous e n t r i e s − day o f a r r i v a l i s a f t e r day o f

departure

87 t m in a r r ( d a y d i f f <0) = [ ] ;

88 t min dep ( d a y d i f f <0) = [ ] ;

89 day arr ( d a y d i f f <0) = [ ] ;

90 day dep ( d a y d i f f <0) = [ ] ;

91 d a y d i f f ( d a y d i f f <0) = [ ] ;

92 energy consumed ( d a y d i f f <0) = [ ] ;

93 month arr ( d a y d i f f <0) = [ ] ;

94 month dep ( d a y d i f f <0) = [ ] ;

95 power peak ( d a y d i f f <0) = [ ] ;

96

97 %time o f departure be f o r e time o f a r r i v a l

98 day arr ( ( t min arr−t min dep )>0) = [ ] ;

99 day dep ( ( t min arr−t min dep )>0) = [ ] ;

100 d a y d i f f ( ( t min arr−t min dep )>0) = [ ] ;

101 energy consumed ( ( t min arr−t min dep )>0) = [ ] ;

102 month arr ( ( t min arr−t min dep )>0) = [ ] ;

103 month dep ( ( t min arr−t min dep )>0) = [ ] ;

104 power peak ( ( t min arr−t min dep )>0) = [ ] ;

105 t m in a r r ( ( t min arr−t min dep )>0)=NaN;

106 t min dep ( i snan ( t min a r r ) ) = [ ] ;

107 t m in a r r ( i snan ( t min a r r ) ) = [ ] ;

108

109 f o r d a y i t e r =1:365

110 t a r r ( 1 : l ength ( day arr ( day arr==d a y i t e r ) ) ,

d a y i t e r )=t min a r r ( day arr==d a y i t e r ) ;

111 t dep ( 1 : l ength ( day dep ( day dep==d a y i t e r ) ) ,

d a y i t e r )=t min dep ( day dep==d a y i t e r ) ;

112 i f s i z e ( t dep , 1 )>N

113 f p r i n t f ( 'Error ' ) ;

114 end

115 P ch ( 1 : l ength ( day arr ( day arr==d a y i t e r ) ) , d a y i t e r

)=power peak ( day arr==d a y i t e r ) ;
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116 Energy rqrd ( 1 : l ength ( day arr ( day arr==d a y i t e r ) ) ,

d a y i t e r )=energy consumed ( day arr==d a y i t e r ) ;

117 end

118 end
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A.13 demandcharge.m

This function is responsible for calculating the monthly demand charge.

1 f unc t i on [ Demand charge , month max]=demand charge ( Snet ,

C d , C d base )

2 m= [ 3 1 , 59 , 90 , 120 , 151 , 181 , 212 , 243 , 273 , 304 , 334 ,

3 6 5 ] ;

3 % C d summer cal i ( 4 8 : 7 1 ) =17.57; %12 pm to 6pm

4 % %summer part−peak

5 % C d summer cal i ( 3 4 : 4 7 ) =0.51; %8:30 am to 12pm

6 % C d summer cal i ( 7 2 : 8 5 ) =0.51; %6pm to 9 :30pm

7 % %winter part−peak

8 % C d w i n t e r c a l i ( 3 4 : 8 5 ) =0.03; %8:30am to 9 :30pm

9 C summer peak=C d (1 , 1 )+C d base ;

10 C summer part=C d (1 , 2 )+C d base ;

11 C winter peak=C d (1 , 3 )+C d base ;

12 C winte r o f fpeak=C d base ;

13 C summer offpeak=C d base ;

14 month max=ze ro s (1 , 12 ) ;

15

16 demand summer peak=C summer peak . * [ max(max( Snet ( 4 8 : 7 1 ,m(4)

+1:m(5) ) ) ) , ...

17 max(max( Snet ( 48 : 7 1 ,m(5) +1:m(6) ) ) ) , ...

18 max(max( Snet ( 48 : 7 1 ,m(6) +1:m(7) ) ) ) , ...

19 max(max( Snet ( 48 : 7 1 ,m(7) +1:m(8) ) ) ) , ...

20 max(max( Snet ( 48 : 7 1 ,m(8) +1:m(9) ) ) ) , ...

21 max(max( Snet ( 48 : 7 1 ,m(9) +1:m(10) ) ) ) ] ;

22 demand summer part=C summer part . * [ max(max( Snet

( [ 3 4 : 4 7 , 7 2 : 8 5 ] ,m(4) +1:m(5) ) ) ) , ...

23 max(max( Snet ( [ 3 4 : 4 7 , 7 2 : 8 5 ] ,m(5) +1:m(6) ) ) ) , ...

24 max(max( Snet ( [ 3 4 : 4 7 , 7 2 : 8 5 ] ,m(6) +1:m(7) ) ) ) , ...

25 max(max( Snet ( [ 3 4 : 4 7 , 7 2 : 8 5 ] ,m(7) +1:m(8) ) ) ) , ...

26 max(max( Snet ( [ 3 4 : 4 7 , 7 2 : 8 5 ] ,m(8) +1:m(9) ) ) ) , ...

27 max(max( Snet ( [ 3 4 : 4 7 , 7 2 : 8 5 ] ,m(9) +1:m(10) ) ) ) ] ;
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28 demand winter peak=C winter peak . * [ max(max( Snet ( 3 4 : 8 5 , 1 :m

(1) ) ) ) , ...

29 max(max( Snet ( 34 : 8 5 ,m(1) +1:m(2) ) ) ) , ...

30 max(max( Snet ( 34 : 8 5 ,m(2) +1:m(3) ) ) ) , ...

31 max(max( Snet ( 34 : 8 5 ,m(3) +1:m(4) ) ) ) , ...

32 max(max( Snet ( 34 : 8 5 ,m(10) +1:m(11) ) ) ) , ...

33 max(max( Snet ( 34 : 8 5 ,m(11) +1:m(12) ) ) ) ] ;

34

35 demand winter of fpeak=C winte r o f fpeak . * [ max(max( Snet

( [ 1 : 3 3 , 8 6 : 9 6 ] , 1 :m(1) ) ) ) , ...

36 max(max( Snet ( [ 1 : 3 4 , 8 6 : 9 6 ] ,m(1) +1:m(2) ) ) ) , ...

37 max(max( Snet ( [ 1 : 3 4 , 8 6 : 9 6 ] ,m(2) +1:m(3) ) ) ) , ...

38 max(max( Snet ( [ 1 : 3 4 , 8 6 : 9 6 ] ,m(3) +1:m(4) ) ) ) , ...

39 max(max( Snet ( [ 1 : 3 4 , 8 6 : 9 6 ] ,m(10) +1:m(11) ) ) ) , ...

40 max(max( Snet ( [ 1 : 3 4 , 8 6 : 9 6 ] ,m(11) +1:m(12) ) ) ) ] ;

41

42 demand summer offpeak=C summer offpeak . * [ max(max( Snet

( [ 1 : 3 3 , 8 6 : 9 6 ] ,m(4) +1:m(5) ) ) ) , ...

43 max(max( Snet ( [ 1 : 3 3 , 8 6 : 9 6 ] ,m(5) +1:m(6) ) ) ) , ...

44 max(max( Snet ( [ 1 : 3 3 , 8 6 : 9 6 ] ,m(6) +1:m(7) ) ) ) , ...

45 max(max( Snet ( [ 1 : 3 3 , 8 6 : 9 6 ] ,m(7) +1:m(8) ) ) ) , ...

46 max(max( Snet ( [ 1 : 3 3 , 8 6 : 9 6 ] ,m(8) +1:m(9) ) ) ) , ...

47 max(max( Snet ( [ 1 : 3 3 , 8 6 : 9 6 ] ,m(9) +1:m(10) ) ) ) ] ;

48

49 month max ( 1 , 5 : 1 0 ) =[max(max( Snet ( : ,m(4) +1:m(5) ) ) ) , ...

50 max(max( Snet ( : ,m(5) +1:m(6) ) ) ) , ...

51 max(max( Snet ( : ,m(6) +1:m(7) ) ) ) , ...

52 max(max( Snet ( : ,m(7) +1:m(8) ) ) ) , ...

53 max(max( Snet ( : ,m(8) +1:m(9) ) ) ) , ...

54 max(max( Snet ( : ,m(9) +1:m(10) ) ) ) ] ;

55 month max ( 1 , [ 1 : 4 , 1 1 : 1 2 ] ) =[max(max( Snet ( : , 1 :m(1) ) ) ) , ...

56 max(max( Snet ( : ,m(1) +1:m(2) ) ) ) , ...

57 max(max( Snet ( : ,m(2) +1:m(3) ) ) ) , ...

58 max(max( Snet ( : ,m(3) +1:m(4) ) ) ) , ...

59 max(max( Snet ( : ,m(10) +1:m(11) ) ) ) , ...
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60 max(max( Snet ( : ,m(11) +1:m(12) ) ) ) ] ;

61 Demand charge=sum( demand summer peak )+sum(

demand summer part )+sum( demand winter peak )...

62 +sum( demand summer offpeak )+sum( demand winter of fpeak )

;

63 end
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A.14 demandTOU.m

This function is embedded into demandcharge.m for calculating the TOU demand.

1 f unc t i on [ month x , month y ] = demand TOU( season , month x ,

month y )

2 i f ( season==1) %winter = 1

3 temp x=ze ro s ( l ength ( month x ) ,1 ) ;

4 temp y=ze ro s ( l ength ( month y ) ,1 ) ;

5 temp x ( month x>33)=month x ( month x>33) ;

6 temp y ( month x>33)=month y ( month x>33) ;

7 temp x ( month x>85) = [ ] ;

8 temp y ( month x>85) = [ ] ;

9 temp x ( temp x==0) = [ ] ;

10 temp y ( temp y==0) = [ ] ;

11 i f ( l ength ( temp x )>1)

12 c l e a r month x month y ;

13 month x=temp x (1 , 1 ) ;

14 month y=temp y (1 , 1 ) ;

15 e l s e i f ( isempty ( temp x ) )

16 month x ( 2 : l ength ( month x ) ) = [ ] ;

17 month y ( 2 : l ength ( month y ) ) = [ ] ;

18 e l s e

19 month x=temp x ;

20 month y=temp y ;

21 end

22 c l e a r temp x temp y ;

23 end

24 i f ( season==2) %summer = 2

25 temp x peak=ze ro s ( l ength ( month x ) ,1 ) ;

26 temp y peak=ze ro s ( l ength ( month y ) ,1 ) ;

27 temp x part=ze ro s ( l ength ( month x ) ,1 ) ;

28 temp y part=ze ro s ( l ength ( month y ) ,1 ) ;

29 temp x part ( month x>33)=month x ( month x>33) ;

30 temp y part ( month x>33)=month y ( month x>33) ;

31 temp x part ( month x>85) = [ ] ;
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32 temp y part ( month x>85) = [ ] ;

33 temp x part ( temp x part==0) = [ ] ;

34 temp y part ( temp y part==0) = [ ] ;

35 temp x peak ( temp x part >47)=temp x part (

temp x part >47) ;

36 temp y peak ( temp x part >47)=temp y part (

temp x part >47) ;

37 i f temp x peak>71

38 temp y peak = [ ] ;

39 temp x peak = [ ] ;

40 e l s e

41 temp y part ( temp x part >47) = [ ] ;

42 temp x part ( temp x part >47) = [ ] ;

43 temp x peak ( temp x part >71) = [ ] ;

44 temp y peak ( temp x part >71) = [ ] ;

45 temp x peak ( temp x peak==0) = [ ] ;

46 temp y peak ( temp y peak==0) = [ ] ;

47 end

48 i f ( l ength ( temp x peak )>1)

49 c l e a r month x month y ;

50 month x=temp x peak (1 , 1 ) ;

51 month y=temp y peak (1 , 1 ) ;

52 e l s e i f ( l ength ( temp x part )>1)

53 c l e a r month x month y ;

54 month x=temp x part (1 , 1 ) ;

55 month y=temp y part (1 , 1 ) ;

56 e l s e i f ( isempty ( temp x peak ) )

57 month x ( 2 : l ength ( month x ) ) = [ ] ;

58 month y ( 2 : l ength ( month y ) ) = [ ] ;

59 e l s e

60 month x=temp x ;

61 month y=temp y ;

62 end

63 c l e a r temp x peak temp y peak temp x part

temp y part ;
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64 end

65 end
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A.15 modelvalidation.m

1 c l c ;

2 c l e a r a l l

3 c l o s e a l l

4

5 N=50;

6 %RANDOM NUMBER GENERATOR

7 %random number genera to r haul t

8 %s rand = RandStream('mt19937ar ' , 'Seed ' , 0 ) ;

9 %RandStream . setGlobalStream ( s rand ) ;

10 t a r r=round (24+(80−24) .* rand (N, 1 ) ) ;

11 t ch=round(0+(16−0) .* rand (N, 1 ) ) ;

12 h i s t ( t a r r , 50) ;

13 h i s t ( t ch , 5 0 )

14 t dep=t a r r+t ch ;

15 t dep ( t dep >24*12)=24*4;

16

17 %batte ry caps 10 . 4 , 19 . 2 , 4

18 %CAP=

19 P ch =6.6;
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