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Global adoption of renewable energy is increasing due to growing concern over 

climate change, increasing costs associated with conventional generation, and decreasing 

capital investment costs of renewable energy technologies. Specifically, wind power 

represents the most technologically mature renewable alternative and is recognized as a 

cost effective generation source in both large and small power systems. However, the 

variability due to the stochastic nature of the wind resource introduces technological 

limitations to the amount of wind power which can be integrated in a power system. 

Energy storage is seen as a solution to mitigate the variability in wind power output. 

Wind power and energy storage devices have the potential to contribute a substantial 

amount of renewable generation to meet the electricity demand in remote power systems. 

Remote power systems are characterized by their self reliance on electrical generation. 

The basic function of a remote power system is to provide the necessary power to satisfy 

the community’s electricity demand requirements as economically as possible with an 

adequate level of continuity and reliability. 
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In this thesis a probabilistic method for analyzing the integration of wind power and 

energy storage in a remote power system is developed, extending previous work done by 

Barton and Infield. The main objective of the method is to use a probabilistic model of a 

wind-storage system to estimate the required storage capacity and analyze the adequacy 

of power system components for a specified firm power commitment. A validation study 

and sensitivity analysis is provided comparing the probabilistic estimates of performance 

metrics to calculations from a time sequential simulation. The results of the study show 

the probabilistic method is limited in its general application due to the sensitivity of 

predicted metrics to system parameters such as installed wind capacity, firm power 

commitment, and confidence level. A method to reduce the residuals of the probabilistic 

estimates compared to calculations from a time sequence simulation method is provided. 

A case study for a remote power system located on Haida Gwaii is included to illustrate 

how the method can be used in a cost-benefit analysis of wind power and energy storage 

integration.  
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1  INTRODUCTION 

1.1   Background 

There are over 300 remote communities in Canada that do not have an electrical 

connection to a central electrical network [1]. These communities are referred to as 

remote power systems and are self reliant on electricity generation. There are many 

remote power systems installed worldwide, each geographical location having its own 

environmental, social, and cultural conditions that present unique system requirements. 

For example, remote power systems are located at scientific research centers in the 

Antarctic, island communities in the Caribbean, and isolated communities in the Pacific 

North West. Each location will not only have specific power requirements but will also 

have different available resources for power generation. 

The basic function of a remote power system is to provide the necessary power to 

satisfy the community’s electricity demand requirements as economically as possible 

with an adequate level of continuity and reliability. Remote rural electrification has 

traditionally been achieved using diesel engine generators. A diesel generation system 

(DGS) provides reliable power generation at a relatively low capital investment cost. The 

majority of remote power systems rely on a diesel engine driving a generator to fulfill 

some, or all, of its electrical demand. However, due the difficulties in transporting fuel to 

remote geographical locations and growing concern over climate change, there has 

recently been a movement towards renewable energy integration in remote power 

systems.  

Wind power represents the most technologically mature renewable alternative, 

reflected in its continued growth in the global energy market and declining capital 

investment costs. However, a series of technical challenges need to be considered when 

examining the potential benefit of replacing diesel generation with wind power in remote 

power systems. 
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1.2   Wind integration 

Wind power integration in isolated electrical networks can have negative system 

effects due to the variability in power output associated with fluctuating wind speeds. The 

variability in wind power causes increased action of the diesel governors to control 

system balance between generation and demand, which can result in decreased efficiency 

and increased mechanical degradation of the DGS. The intensity of these adverse effects 

is directly related to the penetration level, which can be defined in terms of both power 

and energy. The power penetration level is defined as the instantaneous power output of 

the wind turbine divided by the peak system load, whereas the energy penetration level is 

calculated from the ratio of the annual energy contribution from wind generation to the 

annual energy demand. 

Remote power systems that contain both wind and diesel generation, referred to as 

wind-diesel systems, have different operating characteristics depending on the power and 

energy penetration levels [2,3]. All power systems containing wind generation require a 

certain level of control due to reliability issues caused by the renewable power 

fluctuations. In low penetration systems, wind power is treated as a negative system load; 

therefore, the amount of supervisory control required is minimal. In high wind 

penetration systems, the DGS is allowed to go offline if there is sufficient wind power to 

cover the electrical demand. The sophistication in the supervisory control is increased to 

maintain power quality, regulate reserves, and to dispatch generators as needed. 

Additional system components are required to regulate voltage levels and provide 

reactive power support. The additional controls, components, and the increased curtailed 

wind power associated with integrating large amounts of wind generation in a remote 

power system increases overall system costs and complexity. 

Energy storage can be integrated with wind power in remote power systems to 

attenuate the negative effects of stochastic power production. 

1.3   Energy storage integration 

Energy storage can add value in a power system for various applications. The current 

applications of energy storage devices (ESDs) can be grouped into general categories 
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corresponding to their intended use: bulk energy storage, distributed generation, and 

power quality. A general representation of the applications of energy storage in power 

systems is provided in Table 1.1. The storage period,  , is defined as the characteristic 

time it takes the device to complete one full discharge to charge cycle at rated power 

capacity.    

Table 1.1 - General representation of ESD applications in power systems [4]. 

CATEGORY    (hr) APPLICATION 

Bulk storage 2 - 24 Load shifting and spinning reserve 

Distributed generation 1 – 8 Peak shaving and transmission deferral 

Power quality < 1 Power quality and reliability 

 

Energy storage can be used with wind power generation in each application listed in 

Table 1.1 to provide value to the power system. If wind power generation exceeds local 

demand, energy can be stored and used during times when wind power is not available or 

the electrical load increases. In systems with high wind penetration levels, the potential 

for large scale system faults is increased due to a significant amount of wind power 

suddenly going off-line caused by a turbine operational issue, e.g. wind speed exceeds the 

operational limit. During these events, an ESD can act as the system spinning reserve to 

replace the wind turbine. Furthermore, the required grid capacity to accommodate wind 

power is inherently larger than it would be to integrate generation from a traditional 

thermal unit. Transmission lines are sized to the installed capacity of wind power; 

although, on average only 30 to 40% of the rated capacity is produced. Due to the costs 

associated with upgrading the transmission capacity, wind power can be prohibitively 

expensive to integrate in a power system with transmission constraints. Energy storage 

can absorb large power swings seen in wind generation and provide an alternative to 

transmission upgrades. Energy storage devices are also used in wind-diesel systems to 

provide stability and reliability services such as frequency, voltage, and reactive power 

support.  

In addition to the possible energy storage benefits associated with transmission and 

operational issues caused by the intermittent nature of wind power generation, an ESD is 



4 

 

also able to provide value to the local grid by delivering firm power from an otherwise 

stochastic source. In deregulated markets, pricing signals and market rules determine the 

value of firm power generation from a wind-storage system. Not only can penalties be 

avoided with firm power output from an ESD, but load shifting, or energy arbitrage, can 

provide economic gains if market conditions are favourable.  

In wind-diesel systems without an energy market to provide economic incentive to 

integrate energy storage, the firm power from the ESD can be used to reduce regulation 

services provided from the DGS. This allows the power system to operate at a more 

efficient design point, reducing fossil fuel consumption and associated green house gas 

(GHG) emissions. 

1.4   Energy storage devices 

The main technical characteristics that distinguish an ESD for a particular application 

are its power rating, energy capacity, and storage period. A graphical illustration showing 

the most prevalent energy storage technologies currently available and their associated 

operating characteristics is provided in Figure 1.1.  

In this thesis four storage technologies are studied that are representative of the range 

of storage periods and different applications: flywheel storage (FS), sodium-sulfur (NAS) 

batteries, vanadium redox batteries (VRBs), and pumped hydro (PH).  
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Figure 1.1 – ESD characteristics for various technologies [5]. 

1.4.1 Flywheels  

Flywheels are mechanical devices that store the kinetic energy of a rotating mass. The 

available energy that can be stored is directly proportional to the moment of inertia of the 

rotating body and its angular velocity. Flywheels are comprised of a mass attached to a 

rotating shaft, the rotor, which is connected to a motor-generator. Modern flywheels are 

housed inside a vacuum sealed assembly and magnetic bearings are used to support the 

mass on the rotor. During charging mode electricity is sent to the stator, causing the rotor 

to spin and creating kinetic energy in the form of a rotating mass. During discharging 

mode the process is reversed, whereby the mechanical energy from the rotating inertia is 

transferred to the rotor, causing electrical production in the generator. Rotor design is of 

significant importance due to the high rotational and thermal stresses that can be 

experienced during operation. 

    Flywheel ESDs are generally characterized by fast power delivery response, high 

power and energy density, relatively high round-trip efficiency, short recharge time, and 

low environmental impact. Characteristic storage periods range from 30 seconds to 

minutes and flywheel round-trip efficiencies can be as high as 95% [6].  
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1.4.2 NAS batteries 

Battery technology is currently the most common type of energy storage system 

used for wind-diesel applications [2]. Battery storage devices consist of an assembly of 

electrochemical cells, capable of converting chemical energy into electricity, and a power 

conversion system, including a rectifier, inverter, and power controls. Operational 

constraints that effect the lifetime of battery technologies include: depth of discharge, 

operating temperature, and cycling frequency.   

Sodium-sulfur batteries are a relatively new battery technology characterized by high 

energy and power density, increased round-trip efficiency, and decreased operational and 

maintenance costs compared to traditional battery types such as Lead-acid [6]. Some 

differentiating characteristics of NAS batteries are the high operational temperatures, 

approximately 300º C, and the use of a solid electrolyte membrane. Currently a Japanese 

company, NGK Insulators Ltd. (NGK), is the leading manufacturer of NAS energy 

storage systems with utility scale application. Various installations are currently in 

operation including a 34 MW/204 MWh NAS energy storage system to firm the variable 

output of a 51 MW wind farm in Japan [7].     

1.4.3 VRB 

Vanadium-redox batteries are a relatively new energy storage technology that is 

broadly classified as a flow battery. Flow batteries consist of three main system 

components: electrolyte holding tanks, cell stacks, and a power conversion system (PCS). 

Chemical energy is stored in liquid electrolyte solutions held in large external tanks. 

During discharge mode the aqueous electrolyte is pumped through the cell stack where 

chemical energy is converted to electrical energy. The process is reversed during 

charging mode. The main advantages of the flow battery technology are: low 

maintenance cost, low stand-by losses, fast response time, and independence of energy 

and power ratings. The main attraction of VRB storage systems is the modular design in 

which energy capacity is related to the volume of the electrolyte tanks, and power is 

dependent on the area of the cell stack and PCS capabilities. This allows the design of an 

energy storage system to remain flexible, including the ability to add energy capacity by 
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purchasing more electrolyte and larger tanks or adding power capacity by upgrading the 

cell stack. The main drawback of VRB technology is the low energy density and the 

negative environmental impact of the liquid electrolyte. 

1.4.4 Pumped hydro   

Pumped hydro systems are the oldest energy storage technology used for utility scale 

applications. The energy storage medium in a PH system is in the form of potential 

energy, from displacing water from a lower elevation reservoir to a higher elevation. The 

charging cycle consists of using electricity to pump water to an elevated storage 

reservoir. During discharge operation, water in the elevated reservoir is released through 

a turbine that drives a generator to produce electricity. Pumped hydro systems represent 

the most technologically mature storage option with fast reaction times and relatively 

good round-trip efficiency. However, pumped hydro systems can have large capital costs 

in comparison with other technologies and are extremely site and resource dependent.  

1.4.5 Conclusion 

The energy storage technologies described throughout this section represent 

technologically mature storage options that are currently being integrated in power 

systems. The optimal design for a given system will depend on the intended application 

of the ESD. A summary of the ESD technologies and their associated characteristics used 

in this thesis are provided in Table 1.2, where   refers to the storage period and     is the 

round-trip efficiency of the ESD.      

 

Table 1.2 – Summary of ESD characteristics. 

ESD TECHNOLOGY    (hr)     

Flywheel sec - min 0.89  

NAS 6 - 12 0.87 

VRB 12 - 24 0.75 

PH > 24 0.78 
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When analyzing the possible benefit of integrating wind power and energy storage in 

a remote power system, a techno-economic evaluation of the life cycle project costs are 

required to determine the most cost-effective integration option. The costs associated 

with a specific storage technology are dependent on the installed energy and power 

capacities. Recently, there has been much work done on the topic of estimating the 

required storage capacity based on the variability in wind power. In the following section 

a general survey of the modeling techniques currently used to calculate the required 

storage capacity is provided.     

1.5   Methods for calculating required storage capacity  

There are many different ways to approach the problem of estimating the required 

storage capacity for a power system with intermittent wind generation. Traditionally, the 

approach is carried out in the time domain, where time series of system load and 

available wind power are analyzed. Energy storage devices are added to the simulation, 

absorbing surplus generation and discharging energy during periods of deficit power. The 

system is investigated for various configurations of installed wind capacity, ESD power 

ratings, and ESD energy capacities. A combination of economic metrics, based on the 

realized savings, and performance metrics, based on increased system reliability, are used 

to evaluate the possible benefit due to integrating the ESD. In this approach, the ESD 

capacity value is required as a simulation input and the optimal size is calculated by 

iteratively solving for the various configurations and ranking the results based on the 

evaluation metric. 

Kaldellis has studied the possible benefits of integrating wind and solar power in 

many of the isolated networks located on islands in the Aegean sea [8,9]. Specifically, in 

[8] the authors study the effect of increasing wind penetration levels on the island of 

Lesbos. A detailed simulation methodology is presented where the excess wind energy 

produced is utilized by a PH storage system. The energy stored by the PH system is used 

to supply the island with firm power during the hours of peak demand. The analysis uses 

an iterative procedure to size the PH components based on the economic benefits of 

various energy capacities.  
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In [10] large simulations are used to investigate power systems with stochastic 

generation sources and energy storage to determine the capability of an ESD to convert 

variable generation into a firm source of power. The sensitivity of ESD control schemes, 

power and energy limits, as well as the ability to forecast wind speed to provide a load 

levelling service to the local electrical grid is investigated. The algorithm developed 

iteratively solves the simulation, giving the optimal storage size as a function of 

reliability in firm power delivered. 

One of the most popular software packages to evaluate remote power systems is the 

Hybrid Optimization Model for Electric Renewables (HOMER), which was originally 

developed by the National Renewable Energy Laboratory. HOMER provides a user-

friendly platform for analyzing integration options in remote power systems. The results 

from the model include reliability performance metrics, an economic optimization, and a 

sensitivity analysis for various system parameters. Energy storage devices are sized by 

iteratively solving the simulation for a range of capacities and rating them on the basis of 

minimum life cycle costs [11]. 

Recently there has been a growing interest in estimating the required storage capacity 

in a probabilistic framework to accurately model the stochastic nature of wind power 

generation [12].  This proves to be a formidable task since the time history of the state of 

charge (SOC) of the ESD cannot be tracked in a probabilistic domain. Some methods 

include probabilistic characteristics in a time simulation framework, allowing for a more 

robust simulation strategy due to a stochastic element. In [13] the authors include system 

reliability metrics, such as the loss of load probability, into an overall description of the 

“system well-being”. A Monte Carlo simulation method is used to assess the performance 

of different system configurations of installed solar and wind power with an ESD based 

on these reliability metrics. In [14] the authors compare simulation results that compute 

reliability metrics for an off-grid residence with wind power generation and an ESD from 

a Monte Carlo simulation method, and a Monte Carlo method using a first order Markov 

Chain. Furthermore, the authors in [15] use a stochastic optimization programming 

approach to solve for the optimal energy storage capacity in a wind-diesel system. The 
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problem is formulated to minimize the capital investment and operational costs subject to 

a set of technical constraints.  

Purely probabilistic methods to estimate the required storage capacity of a power 

system operating with intermittent power sources have not been available until recently. 

In [16] the author provides a probabilistic method to determine the expected level of firm 

power available from the ESD for a specified wind power capacity, maximum ESD 

power capacity, ESD efficiency, and a probability density function (PDF) of wind speeds. 

The required storage capacity is sized from the maximum expected power flow into the 

ESD. As pointed out in the analysis, this method of estimating the required storage 

capacity can easily over-size the ESD since it is based on the maximum charging power.  

In [17] a probabilistic method is presented that employs spectral analysis to estimate 

the statistical characteristics of the wind regime, which is used to size the required 

storage capacity and evaluate the adequacy of power system components. This approach 

is a novel method to size the required energy storage capacity based on the variability of 

the wind regime. Surprisingly, further work has not been done to validate the application 

of the proposed probabilistic method to individual case studies. 

1.6   Thesis objective 

The objective of this thesis is to investigate the probabilistic method developed in 

[17,18] by conducting a validation study, sensitivity analysis, and applying the approach 

to a specific case study. The main findings are that the method is well suited for 

estimating the necessary energy capacity for various storage device technologies. In 

addition, the model is useful for studying the effects of increasing or decreasing the value 

of installed wind capacity, firm power commitment, and the ESD power ratings on the 

overall power system performance. However, the application of the probabilistic method 

is limited due to sensitivity of the estimated metrics on power system configuration 

parameters. A case study for a remote power system located on Haida Gwaii is included 

to illustrate how the method can be used in a cost-benefit analysis of multiple integration 

options.  
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The probabilistic theory of the method is provided in Chapter 2. The spectral analysis 

techniques are included in Appendix A through C. A validation study is presented in 

Section 3.4 comparing the estimated power system metrics from the probabilistic method 

with calculations from a time sequential simulation method. In Section 0 a sensitivity 

analysis of the accuracy of the probabilistic estimates for various system configurations is 

provided. Finally, in Chapter 4 a case study is presented for a remote power system on 

Haida Gwaii. The results from a cost-benefit analysis for various storage integration 

options and 1 MW wind capacity to displace current diesel generation are included. In 

Chapter 5 recommendations for further work to improve the probabilistic method are 

discussed. 

 

  

 

  



12 

 

2  POWER SYSTEM ANALYSIS USING A PROBABILISTIC METHOD 

2.1   Introduction 

In this chapter a probabilistic method for analyzing the performance of a remote 

power system is developed. The main objective of the method is to use a probabilistic 

model of a wind-storage system to estimate the required storage size and analyze the 

adequacy of power system components for a specified firm power commitment. The 

method is based on previous work done by Barton and Infield in [17,18]. The required 

storage capacity is estimated for the combined wind-storage system based on the 

variability of the wind resource, a wind power curve and a general representation of the 

storage device. The main objective of the ESD is to smooth power fluctuations caused by 

the variable output of wind power generation while operating in a charge sustaining 

mode. Performance metrics are used to help evaluate the sizing adequacy of system 

components for the specified firm power commitment. The method is well suited for 

investigating the necessary energy capacity for various storage device technologies. In 

addition, the model is useful for studying the effects of increasing or decreasing the value 

of installed wind capacity, firm power commitment, and the ESD power ratings on the 

reliability of the power system.  

It should be noted that the model does not provide information on the temporal 

behaviour of the power system and therefore does not give any insight into system 

dynamics at any specific point in time. This is in contrast to a time domain method where 

chronological simulations are able to keep track of the time history of the SOC of the 

storage device.   

The main advantage of the probabilistic method is the considerable reduction in 

computational effort compared to a time domain method. This allows for increased 

efficiency when investigating various permutations of system components. 
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2.2   Model of wind-storage system 

The model of the wind-storage system includes wind power, a firm power 

commitment, and an ESD. The available wind power,   , is calculated from PDFs of 

wind speed and a wind turbine power curve. The firm power commitment,    , is 

modeled as a constant load that is met by a combination of wind power and discharged 

power from the ESD. A schematic of the modeled power system is illustrated in Figure 

2.12.  

 

 

The net power is defined as the available wind power minus the electrical demand. 

              (2.1) 

When wind power exceeds the firm power commitment,      is positive. The surplus 

power is sent to the ESD and is denoted by    . When the available wind power is less 

than the firm power commitment,      is negative. The deficit power is satisfied by 

power discharged from the ESD, and is represented as     .   

The foundation of the probabilistic method is a statistical description of the wind 

regime over the storage period of an ESD. The storage period of an ESD is defined as the 

characteristic time it takes to complete one full discharge to charge cycle at rated power 

and is denoted by the symbol  . Examples of storage periods for various technologies are 

provided in Figure 1.1.  

A time domain example is provided to illustrate the concept of a storage period 

sample used in the probabilistic method. In Figure 2.2 a sample of the wind speed time 

series corresponding to the storage period   is shown. 

    

ESD 
     

   

 

    

Figure 2.1 – Schematic of the modeled wind-storage system. 
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Figure 2.2 –  Sampled wind speed time series for storage period  . 

Wind speeds are converted into wind power values from a wind turbine power curve. 

Figure 2.3 shows the wind power time series for the same sampled storage period.  

 

Figure 2.3 – Sampled wind power time series for storage period  . 

Finally, the net power values are calculated according to (2.1) for each point in time. 

The net power time series for an installed wind capacity of 1000 kW and     equal to 400 

kW is shown in Figure 2.4.  
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Figure 2.4 – Sampled net system power time series for storage period  . 

The total energy sent to and taken from the ESD during the storage period,       and 

       respectively, is calculated from the time integral of the power flows to and from 

the ESD. The total charging and discharging energies for the example in Figure 2.4 are 

shown by the shaded portion of the plot.  

 

            

    

  

  (2.2) 

 

              

    

  

 (2.3) 

Assuming a lossless storage device, the total change in SOC over the storage period is 

given by: 

                  (2.4) 

The ESD is assumed to operate in a steady state over the storage period. This implies 

that over each storage period of length   the ESD returns to its initial SOC, ensuring the 

store will not move towards a sustained energy surplus or deficit. Therefore, the change 
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in energy over the storage period is zero and the discharging energy of the ESD is 

balanced by the charging energy over the storage period. 

                    (2.5) 

              (2.6) 

 
      
    

  

        
    

  

 (2.7) 

The statistical characteristics of the wind regime over the storage period are used to 

evaluate the performance of the power system and the energy capacity requirements of 

the ESD. Wind speed is modeled as a stationary stochastic process and spectral analysis 

is employed to estimate the variance in mean wind speeds,     
 , the variance in wind 

speeds within the storage period,      
 , and the variance in the excursions of SOC within 

the storage period,     
 . The derivation of the filters and how they are used to calculate 

the variance values can be found in Appendix A through C and are referenced from [17].  

An example of the filters constructed for a storage period of 24 hours is plotted on a 

logarithmic scale in Figure 2.5. The filter derived for the variance in mean wind speed for 

store period  is a low pass filter and the filter designed for the variance of wind speeds 

within the store period is a high pass filter. Variance contributions from frequency 

components less than the store period frequency are attributable to the variance in mean 

wind speeds, whereas contributions from frequencies higher than the storage period are 

due to the variance within the store period. The maximum variance contribution to the 

excursion of SOC is from frequencies close to the storage period frequency. In Figure 2.5 

the filter for the variance     is scaled by an arbitrary value so that it could be shown on 

the same figure.  



17 

 

 

Figure 2.5 – Filter functions for a 24 hour storage period 

The filter for the variance of     is used to size the required ESD capacity for the 

storage period and the filters for the variance in     and      are used to construct PDFs 

of wind speed. The wind speed PDFs are combined with a wind turbine power curve to 

estimate the available wind power and evaluate the reliability of the power system. 

2.3   Wind speed model 

The wind regime at a given location can be characterized by a mean wind speed 

measured at a specified height and the standard deviation of wind speeds at that height 

[19]. The mean wind speed represents the intensity of the wind regime and the standard 

deviation is a measure of the variability of the wind speed about the mean.  

Inter-temporal fluctuations of wind speed are typically modeled from a Gaussian 

process [19,20,21]. Therefore, the wind speeds within a storage period are assumed to 

follow a normal distribution centered on the mean wind speed of the storage period. A 

normal distribution describing wind speeds within the storage period is given by: 
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   (2.8) 

In Eq. (2.8),      represents the wind speeds within the storage period,     is defined as 

the mean wind speed of the storage period,       is the standard deviation of wind speeds 

within the storage period, and          .  

Weibull distributions are typically used to model mean wind speed data [19,20,21]. 

Therefore, a Weibull distribution is used to model the mean wind speeds of the storage 

period. A Weibull PDF for mean wind speeds is given by: 

 

        
 

 
 
   
 
 
   

   
   
 
 
 

                            

                                                              

  (2.9) 

where   and   are defined as the scale and shape parameters respectively. The scale and 

shape parameters of a Weibull distribution can be estimated from the expected value of 

the mean wind speed,     , and the standard deviation in mean wind speed,     , by the 

method of moments [22]. The shape factor of the Weibull PDF is approximated by (see 

Appendix G for details): 

 
   

    
    

 

      

  (2.10) 

The scale parameter can be calculated by: 

   
    

    
 
 
 
   

(2.11) 

where   is the gamma function. 

In Eqs. (2.10) and (2.11), the expected value of mean wind speed of the storage 

period is calculated by the expected value operator. The expected value of a random 

variable   with a PDF of      is given by: 
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   (2.12) 

Wind speeds are assumed to be a stationary stochastic process, implying      is equal 

to the long term mean wind speed of the original time series, denoted as    . 

 
                           

 

  

    (2.13) 

Spectral analysis is employed to estimate the variance in mean wind speeds and the 

variance in wind speeds within the storage period using a wind speed spectrum and a set 

of filters. Probability density functions are constructed for     and      with the 

calculated variance values centered on the long term mean wind speed.   

An example is provided to illustrate how the method constructs the PDFs for mean 

wind speeds for a storage period and for fluctuations about the mean wind speed within 

the store period. The wind speed time series data used in the analysis are from 1980 to 

2001 inclusive for Sandspit, British Columbia (for details concerning the data set refer to 

Section 3.4.1). The long term mean wind speed is calculated to be 5.5 m/s from the 

original time series. Secondly, an ESD with a store period of 10 hours is selected for this 

example. A wind spectrum is computed for the site as described in Appendix C.1. Two 

filter functions are designed for the specified storage period of 10 hours, according to the 

methods presented in Appendix A and B. Finally, the variance of the wind speed 

components for a storage period of 10 hours are calculated from the filtered wind 

spectrum according to the methods described in Appendix E.  

The variance in mean wind speeds for the specified storage period is found to be 

13.96 (m/s)
2
 from Eq. (A.55). This gives a value for     of 3.74 m/s. Using Eqs. (2.9), 

(2.10), and (2.11) a Weibull distribution is constructed for   . A plot of the density 

function for mean wind speeds for a 10 hour storage period is shown in Figure 2.6. 
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Figure 2.6 – PDF of mean wind speed constructed for a 10 hour storage period at Sandspit, BC. 

The variance of wind speeds within the 10 hour store period is found to be 4.06 (m/s)
2
 

from Eq. (A.56). This gives a value for       of 2.02 m/s. The distribution of wind speeds 

within the storage period is modeled as a Gaussian process with the calculated value of 

      centered on the long term mean wind speed. A plot of the PDF constructed for      

for a 10 hour store period for Sandspit, BC is shown in Figure 2.7.  

Thus far the probabilistic method has been used to describe the distribution of mean 

wind speeds for a storage period. Additionally, it is possible to characterize wind speed 

fluctuations about the long term mean wind speed within a storage period using this 

approach. However, there are many possible realizations of mean wind speeds for the 

storage period, modeled by the distribution       . Therefore, to fully describe wind 

speeds within the storage period, distributions for the fluctuations around these possible 

mean wind speeds are required. The distributions of wind speed within the storage period 

for different mean wind speeds are constructed using the coefficient of variation. 
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Figure 2.7 – PDF of wind speeds within a 10 hour storage period at Sandspit, BC. 

The coefficient of variation, also referred to as the turbulence intensity in much of the 

literature concerning statistical analysis of wind speeds, is defined as the ratio of the 

standard deviation of the wind speed to the mean.  

    
 

 
 (2.14) 

Traditionally, the standard deviation and mean used in the calculation of CV for wind 

speeds are computed over an averaging time period of 10 minutes but can be extended up 

to 1 hour [19].  This definition of CV gives a basic measurement of the variability of the 

sustained wind speed and is considered constant for the entire time series [19,23]. Using 

this relationship it is possible to estimate the expected variability of wind speed for a 

subset of the time series, e.g. the standard deviation of wind speeds for a month can be 

calculated from the long term CV and the mean wind speed for that month. 

In the methods proposed in [17], the averaging time scale used in the definition of CV 

is extended to include periods beyond the conventional limit of 1 hour. This assumption 

allows the standard deviation in wind speeds within the storage period to be calculated 

for different mean wind speeds [18].    

The coefficient of variation is calculated in the probabilistic method from the long 

term mean and the standard deviation about that mean.  
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 (2.15) 

CV represents a normalized measurement of the statistical variability of wind speeds 

within the storage period, which is assumed to be constant for all possible realizations of 

mean wind speeds. 

A subscript, s, is used to denote a sampled mean wind speed from the population of 

       and the corresponding standard deviation of wind speeds within the storage period. 

     
      
     

 (2.16) 

From the assumption that the long term CV value is a constant, it is possible to 

determine        for a sampled mean wind speed. 

            (2.17) 

       
     

 
       
   

 (2.18) 

              
       
   

  (2.19) 

In this way it is possible to construct distributions for wind speeds within the storage 

period corresponding to each realization of mean wind speed in       . A graphical 

example of sampled distributions of          is shown in Figure 2.8 for three values of 

     : 3 m/s, 5.5 m/s, and 8 m/s. The storage period used in the example is 10 hours and 

the wind speed data are from Sandspit, BC. Each sampled mean wind speed is used to 

calculate the standard deviation of wind speed according to Eq. (2.19). These values are 

used to construct the PDFs of wind speed within the store period for the three different 

sampled means.  
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Figure 2.8 – PDFs        and         for three sampled values of     for a 10 hour store period. 

The distributions of      and     are combined with a simplified model of a wind 

energy converter system to determine the available power that can be generated from the 

wind resource over the storage period.   

2.4   Model of wind energy converter system 

The available power generated for different wind speeds is calculated from a wind 

turbine power curve and the distributions of wind speed.  The power curve is equal to 

zero for wind speeds below the cut-in,    , and above the cut-out,    , wind speeds. 

Typically the power curve follows a cubic function between the cut-in and rated,   , 

wind speeds, with maximum power generation at the nominal power output of the wind 

turbine,     . 

 

       

                                      

                                  
                                   

  (2.20) 

The wind turbine power curve used in this study is modeled from an Enercon E48 800 

kW wind turbine [24]. A cubic spline interpolation method is used to fit the power curve, 

which is then scaled to unity, and used to convert wind speeds to wind power values for a 
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specified installed capacity,    . A graphical representation of the turbine power curve 

used to convert wind speeds to wind power is shown in Figure 2.9.  

 

Figure 2.9 – Wind turbine power curve normalized to       

The amount of available wind power for a sampled mean wind speed and storage 

period of length   is calculated from the expected value of the converted wind power. 

The expected value for a function of a random variable is given by: 

 
                   

 

  

   (2.21) 

where      is defined as the PDF of the random variable  . Therefore, the wind power 

available for a sampled mean wind speed,          , is given by: 

 
                                              

 

 

   (2.22) 

The expected value of wind power generated for all possible realizations of mean 

wind speeds for the storage period is denoted by        and is calculated from PDF of 

mean wind speeds. 
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 (2.23) 

Equation (2.23) represents the average wind power that can be expected in a storage 

period of length   weighted by the probability distribution of mean wind speeds.    

2.5   Model of energy storage device 

The ESD is modeled from four main characteristics: energy capacity constraints, 

maximum power rating constraints, charging and discharging efficiencies, and a typical 

time scale of discharge to charge at rated power.  

The charging and discharging efficiencies,     and     , and charging and 

discharging power ratings,       and       , are included in the power balance for the 

ESD and shown in Figure 2.10. 

 

 

The ESD charging and discharging power values are defined when there is a surplus 

or deficit net system power. The net system power for wind speeds within the storage 

period is defined as the difference between the generated wind power minus the firm 

power commitment.  

                           (2.24) 

The specified storage period is associated with a storage technology and its efficiency 

characteristics as described in Table 1.2. Efficiencies are simplified by defining a round-

trip efficiency for each storage technology and assuming the charging and discharging 

efficiencies are equal. 

                       

                    

    

 

Figure 2.10 – Power balance for an ESD including efficiency and power ratings. 

constraints. 
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              (2.25) 

               (2.26) 

Maximum power ratings of an ESD limit the amount of power that the device can 

absorb during charging operation and the amount of power that the store can deliver 

during discharging. If the surplus power is greater than the maximum charging rate, the 

power sent into the ESD is limited to the charging rate multiplied by the charging 

efficiency. If the surplus power is less than the maximum charging rate then all the 

available power is sent into the store minus the efficiency loss.  

 

              

                                                                 

                                                   
                                                                         

  (2.27) 

If there is a power deficit, the required power from the store is equal to the deficit 

power value divided by the discharging efficiency. However, if the demand exceeds the 

maximum discharging rate, the power dispatched from the ESD to meet the firm power 

commitment will be limited by       .  

 

               

    
                                    

                        

    
                               

                        

                                                                                       

  (2.28) 

The expected values of charging and discharging powers for a storage period   and 

sampled mean wind speed are calculated by: 

 
                                                 

 

 

  (2.29) 

 
                                                    

 

 

 (2.30) 
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Equations (2.29) and (2.30) represent the expected power sent to and taken from the 

ESD over the storage period. To ensure the ESD is operating in a steady state the change 

in SOC over the storage period is required to be zero. The expected charging and 

discharging energy over the period is given by: 

                      (2.31) 

                        (2.32) 

To maintain a steady state operation over the storage period the energy discharged 

from the ESD must be balanced by the energy sent to the ESD. Mathematically, this 

relationship can be expressed by constraining the value of the available power which the 

ESD can contribute to the power system over the storage period,     , to be equal to the 

minimum of the expected charging power and the discharging power: 

                                           (2.33) 

By constraining the charging and discharging energy values over the storage period to 

be equal there is a possibility that there will be excess power sent to the ESD which 

cannot be absorbed. This additional power would either have to be curtailed or sent to a 

dump load. Furthermore, there is also a possibility that there will be some unmet demand 

due to the steady state constraint. In the next section the metrics used by the probabilistic 

method to report on the reliability and performance of the power system are discussed.  

2.6   System performance metrics 

In the probabilistic method, the adequacy of power system components is determined 

from a set of performance metrics. Each metric is calculated from the power flows 

associated with net system power. Descriptions of the metrics used in the probabilistic 

approach are presented in this section.   

The reliability of the power system is reflected by the expected value of unmet 

demand. The value of unmet demand,   , for a sampled mean wind speed is given by the 
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deficit power minus the power delivered from the ESD, including losses from the 

discharging efficiency. Therefore, the unmet demand is defined when        as: 

 
           

                                                                

                                                                                        
  (2.34) 

The power sent to the dump load,   , gives an indication of how much wind power is 

curtailed due to either inadequate power ratings of the ESD or an oversized wind 

capacity. The power sent to the dump load is given by the amount of surplus power for a 

sampled mean minus the power sent to the ESD before charging efficiency loss. 

Therefore, the power sent to the dump load is defined when        as: 

 

          

 
 
 

 
             

           

   
                     

           

   
 

                                                                  
           

   
 

  (2.35) 

The scenario in which the expected power sent into the ESD over the storage period 

is equal to the power removed from the store is defined as balanced and denoted with the 

subscript b. At this sampled mean wind speed,      , the store utilization is maximised 

since the charging and discharging energy values are equal over the storage period, i.e. 

both the curtailed and unmet power values are minimized. 

Lastly, a final value for the available ESD power contribution, unmet demand, and 

power sent to the dump load are calculated for all possible realizations of mean wind 

speeds of the storage period.  

 
                                          

 

 

 (2.36) 

                                     

 

 

   (2.37) 
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  (2.38) 

In addition to the metrics presented in this section there are four other metrics 

recorded for the wind-storage system: percent of time the store spends charging, 

discharging, empty and full. These metrics reflect the ESD utilization, representing the 

fraction of time the store spends idle in an empty or full charge state compared to 

operating in an active charging or discharging state. The methods used to calculate the 

ESD utilization metrics are taken from [18] and are summarized in Appendix F.  

A summary of the system performance metrics used in the base model are listed in 

Table 2.1. The unmet demand metric is used to evaluate the reliability of the power 

system for the specified firm power commitment and installed wind capacity. The power 

sent to the dump load gives an indication of the relative sizing adequacy of installed wind 

and ESD power ratings for the specified firm power commitment. The expected power 

utilized by the ESD and the fraction of time it spends in an active charging or discharging 

rate give a relative measure on the utilization of the ESD. 

 

Table 2.1 – Power system performance metrics used in the probabilistic method. 

Symbol Description 

       Expected value of power sent to the dump load for a store period  

       Expected value of unmet load for a store period . 

         Expected value of power utilized by the ESD for a store period . 

    Fraction of time store spends in charging state. 

     Fraction of time store spends in discharging state. 

      Fraction of time store spends in full state. 

       Fraction of time store spends in empty state. 
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2.7 Calculation of required storage capacity 

The calculation of the required storage capacity used in the probabilistic method is 

based on the variability in the SOC of the storage device. The energy charge state at any 

point in time within the storage period is given by the initial SOC plus an accumulation 

term that tracks the power flows across the ESD boundary through time. The filter 

derived for the variance in     does not account for the ESD efficiency or power rating; 

therefore, the power flows used to size the storage capacity are equal to     . 

 
           

 

 

   (2.39) 

The deviation in the energy state at any time are defined as: 

  
         

 

 

   (2.40) 

To size the required storage capacity of the ESD, the probabilistic method employs 

spectral analysis to characterize the statistical properties of     over the storage period. A 

filter for the expected variance in     within the storage period is derived in Appendix C 

according to [17]. The methods used to calculate the variance in     from a filtered wind 

speed spectrum are provided in Appendix C.  

During the planning and design phase of integrating wind power and energy storage 

into a power system, sizing the required storage capacity is of primary concern. In theory, 

the larger the storage capacity, the more wind power can be integrated into the power 

system. However, over-sizing an ESD becomes prohibitively expensive and can limit the 

feasibility of project development. According to the findings by Barton in [18], an 

adequate storage capacity size is given by      . However, in [25,26] the authors use a 

similar approach to calculate the increase in operational reserves due to integrating wind 

power in an existing power system. They use the standard deviation associated with the 

increase in variability of net system load due to the integration of wind power as a metric 

to size the required reserve capacity. The authors show that the increase in reserves for a 



31 

 

particular operational area are dependent on the flexibility of the particular system, wind 

power penetration levels, and how fast the ancillary service is required to react to 

fluctuations in load. The size of the reserves required to compensate for the variability in 

wind power is calculated from multiplying the standard deviation in net load by a 

constant factor, which is referred to as the confidence level. The confidence level is 

defined as the range of standard deviations and is shown to be on the order of 2 to 6 

depending on the characteristics of the power system [25,26]. For example, a confidence 

level of 2 corresponds to a range of      .  

Therefore, the required energy capacity for a storage period,   , of an ideal ESD 

without including power rating constraints is given by: 

            (2.41) 

where   denotes the confidence level and      is calculated by Eq. (A.57). A proposed 

method to calculate the confidence level used to size the required storage capacity is 

provided in Section 3.4.3.  

2.7.1 Required storage capacity calculation with ESD constraints 

The filter derived to estimate the required storage capacity does not include ESD 

efficiencies or power rating constraints. In this section the calculation for the required 

storage capacity in the wind-storage system, including power ratings and efficiency loss, 

is described. An additional term is included representing the change in the variability of 

the expected power flows to and from the ESD due to efficiency loss and power rating 

limits during the storage period [18].  

The power flows to and from the ESD are constrained by the efficiency and 

maximum power ratings of the store. Therefore, the variability in     is decreased and 

the required storage capacity is reduced. The change in the required storage capacity from 

the unconstrained base model is related to the change in the power flows to and from the 

store due to the power rate limitations. A simplified net power PDF is shown in Figure 

2.11 for an ESD with a maximum charging and discharging storage rating of 200 kW. 
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Net system power PDFs are more complex than the simplified example shown; it is 

provided to illustrate the basic concepts covered in this section.  

 

Figure 2.11 – Generic net system power PDF. 

If the ESD is ideal and the power and energy capacities are large enough so that the 

power flows are unobstructed, the PDF of power flows to and from the store will be equal 

to the net system PDF. However, if the efficiency and rated capacity limits are included, 

the charging and discharging power values are constrained. Therefore, the variability in 

    and      is reduced. Figure 2.11 gives a graphical example of how the tails of the 

distribution of      are affected when including the storage ratings. The shaded regions of 

the PDF represent the reduced variability in power flows to the ESD due to        and 

     . 

The notation used to refer to the power flows of the ESD is        , and is a function 

of the net system power, the store power ratings, and efficiency. 

                                          (2.42) 

The change in the variability of power flows of the ESD due to the power rating 

limits and efficiency losses can be expressed as a ratio of the variance in         to the 

variance in     .  

-400 -200 0 200 400
Net System Power (kW)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y
 F

u
n
c
ti
o
n                      

                         



33 

 

 
   

         
      

 (2.43) 

Since         includes the ESD rate limits and efficiencies while      represents the 

unconstrained charging and discharging powers used in the base model,    in (2.43) 

represents a ratio of variability in the constrained and unconstrained charging and 

discharging powers for the storage period. This is used to weight the calculation of the 

required storage capacity of Eq. (2.41) to give the constrained ESD capacity size.  

The variance values of         and      in Eq. (2.43) are evaluated for the sampled mean 

wind speed giving balanced conditions. The expected value operator is used to calculate 

the variance in      and        : 

                       (2.44) 

Therefore, the variance in net power is given by: 

              
            

   (2.45) 

The variance in         is calculated from: 

                    
               

 
  (2.46) 

The value of    in Eq. (2.43) gives a relative measure of the variability in the ESD 

expected power flows due to rate limits and efficiency losses compared to an unrestricted 

case. For an ideal ESD, the value of   is equal to 1, and between 0 and 1 for an ESD 

including      ,       , and    .  

The probabilistic method estimates the required storage capacity, including the ESD 

constraints, by: 

           (2.47) 
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2.8   Backup generator    

This section provides details of the backup generator model used in the probabilistic 

method. A backup generator is included to provide a more realistic model of remote 

power system operation. The backup generator is assumed to be a load following device 

with a maximum rated capacity denoted by     . There are no ramping or minimum 

operating constraints included in the backup generator model. A schematic of the power 

system including the backup generator is provided in Figure 2.12.  

 

 

The power balance equation for the system is given by: 

                             (2.48) 

Often in remote power systems the backup generator is powered by a DGS. The 

backup generator provides an easily controllable and predictable power source to help 

meet system demand. However, when multiple generation sources are operated in a 

power system, a control strategy is required to dispatch generators to meet the local 

electrical demand. The operational strategy used in this study is to minimize fossil fuel 

consumption and GHG emissions by dispatching the ESD first. The backup generator is 

only used if there is additional deficit power that cannot be met with the power available 

from the ESD, or if the deficit exceeds the maximum discharge rating of the store.  

 

            

                                                                                  

                                                               

                                                                                            

  (2.49) 

    

ESD 
     

   

 

   

~ ~ 
   

 

    

Figure 2.12 – Schematic of the modeled power system with backup generation.  
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In Eq. (2.49),    is defined as the difference in deficit power and available storage power 

including efficiency loss,                                 .  

If the deficit power is greater than the maximum combined power available from both 

the backup generator and the ESD there is some demand that is unmet. Therefore, a new 

definition of the unmet power is required to take into account the contribution of the 

backup generation. The following expression represents the unmet demand including the 

operation of the backup generator: 

 

            
                                                       

                                                                
   (2.50) 

In Eq. (2.50)    is defined as the difference between the deficit power and the 

maximum available power given by                                     . 

The expected value of the backup power supplied and the unmet demand for the 

storage period are calculated with the distribution of mean wind speeds. These are 

included in the performance metrics of the wind-storage system. 

 
                                      

 

 

   (2.51) 

 
                                      

 

 

  (2.52) 

2.9   Conclusion 

In this chapter a probabilistic methodology is developed based on previous work done 

in [17]. A probabilistic model of a wind-storage system operating in an isolated electrical 

network is presented. Spectral analysis is employed to investigate the statistical 

characteristics of wind speed and the excursions of SOC over the specified storage 

period. These statistical characteristics are used to estimate the required storage size and 

analyze the adequacy of power system components for a specified firm power 

commitment. The operational strategy of the ESD is to supply a constant firm power 



36 

 

output to the electrical load. A simple model of a backup generator is included in the 

method to represent remote power systems that operate a DGS to meet some of the 

electrical demand.  

The main assumptions used in the probabilistic method are listed below.  

- The ESD operates in a steady state over the storage period.   

- Mean wind speeds of the storage period can be modeled by a Weibull distribution. 

- Wind speeds within the storage period can be modeled by a normal distribution. 

- The coefficient of variation is constant and independent of the averaging time 

scale.  

- The storage capacity can be calculated by scaling the standard deviation of the 

excursions in SOC by a factor referred to as the confidence level.   

In the next chapter a validation study and sensitivity analysis are conducted to 

investigate the accuracy of the probabilistic method compared to a time sequential 

method.   
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3  VALIDATION STUDY AND SENSITIVITY ANALYSIS 

3.1   Introduction 

In this chapter a validation study and sensitivity analysis of the estimates calculated in 

the probabilistic approach for the power system performance metrics are provided. The 

purpose of the validation study is to investigate the accuracy of the probabilistic approach 

by a direct comparison between the probabilistic estimates and the predicted metrics from 

a time sequential simulation method. The sensitivity of the accuracy of the probabilistic 

estimates for various system properties such as installed wind capacity and firm power 

commitment levels are provided in Section 0. The accuracy of the probabilistic estimates 

of system metrics is shown to be dependent on the confidence level and a method to 

minimize the residuals of the predicted metrics is developed to determine the correct 

value for   in the calculation of the required storage size.  

3.2   Time sequential simulation methodology 

In this section a deterministic method used to evaluate a remote power system with 

wind generation and energy storage is described. The method is based on a time 

sequential simulation of an isolated electrical network consisting of wind generation, a 

diesel backup generator, and an energy storage device. These three power system 

components are operated to deliver a constant firm power commitment to the local grid. 

When sizing the storage capacity with a time domain approach the storage capacity is 

required as an external input. Traditionally, the power system metrics are solved 

iteratively for a range of storage capacities until an adequate size for the particular system 

configuration is found. 

The time sequential simulation method calculates the states of the system variables at 

each incremental time step. The power system used in the time domain method is the 

same as the probabilistic approach and is shown mathematically in Eq. (2.48) and 
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schematically in Figure 2.12. The ESD is operated to deliver firm power to the local grid 

and the backup generator is operated according to the same control strategy described in 

Section 2.8.  

To evaluate the power system in  the time domain the initial SOC,      , of the ESD 

is required as well as the maximum power ratings of the ESD, backup generation 

capacity, the ESD efficiency, installed wind capacity and the firm power commitment. At 

each incremental time step the available wind power is calculated from the historical 

wind speed data and the wind turbine power curve described in Section 2.4. The net 

system power is calculated by subtracting the firm power commitment from the wind 

power. During times of net surplus and deficit power the same ESD operational 

characteristics applied in the probabilistic method are used in the time domain approach. 

However, an additional control algorithm is used in the simulation to determine the 

current SOC and to dispatch power so the ESD is not overcharged or discharged past the 

lowest allowed limit. Details of the algorithms used in the time domain method for the 

ESD operation and the calculation of system performance metrics are provided in 

Appendix H. The main results from the time domain method are the average values of: 

  ,   ,    ,     ,   ,    ,     ,      , and       . 

3.3   Implementation 

Both the probabilistic and time sequential methods are implemented in a MATLAB 

environment using an object oriented programming approach. Flowcharts for the 

probabilistic and time sequential simulation methodology are provided in Figure 3.1 and 

Figure 3.2, respectively.   
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Figure 3.1 – Flowchart of the probabilistic methodology. 
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Figure 3.2 – Flowchart of the time sequential method. 
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3.4   Validation study 

In this section a validation study is presented to compare the probabilistic and time 

sequential simulation methods in evaluating power system performance. The probabilistic 

method first estimates the required storage capacity, which is then used as an input in the 

time sequential model. The system metrics from both methods are recorded and 

compared. 

3.4.1 Wind speed data 

The wind speed data used in the study were obtained from Environment Canada’s 

National Climate Archive for Sandspit, British Columbia. Wind speeds were recorded at 

a height of 10 meters at hourly intervals from 1980 to 2001, inclusive. The data set was 

visually inspected and gaps due to missing data were replaced by interpolating between 

hours.  

A logarithmic profile was used to estimate wind speeds from the reference height at 

which the data was recorded to the wind turbine hub height.  The equation used to adjust 

wind speeds to a height   from a reference height of    is given by: 

 

          
    

 
  
 

    
  
  
 
   (3.1) 

In Eq. (3.1)    is equal to 10 m,   is the wind turbine hub height of 80 m, and    is a 

terrain roughness parameter, which is chosen to be 0.01 corresponding to wind conditions 

in coastal areas [19,23].  

3.4.2 Power system parameters 

An isolated power system is modeled with 1 MW of installed wind capacity, a firm 

power commitment of 400 kW, no available backup generation, and no ESD charging or 

efficiency constraints. The probabilistic method is first used to compute a required 

storage capacity for a specified storage period and confidence level.  The confidence 

level,  , is set to the value suggested in [18] to a factor of 2, representing an interval of 
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     , to size the storage capacity in the probabilistic method. Since there are no ESD 

efficiency or power rating constraints included in this example, the value of   is equal to 

1. 

3.4.3 Confidence level calculation 

In this section the results for the validation study, including a proposed method to 

calculate the confidence level, is presented. The first plot in Figure 3.3 shows the 

estimated storage capacity from the probabilistic method for different storage periods. 

The other plots in Figure 3.3 and Figure 3.4 show the accuracy of the probabilistic 

estimates compared to the time sequential results for the power system performance 

metrics. The curtailed power metric refers to the power sent to the dump load,   , and the 

ESD power is the average power that is sent to or taken from the ESD, as predicted by 

both the time and probabilistic methods. The time domain method tracks the charging and 

discharging powers over the simulation period and calculates the time average, which are 

approximately equal in magnitude. Therefore, the figures show only the discharge power 

calculated from the time sequential method plotted against probabilistic estimate of  

        . 
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Figure 3.3 – Performance metrics for 1000 kW installed wind capacity, 400 kW firm power, and γ = 2. 

 

Figure 3.4 – ESD utilization metrics for 1000 kW installed wind capacity, 400 kW firm power, and γ = 2. 
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Although the probabilistic approach predicts the overall trend of the system metrics, it 

overestimates the utilization of the ESD compared to the results attained from the time 

domain method. This suggests that the confidence level used to size the storage capacity 

was not adequate. Increasing the confidence interval will increase the estimated storage 

capacity from the probabilistic method. The revised ESD capacity will allow more power 

to be utilized by the ESD in the time sequential method, resulting in a decrease in the 

unmet and curtailed power metrics. Therefore, the confidence level serves as a calibrating 

parameter that should be set to a level that reduces the error in the probabilistic estimates 

of the performance metrics to a minimal value. 

A method based on minimizing the root mean squared error (RMSE) is developed to 

find a confidence level that gives the most accurate probabilistic estimates. The RMSE is 

calculated by: 

 

       
 

 
            

 
 

 

   (3.2) 

where   is the total number of storage periods investigated, and      and      represent the 

time simulation and probabilistic metrics for each storage period. The RMSE gives an 

aggregated value for the residuals of the probabilistic estimates and is used to give a 

general metric of the predictive power of the probabilistic method.  

The confidence level is varied from 2 to 8 while keeping all other power system 

components constant. The confidence level that produces the minimum RMSE value for 

all system metrics gives the most consistent estimates of the performance metrics. The 

results of the RMSE analysis for the system described in Section 3.4.2 are shown Figure 

3.5. 
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Figure 3.5 – RMSE of system performance metrics for various confidence levels. 

The results of the RMSE analysis show that an appropriate confidence level for 

estimating the required storage capacity with the probabilistic method is in the range of 4 

to 5. Analyzing the power system again with a confidence level equal to 4 produces 

accurate probabilistic estimates of performance metrics compared to the time domain 

calculations, which can be seen in Figure 3.6 and Figure 3.7. The first plot in Figure 3.6 

shows the required storage capacity corresponding to the new confidence level value.  

The results from the validation analysis show that the accuracy of the probabilistic 

estimates is dependent on the value of the confidence level. The range of   that gives the 

most accurate probabilistic estimates agrees with previous work in [25,26], where the 

authors have calculated the required reserve capacity due to the integration of wind 

generation in a power system.  
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Figure 3.6 – Performance metrics for 1000 kW installed wind capacity, 400 kW firm power, and γ = 4. 

 

Figure 3.7 – ESD utilization metrics for 1000 kW installed wind capacity, 400 kW firm power, and γ = 4. 
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3.5   Sensitivity analysis 

In this section a sensitivity analysis of the accuracy of the probabilistic performance 

estimates for various system configurations is presented. The accuracy of the 

performance metrics calculated from the probabilistic method are investigated for 

different levels of installed wind capacity, firm power commitment, ESD maximum 

charging and discharging rates, ESD efficiency, and backup capacity. The various system 

configurations used in the sensitivity analysis are shown in Table 3.1. The confidence 

level used for Cases A thru E is the value calculated in Section 3.4.3 that minimized the 

deviation of the probabilistic estimates from those calculated from the time simulation 

method. The main results for each case are presented in the following sections with a 

discussion and conclusion of the sensitivity analysis provided at the end of the chapter. 

 

Table 3.1 – Power system configurations used in the sensitivity analysis 

CASE γ                          

A 4 700:1500 400 ∞ 1 0 

B 4 1000 200:600 ∞ 1 0 

C 4 1000 400 100:1000 1 0 

D 4 1000 400 ∞ 0.5:1 0 

E 4 1000 400 ∞ 1 300:500 

.  

3.5.1 Case A: Installed wind capacity 

In the first case of the sensitivity analysis, the installed wind capacity of the power 

system is varied from 700 kW to 1500 kW in 100 kW increments while all other power 

system components are kept constant. For each value of installed wind capacity the 

probabilistic method estimates the performance metrics and the required storage capacity. 

The ESD capacity is used as an input in the time domain method and the performance 

metrics of both methods are compared.  
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For low levels of installed wind capacity, the probabilistic estimate of the power 

utilized by the wind-storage system is greater than the time domain calculation, resulting 

in curtailed and unmet power values below those that would be expected from the time 

domain calculations. A graphical comparison of system metrics calculated from both 

methods for an installed wind capacity of 700 kW is shown in Figure 3.8. 

 

Figure 3.8 – Performance metrics for 700kW installed wind capacity, 400 kW firm power, and γ = 4. 

In contrast, for levels of wind capacity exceeding 1 MW, the probabilistic method 

underestimates the power utilized by the ESD, resulting in probabilistic estimates of the 

curtailed and the unmet demand values that exceed the time domain calculations. An 

example of the system metrics calculated by both methods for an installed wind capacity 

of 1300 kW is shown in Figure 3.9.  

It should be noted that the probabilistic method follows the same trend as the time 

sequential method for all installed wind capacity values used in the sensitivity analysis. 

Furthermore, the expected relationships between installed wind capacity and performance 

metrics are observed. For example, as wind capacity is increased the curtailed power 

increases and the unmet demand levels decrease. The RMSE of the probabilistic 

estimates for various installed wind capacities are shown in Figure 3.10. 
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Figure 3.9 – Performance metrics for 1300 kW installed wind capacity, 400 kW firm power, and γ = 4. 

 

Figure 3.10 – RMSE analysis for Case A. 
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3.5.2 Case B: Firm power commitment 

In the second case studied in the sensitivity analysis, the firm power commitment is 

varied from 200 kW to 600 kW in 100 kW increments while keeping all other system 

components constant. Varying the firm power commitment has the reverse effect as 

varying the installed wind capacity. For levels of firm power commitment below 400 kW 

the probabilistic method consistently estimates the value of      to be much lower than 

that calculated by the time domain method, resulting in an over-estimation of    and   . 

For levels of firm power above 400 kW the value of      calculated from the 

probabilistic method exceeds the time domain prediction, resulting in estimates of    and 

   that are low in comparison. The RMSE analysis for various levels of     is plotted in 

Figure 3.11, showing a relative measurement of the deviations of the probabilistic 

estimates as a function of firm power.  

 

Figure 3.11 – RMSE analysis for Case B. 

 

 

200 250 300 350 400 450 500 550 600
0

5

10

15

20

R
M

S
E

 (
k
W

)

Firm Power Commitment (kW)

 

 

200 250 300 350 400 450 500 550 600
0

5

10

15

R
M

S
E

 (
%

)

Firm Power Commitment (kW)

 

 

Unmet

Curtailed

ESD

Empty

Full

Charging

Discharging



51 

 

3.5.3 Case C: ESD charging and discharging rates 

In the third case investigated in the sensitivity analysis, the maximum charging and 

discharging rates are varied from 100 kW to 1000 kW in increments of 100 kW while 

keeping all other system components constant.  

As the charging and discharging rates are decreased the surplus power that can be 

utilized by the storage device is limited. This reduces the required storage size calculated 

in the probabilistic method by the factor denoted as   and given by Eq. (2.43). Due to the 

decreased ESD capacity and the increased charging and discharging power constraints, 

the curtailed power and unmet demand values are increased. The required storage 

capacity and system performance metrics are shown in Figure 3.12 for       and        

equal to 200 kW.  

 

Figure 3.12 – Performance metrics for a maximum ESD power rating of 200 kW. 

The accuracy of the probabilistic estimates for the range of       and        is 

consistent with the calculations from the time domain calculations. The results from the 

RMSE analysis are shown in Figure 3.13.  
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Figure 3.13 – RMSE analysis for Case C. 

3.5.4 Case D: ESD efficiency 

In the fourth case in the sensitivity analysis, the ESD round-trip efficiency is varied 

from 50% to 100% in 10% increments while keeping all other system components 

constant. The probabilistic estimates of the system performance metrics are compared to 

the time domain simulation results for the various store efficiencies.  

Varying the ESD efficiency has little effect on the accuracy of the system metrics for 

  ,   , and     . The average deviation for all storage capacities ranges from 

approximately 2 to 4 kW when varying the ESD efficiency value. Figure 3.14 shows a 

comparison of the probabilistic estimates and the time domain calculations of system 

metrics for     equal to 60%. The accuracy of the ESD utilization metrics, specifically 

     and      , perform relatively poorly for low efficiency values. The probabilistic 

estimate of the time the ESD spends in the discharge state is consistently greater than the 

calculation from the time domain for low efficiency values as seen in Figure 3.15. The 

overall deviations are shown in the RMSE analysis of Figure 3.16. 
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Figure 3.14 – Performance metrics for an ESD round-trip efficiency of 60%. 

 

Figure 3.15 – ESD utilization metrics for round-trip efficiency of 60%. 
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Figure 3.16 – RMSE analysis for Case D. 

3.5.5 Case F: Backup generation 

In the final case of the sensitivity analysis, the backup generation capacity is varied 

from 300 kW to 500 kW in 50 kW increments while all other system components are 

kept constant. The power system performance metrics are calculated for each backup 

generation capacity using the probabilistic and time sequential methodologies and the 

estimated values are compared. 

Since the backup generator is operated during times of deficit power, the only system 

metrics that are affected in the analysis are the unmet demand and the amount of backup 

power sent to the local grid,    and   . The probabilistic method over-estimates the 

backup power sent to the grid for low capacity values, resulting in increased errors in the 

prediction of   . An example is shown in Figure 3.17 for a backup generation capacity of 

350 kW. As the backup capacity is increased to cover the firm power commitment, the 

unmet demand approaches 0 kW and the accuracy of the probabilistic estimates of    and 

   is increased. An example is provided for a backup capacity of 400 kW in Figure 3.18. 
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Figure 3.17 – Performance metrics for a backup generation capacity of 350 kW. 

 

Figure 3.18 – ESD utilization metrics for a backup generation capacity of 400 kW. 
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The general trend of the probabilistic methods accuracy in predicting the power 

system performance metrics for varying backup generation capacities is reflected in the 

RMSE analysis in Figure 3.19. 

 

Figure 3.19 – RMSE analysis for Case E. 
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Overall, the probabilistic method gives a fairly accurate representation of the 

behaviour of the power system once the appropriate confidence level is found. 

Furthermore, the computational speed is significantly improved with the probabilistic 

method, with program execution approximately 20 times faster than the time simulation 

method.  

The main discrepancies between the two methods can be attributed to the 

probabilistic representation of the wind power and its dependence on the storage period 

used in the analysis. The variance values used to construct the PDFs of wind speed are 

calculated from the wind speed spectrum and the filters described in Appendices A and B 

for a specified storage period. The shape of the distribution of        and         depend 

on the storage period, which directly affects the expected value of wind power and 

consequently, the expected surplus and deficit power values.  For example, for the system 

described in Section 3.4.2 the probabilistic method predicts the expected value of wind 

power to be in the range of 313 kW to 322 kW for storage periods ranging from 2 to 50 

hours. This is in contrast to the time sequential model that calculates a constant wind 

power for all storage periods of 314 kW.  

When conducting future resource planning studies for remote power systems, an 

optimization routine is required to determine the optimal component sizing that 

minimizes the overall system cost. Currently, software packages solve the optimization 

problem by an iterative procedure in the time domain, calculating the optimal generation 

and storage capacities that minimize the systems net present cost while satisfying system 

performance constraints [11]. The probabilistic method is limited in this application since 

a time sequential method is required to find the correct confidence level for each power 

system configuration, proving to be computationally redundant.   
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4  HAIDA GWAII: A CASE STUDY 

4.1  Introduction 

In this chapter a techno-economic evaluation of integrating wind power and energy 

storage in a remote power system using the probabilistic method is presented. The main 

objective of the case study is to illustrate how the probabilistic method can be 

implemented to determine the potential benefit of incorporating wind power and an ESD 

in a remote power system to displace current fossil fuel generation. The isolated electrical 

network studied in the analysis is located on Haida Gwaii, British Columbia.  

Haida Gwaii, also referred to as the Queen Charlotte Islands, is an archipelago of 

approximately 150 islands and is one of the 300 remote communities within Canada that 

is not connected to a major electrical grid.  The islands are located approximately 400 km 

north of Vancouver Island and 150 km off the northwest coast of British Columbia, 

separated from the mainland by Hecate Strait.  Over five thousand residents live on one 

of the two largest islands in the archipelago and are completely reliant on local generation 

to meet their electricity demand. 

Currently, Haida Gwaii’s electrical system is composed of two separate grids.  The 

northern grid supplies electricity to the towns of Old Masset, Masset and Port Clemens, 

by diesel generation, referred to as the Masset DGS. The Masset DGS has a firm capacity 

of 8,874 kW, with an additional 2,500 kW of reserve capacity. A general schematic of the 

islands electrical generation resources and their location is shown in Figure 4.1. The 

southern grid supplies electricity to the communities of Skidegate, Queen Charlotte City 

and Tlell.  Electricity generation in the south is dominated by hydro power produced at 

the Queen Charlotte Power Corporation (QCPC) facility, located at Mitchell Inlet on 

Moresby Island. The powerhouse at the hydro facility runs three 2 MW horizontal 

Francis turbines with an installed capacity of 5,700 kW, supplying almost 80% of the 

annual electricity delivered to the southern grid [27].  The southern grid also operates a 
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backup DGS located at the town of Sandspit. The Sandspit DGS is the smaller of the two 

diesel generating facilities with a firm capacity of 6,650 kW and an additional 2,500 kW 

of reserve capacity.  Both the Masset and Sandspit DGS are owned and operated by BC 

Hydro, while the QCPC facility is owned and operated by EPCOR Power, an 

Independent Power Producer.   

 

Figure 4.1 – Haida Gwaii generation asset map. 
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diesel fuel, many renewable energy projects have been proposed for the region including 

generation from available resources such as: wave, tidal, hydro, biomass, wind and an 

option to link the electrical grids with an additional tie-line [28,29,30,31]. As of today, 

the RFP is still outstanding and the community is actively seeking alternative energy 

options. 

Since the southern grid currently operates with contributions from renewable 

resources close to 80% of annual demand, the proposed case study investigates the 

benefits of integrating wind power and energy storage in the northern electrical grid. In 

the following section a techno-economic analysis of integrating wind power and energy 

storage in the Masset power system to displace existing diesel generation is provided. 

The power system is analyzed using the probabilistic method described in Chapter 2.  

4.2   Masset DGS  

In this section an overview of the current electrical generation resources, demand 

profile, and transmission constraints is provided for the northern grid. The current 

generational assets operating in the Masset DGS consists of 7 units of various ratings and 

manufactured models. In Table 4.1 a summary description of each unit’s operational 

characteristics is provided.
1
 The RFP states that the existing DGS units will remain as 

standby reserve capacity, black start, and reactive power support.  

 

Table 4.1 – Masset DGS generation units [28]. 

UNIT  # MAKE RATING (KW) CONDITION 

MASG1 MLW 2108 These units were commissioned 

to be replaced in 2008 due to 

mechanical degradation. 

MASG2 MLW 2108 

MASG3 MLW 2108 

M125G1 EMD 2500 Age: 21 to 30 years. 

M172G1 CAT 850 Age: < 10 years. 

M173G1 CAT 850 Age: < 10 years. 

M174G1 CAT 850 Age: < 10 years. 

                                                 

1
 The different diesel generator manufacturers are: Electro Motors Division (EMD) of General Motors, 

Caterpillar (CAT), and Montreal Locomotive Works (MLW). 
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The northern grid distribution system is comprised of two overhead distribution 

feeder circuits, MAS 25F51 and MAS 25F52, of three-phase 25 kV and single-phase 14.4 

kV distribution lines, with a transmission capacity of approximately 8,000 kVA [27]. 

Currently, maximum line loading levels for MAS 25F51 and 25F52 are approximately 

3,300 kVA and 1,250 kVA, respectively [28]. Therefore, the proposed wind-storage 

system with an installed wind capacity of 1,000 kW should not cause any transmission 

congestion issues.     

The peak load in 2008 was approximately 5.25 MW for the Masset DGS with a total 

generation of 27.5 GWh [27]. BC Hydro’s forecasted energy load growth for the next 20 

years in the northern grid is shown in Figure 4.2 and includes station service and 

transmission losses. 

 

Figure 4.2 – Forecasted annual energy demand for the Masset DGS to 2030. 

   

In the following section an economic analysis is provided for integrating 1000 kW of 

wind power with various energy storage technologies in the existing Masset power 

system.     
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4.3   LPC for Masset DGS 

To estimate the potential benefits of integrating wind power and energy storage in the 

Masset DGS an economic analysis based on the levelized production cost (LPC) of 

electricity has been developed. The analysis compares the system costs and benefits for 

four different integration scenarios: wind power without energy storage, wind power with 

a NAS battery ESD, wind power with a VRB ESD, and wind power with a PH storage 

system.  

The method provided in [2] for calculating the LPC value has been extended here to 

take into account the costs and benefits associated with integrating an ESD. To compare 

the LPC of integrating wind power and energy storage into the current power system, a 

simplified model of the costs associated with the current DGS is used as a reference case. 

The present value (PV) of a cost incurred i years in the future is given by: 

 
    

  
       

   (4.1) 

where    is the discount rate.  

If the cost is escalated at an annual rate,   , with respect to a current reference cost, 

     the annual cost becomes: 

            
    (4.2) 

The net present value (NPV) for an analysis period of Y years is the sum of all costs 

discounted to present value:  

 

        

 

 

  (4.3) 

The annual costs of diesel generation can be expressed as the variable costs of fuel, 

  , and associated annual environmental costs,     , plus an operational and maintenance 

cost,   . The variable costs associated with operation are expressed per unit of energy 

consumed and the fixed operational and maintenance costs are expressed per unit of 
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installed power capacity. The NPV for the costs associated with diesel generation can be 

calculated from: 

 

                          

 

 

   (4.4) 

           
    

    
 
 

 (4.5) 

                 
      
    

 

 

 (4.6) 

                 
    
    

 
 

 (4.7) 

 
                               where: 

     Consumption rate of fuel         

     Price of fuel       

     Escalation rate of fuel         

       Emission rate of                 

       Price of     emissions           

       Escalation rate of     price        

     Annual energy production          

        DGS operational and maintenance cost        

      DGS installed capacity      

    General inflation rate        

 

 

 

  In Eq. (4.4) the NPV of diesel generation costs are calculated for only the 

operational and maintenance costs. The capital investment costs, replacement costs and 

salvage value of the DGS have not been included in the economic analysis.  The analysis 

period is 20 years and the annual energy production is assumed to be the forecasted load 

growth given in BC Hydro’s draft RFP and shown in Figure 4.2. 

Both the consumption rate of diesel fuel and the associated emission rate are 

dependent on the loading level and the mechanical condition of the diesel unit [2,28,30]. 

Approximate fuel consumption rates were calculated in [28] for representative diesel 
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units in the Masset DGS and vary from 0.26 to 0.32 L/kWh for operational points of 

minimum and maximum efficiency. Similarly, a range of emission rates were calculated 

in [30] for various operating points using representative industry data and vary from 

approximately 0.85 x 10
-3

 to 0.7 x 10
-3

 tonne/kWh for minimum and maximum 

efficiency. The current operational point for the Masset DGS is assumed to have a    

equal to 0.285 L/kWh and      equal to 0.77 x 10
-3

 tonne/kWh. A full list of the 

economic assumptions used in the analysis is provided in Table 4.2.  
 

Table 4.2 – Economic model assumptions for the DGS LPC calculation. 

PARAMETER VALUE UNITS 

Y 20 yr 

   8      

   0.285        

   1     

   2.5      

     0.77 x 10
-3

           

     30         

     1      

    20      

    11,374    

   5      

 

The LPC can be estimated from the NPV by the following equation: 

  
       

             

   
   (4.8) 

where AEP and CRF refer to the annual energy production and capital recovery factor 

respectively. The value of AEP is given by the average energy generated over the 

analysis period. The CRF is calculated by:  

 

          
        

 

         
  (4.9) 

where    is the discount rate and   is total number of years in the analysis period. 
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The LPC of electricity generation from the current DGS is calculated to be 

$0.385/kWh for the 20 year analysis period. This value is used as a break even metric in 

the subsequent cost-benefit analysis for the integration of wind power and energy storage.  

4.4   Cost-benefit analysis  

In this section a cost-benefit analysis is provided for integrating 1 MW of wind power 

with three different storage technology alternatives in the Masset DGS. Four scenarios 

are investigated in the analysis: integration of wind power only, wind power with a NAS 

ESD, wind power with a VRB ESD, and wind power with a PH storage system. To 

evaluate the benefit of the ESD, an economic model is developed that relates firm power 

provided by the store with increased DGS efficiency. The LPC electricity generation of 

each integration option are compared to the reference case of current diesel generation to 

evaluate the potential benefit they represent. 

4.4.1 Integration of wind power 

The NPV of costs associated with integrating wind power without energy storage can 

be calculated by: 

 

                                     

 

 

   (4.10) 

 where:  

                (4.11) 

              (4.12) 

                 
    
    

 
 

  (4.13) 
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In Eq. (4.10)      is the capital investment,    is the energy required by the DGS after 

the annual contribution of wind power has been subtracted, and     is the annual 

operational and maintenance cost associated with the wind turbine. The assumed capital 

investment cost,     , and fixed annual operational and maintenance costs,      , are 

expressed per unit of installed wind power. The values used in the analysis were taken 

from [4] and are listed in Table 4.3. The total benefit of integrating wind power is 

calculated from the cost savings associated with the displaced diesel fuel and GHG 

emissions over the project lifetime compared to the reference case.  

The LPC for the wind-diesel power system can be estimated from the NPV by: 

  
      

             

   
   (4.14) 

where     is given by the annual average energy contribution from wind generation and 

the DGS.   

4.4.2 Integration of wind power and an ESD 

The method used to calculate the NPV for a project integrating wind power and an 

ESD includes the replacement cost for components whose lifetime is less than the 

analysis period, the salvage value of components whose lifetime has not expired at the 

end of the analysis period, and an economic model for the value of firm power in remote 

systems.  

In a remote power system, the value of firm power provided by the wind-storage 

system can be related to gains in DGS efficiency, resulting in decreased fuel consumption 

and GHG emissions. The ESD acts to hedge against the uncertainty in wind power 

production, allowing the DGS to run at a more efficient operating point [32]. This is 

reflected in the economic model of the wind-storage system by decreasing the fuel 

consumption and emission rates of the DGS.  

The equation for the NPV of project costs for a wind-storage system is calculated by: 
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                    (4.15) 

The capital investment includes the cost of the wind turbine and three different terms 

for the ESD. The capital cost of the power conversion system, denoted by       , is given 

in units of $/kW of installed ESD power rating, whereas the energy capital investment, 

  , and the balance of plant (BOP) capital cost is quoted in $/kWh installed energy 

capacity. The BOP cost includes building construction, installation, interconnections, and 

air conditioning equipment.  

                                        (4.16) 

The energy required by the DGS is the difference in annual energy load,     , and 

energy contributed from the wind-storage system,       .  

               (4.17) 

The fixed operational, maintenance and replacement costs of the ESD are given by 

Eq. (4.18) and (4.19), where the values of         and    are taken from [4] and are listed 

in Table 4.3. 

                       
    
    

 
 

 (4.18) 

          
 

    
 
   

 (4.19) 

The salvage value,   , of a component in the power system that has a lifetime,  , 

longer than the analysis period is given by Eq. (4.20). In contrast, if a component needs to 

be replaced before the end of the analysis period it will have a salvage value given by Eq. 

(4.21), where R is defined as the rest period, or the years after the analysis period that the 

reinvested component still has left in its lifetime.    
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                (4.20) 

     
         

         
                (4.21) 

Lastly, the fuel consumption rate used in the economic model of the wind-storage 

system to reflect the value of the firm power available from the ESD is assumed to be 

0.27 L/kWh, a 5% reduction in consumption rate compared to the reference system. The 

emission rate is reduced by a similar degree to 0.72 x 10
-3

 tonne/kWh.  

The LPC for the wind-storage power system can be estimated from the NPV by: 

  
       

             

   
   (4.22) 

where     is given by the average annual energy contribution from the wind-storage 

system and the DGS.   

4.5   Results and discussion 

In this section the results from the cost-benefit analysis are provided. The 

probabilistic method is used to calculate the required storage capacity and the average 

energy contribution from the wind-storage system. Four scenarios are investigated in the 

analysis: integration of wind power only, wind power with a NAS ESD, wind power with 

a VRB ESD, and wind power with a PH storage system. The economic model 

assumptions for the wind power and energy storage pricing were taken from [4] and are 

listed in Table 4.3. The results of the analysis compare the different integration options 

by the LPC method described in Section 4.4.  

 

 

 

 

 

 



69 

 

Table 4.3 – Economic model assumptions for wind power and ESD. 

  COMPONENT 
                 CAPITAL INVESTMENT  

   ($/kW)      ($/kWh)  BOP ($/kWh) 

REPLACEMENT 

   ($/kWh) 

LIFETIME 

L (yr) 

FIXED  O&M 

OM ($/kW-yr) 

Wind Power 1,200  --- ---   --- 20 20 

NaS Batteries 150 250 0    230 15 20 

VRB 175 600 30    600 10 20 

Pumped Hydro 1050 10 4    0 30 2.5 

 

The probabilistic method estimates the required storage and annual energy 

contribution of the wind-storage system from the techniques described in Chapter 2. The 

energy contribution from the wind-storage system is given by the hourly average firm 

power value plus the power sent directly to the load multiplied by the total number of 

hours in the year. 

                        (4.23) 

The results from the probabilistic method are compared to calculations from the time 

sequential method to calibrate the confidence level   (see Section 3.4.3). The results for 

the probabilistic method and the cost-benefit analysis are provided in Table 4.4. The 

results from the cost benefit analysis suggest that a significant savings can be realized 

over the project lifetime by the integration of wind power and an ESD into the Masset 

DGS. The overwhelming cost associated with electrical production from diesel fuel is the 

primary economic driver in the current power system. Integrating wind power to displace 

even a modest proportion of the annual consumption of diesel fuel, in this case a 

maximum of 15 % total decrease over the project lifetime, is shown to be cost effective. 

A graphical comparison of the discounted present value of the total costs associated with 

each integration alternative is shown in Figure 4.3.  
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Table 4.4 – Cost-benefit results for wind power and ESD integration in Masset DGS. 

 INTEGRATION 

OPTION 

  

(HR) 

    

(%) 

          

(kW) 

   

(kWh) 

     

(MWh/yr) 

       

(MWh/yr) 

LPC 

($/kWh) 

TOTAL 

FUEL 

(ML) 

TOTAL 

CO2  

(kt) 

Masset DGS --- --- --- --- 29000 0 0.385 165 435 

Wind Power --- --- --- --- 26210 2790 0.354 150 390 

Wind-ESDNaS 8 87 500 1900 26250 2750 0.341 141 382 

Wind-ESDVRB 12 75 500 27500 26350 2650 0.348 142 384 

Wind-ESDPH 24 78 500 5900 26390 2610 0.342 142 384 

 

 

Figure 4.3 – NPV of system costs for each integration alternative in the Masset DGS. 

The decrease in fuel consumption, GHG emissions, and the LPC of electricity 

associated with integrating an ESD is due to the assumption that including a storage 

device allows the DGS to operate with increased efficiency. This assumption provides a 

means to quantify the value provided to the local grid from integrating an ESD. However, 

the actual efficiency gains would be dependent on multiple factors and would need to be 

experimentally validated.  
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In this chapter an economic model has been developed to provide a cost-benefit 

analysis of integrating a wind-storage system in the existing Masset DGS. The results 

from the analysis show that integration of 1 MW of wind power capacity with a NAS 

battery bank rated at 500 kW and energy capacity of 1,900 kWh has a total cost savings 

of approximately $10 million over a 20 year project lifetime compared to the current 

generation mix. The case study provides an example of how the probabilistic method can 

be used to size power system components and evaluate the potential benefit of multiple 

system configurations.   
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5  CONCLUSIONS AND RECOMMENDATIONS 

In this thesis a validation of the probabilistic method proposed in [17,18] for 

evaluating the required storage capacity and system performance of a power system with 

wind generation and an ESD is provided. The objective of the research was to investigate 

whether traditional time domain analysis can be improved by adopting the probabilistic 

approach. A validation study was carried out to determine the accuracy of the 

probabilistic method compared to a time domain simulation method. The main findings 

of the study show that the probabilistic method is limited in its application due to the 

sensitivity of system performance metrics to installed wind capacity, firm power level, 

and the confidence level used to size the storage capacity. A method to reduce the 

residuals of the probabilistic estimates compared to calculations from a time sequence 

simulation method is provided. A case study for a remote power system located on Haida 

Gwaii is included to illustrate how the method can be used in a cost-benefit analysis of 

wind power and energy storage integration.  

There are various improvements to the method that were out of the scope of this 

thesis. A list is provided for recommended future work to improve the robustness of the 

probabilistic approach described in this work.  

 

- Investigate the effect of different spectral estimation techniques on the accuracy 

of the probabilistic method. For example, a Welch estimation method could be 

used to estimate the wind speed spectrum.  

 

- Include more intermittent inputs to the model; including other renewable 

generation sources and a variable load profile.  
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- Investigate the dependence structure of the confidence level on the renewable 

power penetration. There seems to be a relationship between the ratio of the 

installed wind power and firm power commitment and the confidence level. The 

objective of this analysis would be to improve the ability of the probabilistic 

method to accurately evaluate power systems with various configurations by 

defining a functional relationship between the wind power penetration level and 

the confidence level that minimizes the errors in the predicted performance 

metrics. 

  

- Investigate how the method can be implemented in deregulated markets where the 

value of firm power is of interest. 

 

- Expand the methodology to include multiple ESD’s. 

 

- Use the probabilistic method to model a network of linked nodes, representing an 

interconnected power system. 
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Appendix 

A Filter for the variance in wind speeds 

Appendices A through C provide details on the filters proposed by Barton in [17,18] 

to estimate the statistical properties of the wind regime over the storage period. In this 

section, an analytical derivation of the filter used to calculate the variance in wind speeds 

within a storage period is presented. Most of the reference material used in the following 

analysis can be found in [33,34]. 

The model of wind speeds used in the probabilistic approach is based on the 

assumption that the wind speed time series can be represented by a stationary stochastic 

process that can be modeled by a Fourier series of the form; 

 

         

 

   

               (A.1) 

           (A.2) 

where            are constants,      are the radial frequency components given by 

(A.2),      are the amplitudes corresponding to each frequency, and      are independent 

random variables uniformly distributed on [0, 2] .  

For mathematical convenience, a single harmonic of the series in (A.1) is used in the 

following derivation. 

                       (A.3) 

The first filter is designed to give the variance in wind speeds within a specified store 

period of length  . For a continuous time dependent function,     , the sample mean,    , 

and sample variance,       , over a domain [0, T] are defined as: 

 
    

 

 
       
 

 

   (A.4) 
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   (A.5) 

The variance in wind speeds over the storage window is given by replacing      with 

     ,     with     , and T with   in (A.5). 

 
        

 

 
             

   
 

 

 (A.6) 

The mean wind speed of the harmonic over the sample window is given by replacing 

     by       and T by   in (A.4). 

 
     

 

 
        
 

 

 
  
   

                     (A.7) 

Substituting Eqs. (A.3) and (A.7) into Eq. (A.6) gives an expression for the 

contribution of a single harmonic to the variance of wind speeds within the store period. 

However, because this only represents one arbitrary sample of the entire series, the 

expected value of all possible storage periods is necessary to obtain a representative 

expression of the variance contribution from the harmonic. The expected value for a 

function of a random variable is given by: 

 
                   

 

  

   (A.8) 

where      is defined as the PDF of the random variable  . 

In the case described here, the random variable is the phase which is uniformly 

distributed on [0, 2], so       is equal to 
 

  
 and      is the sample variance. 

 
          

 

  
          

  

 

 (A.9) 

Therefore, the contribution of a harmonic to the variance in wind speeds within a 

storage period of length   is given by: 
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 (A.10) 

Substituting the expressions for       and      given by Eqs. (A.3) and (A.7) into Eq. 

(A.10) and integrating over time and phase gives the first filter function for the variance 

of wind speeds within a store period. 

 
       

  
 

 
  

  
   

 
 

           (A.11) 

B Filter for the variance in mean wind speed 

In this section an analytical derivation for the second filter, designed to calculate the 

variance in mean wind speeds for a specified store period of length  , is presented.  

The derivation begins similarly to the first filter function with a single harmonic of 

the series given by (A.3). However, the definition of the sample variance is modified. In 

the previous filter the variability was measured relative to the sample mean wind speed to 

give the variance of wind speeds within the period. However, the variance of mean wind 

speeds is defined relative to the expected value of mean wind speeds of a storage period. 

Equation (A.12) gives the contribution of a harmonic to the variance in mean wind 

speeds for a storage period of length  . The expected value of mean wind speeds is given 

by: 

Integrating Eq. (A.13) gives a solution of 0. The expression for the variance reduces 

to:  

 
        

 

 
               

   
 

 

 (A.12) 

 
        

 

  
        

  

 

 
 

  
 

  
   

                       

  

 

   (A.13) 
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Similar to the previous derivation, this sample is extended to the entire series by use 

of the expected value operator.  

 
          

 

  
          

  

 

 
 

  
 

 

 
       

   
 

 

   

  

 

 (A.15) 

This expression gives the average contribution of the harmonic to the variance in 

mean wind speeds for a store period of length  . The second filter is calculated by 

replacing the expression attained for      in (A.7) into (A.15) and integrating over   . 

 
         

  
   

 
 

            (A.16) 

C Filter for the variance in the change of SOC 

The third filter is designed to give the variance in the accumulated energy over a store 

period and is used in the method to size the required ESD capacity. The power system 

modeled in the derivation of the filter for the variance in     is shown in Figure 2.1. The 

storage device acts to absorb surplus power and deliver deficit power according to the 

availability of power generated from the wind. The ESD power flows are given by     , 

which is defined in Eq. (2.1) as the difference in wind power and the firm power 

commitment. In this section a derivation of the filter for the variance in the change in the 

energy SOC of the ESD is presented.  

The energy charge state of a storage device at any instant in time within the store 

period,   , is a function of its initial energy level,   , plus an accumulation term that 

tracks the power flows across the ESD boundary through time. 

 
        

 

 
       

   
 

 

   (A.14) 
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   (A.17) 

The deviation in the energy state at any time can then be defined as: 

 
         

 

 

     (A.18) 

The ESD is operated such that at the end of the specified storage period the energy 

state will return to its initial value.  

       (A.19) 

This ensures that the ESD is operating in a charge sustaining mode and will not move 

towards an empty or full energy state of charge. The operational requirement given by 

Eq. (A.19) implies that the change in energy over the store period is equal to 0.  

 
         

 

 

     (A.20) 

The expression for the variance in the change in energy charge state within a storage 

period of length   is given by a similar form used in the second filter derivation. The 

variance in the change of energy SOC of an ESD over the storage period is given by:  

 
       

 

 
                
 

 

    (A.21) 

From the operational constraint of Eq. (A.20),          is equal to 0. Therefore, the 

equation for the variance in the excursion of energy charge state is given by: 

 
       

 

 
      

 
 

 

    (A.22) 

To evaluate Eq. (A.22) a relationship for the instantaneous power flows of the ESD is 

required. The available power generated for various wind speeds is calculated from a 
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wind turbine power curve,     , which relates wind speeds to convertible power values 

(refer to Section 2.4 for details). For the filter       the expected value of power sent to 

the ESD for a storage period is approximated by the wind power of the mean wind speed 

for the storage period. This is also equal to the power available to be sent to the local grid 

for the storage period, i.e the level of firm power.    

                  (A.23) 

Therefore the power flows to and from the ESD are given by: 

                                   (A.24) 

If the wind speed is greater than the mean wind speed of the store period there will be 

a power flow into the ESD. If the wind speed is less than the mean wind speed of the 

storage period, power flows out of the ESD and into the power system. 

The ESD power flows defined in Eq. (A.24) are approximated by a first order Taylor 

series expansion of the wind turbine power curve,      , about the mean wind speed of 

the storage period. 

 
                

         

  
           (A.25) 

Solving Eq. (A.25) for      gives: 

 
      

      

  
                        (A.26) 

In Eq. (A.26) the term   represents a conversion factor given by the gradient of the wind 

turbine power curve evaluated at the instantaneous wind speed (see Appendix C.1 for 

details on how   is calculated).  

Using a single harmonic of the wind speed time series the equation for       reduces 

to an expression including wind speed components       and    and the power curve 

gradient,  .  
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   (A.27) 

Substituting  Eqs. (A.3) and (A.7) for the definition of instantaneous wind speeds and 

mean wind speed for the store period, Eq. (A.27) gives an expression for the contribution 

of a single harmonic to the variance in the change of SOC. 

The inner integral in Eq. (A.27) represents the change in SOC up to an arbitrary point 

in time and the solution is given by: 

 
                  

       
  
   

                     
 

 

     (A.28) 

       
   

   
                                              . (A.29) 

Finally, the expected value operator is used to calculate the average contribution of 

the harmonic to the variance in the change in SOC of the ESD for a store period of length 

 : 

 
           

 

  
 

 

 
        

 
 

 

       
  

 

 (A.30) 

Substituting Eq. (A.29) into the above expression and integrating over time and phase 

gives the final filter function for the variance in accumulated energy for a store period of 

length . 

 
         

   

  
 
 

 
 

 
 
 

 
       

 

     
 
            (A.31) 

C.1 Power conversion factor calculation 

In the derivation of the filter for         an explicit definition for the power 

conversion factor,  , was not provided. In this section the method used to calculate the 
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power conversion factor used in the filter to size the required storage capacity is 

provided.  

The power conversion factor,  , is calculated from the ratio of the standard deviation 

in wind power and the variance in wind speeds. Taking the variance of Eq. (A.25) gives:  

 
                      

      

  
             (A.32) 

 
     

      

  
                (A.33) 

 
  

      

  
 

 

                  (A.34) 

 
  

      

  
 

 

                         (A.35) 

Equation (A.35) can be rearranged and solved for the power conversion factor: 

 

  
      

  
    

          

         
 
      

     
 (A.36) 

The value for the sampled mean wind speed used to evaluate Eq. (A.36) is the mean 

wind speed that gives balanced power flows into and out of the ESD. The balanced mean 

wind speed is used because the store experiences maximum utilization and therefore 

ensures the maximum capacity requirement for the ESD. 

The variance of wind power can be calculated from the computational formula of 

variance, which in general form for a random variable X is: 

                      (A.37) 

Therefore, the variance in wind power is given by: 

                   
             

   (A.38) 
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In Eq. (A.38) the expected value terms are given by: 

  
       

         
          

 

 

  (A.39) 

 
          

                  
 

 

 

 

  (A.40) 

The standard deviation for the distribution of wind speeds within the store period is 

computed from the assumption that the coefficient of variation is constant and Eq. (2.19).  

              
     

 
 
  

 (A.41) 

The value of       is obtained from the sampled mean wind speed which minimizes 

the absolute difference of            and            .    

With the methods provided in this section the value of   can be calculated for the 

specified storage period, installed wind capacity, and firm power commitment. 

D Spectral representation of wind speed 

In the probabilistic method proposed by Barton in [18] spectral analysis is employed 

to study the statistical characteristics of the wind regime over the storage period. In this 

section the methods used to estimate the spectral representation of wind speeds are 

presented.  

The variance spectrum, also commonly referred to as a power spectrum or 

periodogram, represents the contribution of each frequency component to the total 

variance of the series [34]. The energy theorem states that for a discrete data set   , the 

total energy of the signal can be expressed in terms of the Fourier coefficients [33]. 

 

           
   

   

   

      
   

   

   

 (A.42) 
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In Eq. (A.42)    is given by the sampling time and    
 

   
. Dividing the energy of 

the signal by the total time,    , gives the power.  

 

      
 

   
     

   

   

   

             
 

   

   

 (A.43) 

By definition Eq. (A.43) represents the variance, denoted by the symbol   ,  of a zero 

mean process: 

 

              
 

 
   

 

   

   

             
 

   

   

 (A.44) 

However, the variance of a process with a non-zero mean can be easily obtained by 

disregarding the Fourier amplitude associated with the mean of the series,     
  [34]. 

Therefore, the total variance in the series can be calculated by summing the individual 

contribution from the squared amplitudes of the Fourier coefficients. 

 

     
 

 
         

 

   

   

         
 

   

   

 (A.45) 

The spectral representation of wind speeds is estimated by a using a direct Fourier 

transform method, calculated from the squared modulus of the discrete Fourier transform 

(DFT) of the original time series data. The wind spectrum is normalized according to Eq. 

(A.45), so that the sum of all frequency contributions is equal to the total variance of the 

series. 

For an arbitrary time series,   , of length N the DFT is defined as: 

 

        
       

   

   

   (A.46) 

 
            

 

   
                   (A.47) 
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The DFT is calculated using a fast Fourier transform (FFT) algorithm. The FFT is 

converted into a one-sided power spectrum by limiting the frequency range to the 

Nyquist frequency and multiplying the normalized squared modulus of the transform by a 

factor of two. For the following calculations the notation use for the variance of a single 

frequency component is given by      . 

 

 
       

    
 

  
   (A.48) 

 
       

     
 

  
             

 

 
   (A.49) 

 

         
      

 

  
 (A.50) 

When displaying spectral data of lengthy time series it is often convenient to use a 

logarithmic scale of frequency, allowing for better visualization of the data. A plot of the 

raw spectral estimates are shown in Figure A.1 on a linear and base 10 logarithmic scale 

of frequencies in units of cycles per hour (cph) for wind speed data from Sandspit, BC. 

The plotting axes have been magnified to better show the spectrum. 
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Figure A.1 – Raw variance spectrum on linear and logarithmic scale. 

The direct Fourier transform method produces spectral estimates that represent 

frequencies within the interval of                   . The extremely high 

resolution of this method introduces considerable noise in the raw spectral estimates as 

can be seen in Figure A.1. Therefore, a method is required to smooth the spectral 

estimates. A simple method to reduce the variance in the spectral estimates involves 

summing individual components of the spectrum into discrete bins [35]. Following the 

method used by Barton in [17], each bin is equally spaced on a logarithmic scale and 

centered on a single frequency denoted by    , where        , and   is the total number 

of bins. The bin width,  , is defined to be a constant on the logarithmic scale and is given 

by: 

 
                                

     

   
  (A.51) 

The value used for   is dependent on the data being processed and the spectral 

resolution required in the analysis. It should be noted that the frequency interval 

corresponding to the logarithmic bin width is given by             . Therefore, lower 

frequency bins will have greater resolution, i.e. be narrower, than bins used to sum the 
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higher frequency components. The frequency bandwidth for a bin centered on     is given 

by: 

                     
      (A.52) 

The smoothed variance spectral estimates,           are represented at the mid-

frequency of the bin and are calculated by the sum of the variance components of Eqs. 

(A.48) to (A.50).  

 

              

         

         

 (A.53) 

An example is provided for hourly wind speed data for Sandspit, BC (see Section 

3.4.1 for details concerning the data set). The raw wind spectrum,      , is calculated 

according to Eqs. (A.48) to (A.50) and can be seen graphically in Figure A.1. A 

logarithmic bin width of 0.0525 is used, corresponding to a frequency increment of 

               . The new frequencies span the range of the original   ,       
 

 , used in 

the raw spectral estimates, however there are only 96 frequencies which represent the 

original spectrum which consists of close to 10
5
 data points.  

A variance spectrum for wind speeds in Sandspit, BC is shown in Figure A.2. The 

markers on the figure correspond to the smoothed variance values        . The figure 

shows the relative contribution of each frequency component,    , to the overall variance 

of the time series. The frequency for the annual contribution, a total period of 8,760 

hours, is equal to           (cycles/hour) on a log scale. The variance contribution of the 

annual frequency component is significant for wind speeds in Sandspit, BC, as can be 

seen in the spectral plot. Seasonal contributions are shown in the frequency range of  

       to        (cycles/hour) for the plotted wind spectrum. Variations in wind patterns 

due to cyclonic storms passing every 3 to 4 days can also be seen in the variance density 

function for the region with frequency ranges from      to         (cycles/hour). This is 

typical for coastal sites that experience more frontal weather systems. Finally, the last 
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significant peak in the wind spectrum is due to a diurnal frequency of one cycle every 24 

hours, or         (cycles/hour).    

The total variance of the wind speed time series can be obtained by summing each 

variance contribution.  

 
           

 

   

 (A.54) 

The total variance of the original time series is calculated to be 13.9628 (m
2
/s

2
) using 

the variance algorithm provided in MATLAB. The variance calculated by Eq. (A.54) is 

equal to 13.9627 (m
2
/s

2
), which is within acceptable numerical accuracy.  

 

Figure A.2 – A smoothed variance spectrum of wind speeds for Sandspit, BC. 

E Variance calculation from filtered wind spectrum 

The three filter functions derived in Appendix A through C are applied to the wind 

speed spectrum to calculate the total variance in mean wind speed for a storage period, 

    , the total variance in wind speeds within the storage period,       , and the total 

variance in the excursions of the state of charge,      , for a storage period.  
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An example of the filters for a storage period of 24 hours is plotted on a logarithmic 

scale in Figure A.3. It is evident from the figure that the filter derived for the variance in 

mean wind speed for store period  acts as a low pass filter and the filter designed for the 

variance of wind speeds within the store period acts as a high pass filter. Variance 

contributions from frequency components less than the store period frequency are 

attributable to the variance in mean wind speeds, whereas contributions from frequencies 

higher than the storage period are due to the variance within the store period.  

 

Figure A.3 – Filter functions for a 24 hour store period. 

Equations (A.16), (A.11), and (A.31) are weighting functions that are applied to the 

squared amplitude,   
 
, of the harmonic component corresponding to a frequency    . The 

squared amplitudes are given by the wind speed spectral estimates calculated in the 

previous section, denoted by         and given by Eq. (A.53). Multiplying the wind speed 

spectrum by the weighting functions gives three different variance spectra; the mean 

wind speed spectrum,       
 
  , the spectrum of fluctuations about the mean wind speed, 

           , and the spectrum of deviations in SOC,        
 
  .  
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Each spectrum is shown in Figure A.4 as a function frequency on a logarithmic scale 

for a 24 hour storage period calculated with wind speed data from Sandspit, BC. The 

variance spectrum of     is calculated for a power system comprised of 1000 kW 

installed wind capacity, a firm power commitment of 400 kW, and an ESD with an 

overall efficiency of 70% and maximum charging and discharging power limits of 

300kW. 

 

Figure A.4 – Filtered variance spectrum for a 24 hr storage period for Sandspit, BC. 

The total variance associated with   ,     , and     is calculated by summing the 

individual variance contributions from each frequency component of the filtered spectra.  
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The variance calculations of Eqs. (A.55), (A.56), and (A.57) are used in the 

probabilistic representation of wind speed and the calculation of the required storage 

capacity. 

F ESD utilization metrics 

The calculations of the ESD utilization metrics are referenced from methods 

presented in [18]. In the following section a summary of the calculations of the ESD 

utilization performance metrics is provided. 

The ESD is assumed to be operating in one of four operational states: charging, 

discharging, full, or empty. The fraction of time that the ESD will be operating in each 

state is calculated from the PDF of net system power and an assumed time-domain 

representation of the power flow to and from the store. When the expected value of net 

system power is positive, more power is generated than required by the load, the ESD is 

assumed to operate in only three of the four possible states: full, charging, and 

discharging. If the expected value of net system power is negative, load exceeds the 

available wind generation, the ESD is assumed to operate in an empty, discharging, or 

charging mode only.  

F.1 Surplus net system power 

For a net system power PDF with expected surplus generation the ESD is assumed to 

operate in full, charging, and discharging modes only. For negative values of net system 

power the ESD is assumed to be in a discharging state only. Therefore, the fraction of 

time the store spends in a discharging state,     , can be calculated from the probability 

distribution of net system power. An example of a net system power PDF with surplus 

generation is shown in Figure A.5. The example shown is a simplified net power PDF 

and is included to illustrate the basic concepts of the utilization metrics. The shaded 

region of the PDF represents the probability that there is a net deficit power, which 

corresponds to the fraction of time the ESD is in a discharging state: 
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  (A.58) 

where    is the wind speed where the wind power is equal to the firm power commitment 

    
      .  

 

Figure A.5 – PDF of net system power with an expected surplus generation. 

The positive portion of the net power PDF represents the probability the ESD is in a 

charging or full operational state. To calculate the fraction of time the store spends 

charging,    , and the fraction of time the store spend full,      , requires a method to 

distinguish the two operating states. In [18] a time domain model is used to evaluate the 

fraction of time the store spends charging. A triangular wave function is assumed to 

represent power flows to and from the ESD and is shown in Figure A.6 for surplus net 

system power.  

The ESD operates in a steady state over the storage period; therefore the energy 

released due to discharging the ESD is equal to the energy gained during charging, 

including efficiency loss.   

The discharging and charging energy can be computed from the area of the shaded 

triangles in Figure A.6.  
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Figure A.6 – Time domain model of ESD power flows to calculate utilization metrics for surplus net 

system power. 

The efficiency of the ESD is defined as: 

 
  

    
   

 
    
   

    (A.59) 

 Solving for the area of the triangles, including the efficiency loss, an expression of the 

time the ESD spends charging is given by:  

 

         
 

  
 (A.60) 

Dividing Eq. (A.60) by the total storage period   gives an expression for the fraction of 

time the ESD spends in a charging state. 

 

         
 

  
 (A.61) 

The fraction of time the store spends full is given by: 
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                  (A.62) 

          (A.63) 

F.2 Deficit net system power 

For a net system power PDF where the load exceeds generation, the ESD is assumed 

to operate in empty, discharging, and charging modes only. For positive values of net 

system power the ESD is assumed to be in a charging state only. Therefore, the fraction 

of time the store spends in a charging state,    , can be calculated from the probability 

distribution of net system power. An example of a net system power PDF with an 

expected net deficit system power is shown in Figure A.7.  

 

Figure A.7 – PDF of net system power with an expected deficit generation. 

The shaded region of the PDF represents the probability that there is a net surplus 

power, which corresponds to the fraction of time the ESD is in a charging state: 

 
                         

  

  

  (A.64) 
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where    is the wind speed where the wind power is equal to the firm power commitment 

    
      .  

The fraction of time the ESD spends discharging and empty is calculated from the 

time domain representation of power flows. A graphical example is shown in Figure A.8. 

 

Figure A.8  – Time domain model of ESD power flows to calculate utilization metrics for deficit net 

system power. 

The fraction of time the ESD spends discharging and empty are calculated from Eq. 

(A.59). Solving for the area of the shaded triangles in Figure A.8 gives an expression for 

the time that the ESD spend discharging. 

 
         

 

 
 (A.65) 

Dividing Eq. (A.65) by the total storage period gives the fraction of the time the ESD 

spends discharging. 

 
         

 

 
 (A.66) 

The fraction of time the ESD spends in an empty operational state is given by: 
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                   (A.67) 

         (A.68) 

G Estimating Weibull shape factor by method of moments 

The mean and variance of a random variable   described by a Weibull probability 

distribution are given by: 

 
           

 

 
    (A.69) 

 
              

 

 
       

 

 
     (A.70) 

where   and   are defined as the scale and shape parameters of the distribution and   is 

the gamma function [22].  

The coefficient of variation, defined as the ratio of the standard deviation to the mean, 

can be used to estimate the Weibull parameters   and  .  

 

   
 

  
 
       

  
  

    
 
 
 

     
 
 
 
   (A.71) 

Therefore, given the value of    and  , Eq. (A.71) can be solved for the Weibull shape 

parameter  . Figure A.9 shows a functional form of Eq. (A.71) recommended in [22] for 

various shape parameter values. The inverse function is used in the probabilistic 

methodology to calculate the Weibull shape parameter  . 

              (A.72) 

 
            

 

  
 
      

   (A.73) 
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Figure A.9 – Weibull shape parameter estimation from CV value. 

 

H Time sequential simulation ESD control algorithm 

This section provides details on the control algorithms used in the time domain 

model. There are four different scenarios dependent on the value of the surplus or deficit 

power at time t and if it is above or below the maximum rated charging or discharging 

constraints. In the rest of this section        is assumed to be positive,      is defined as 

the required power from the backup generator,      represents the maximum backup 

rating, and the following notation is used for the net surplus and deficit power: 
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For the scenario where the surplus power exceeds the maximum charging rate the 

operation control algorithm is given by expression (A.76). If the surplus power is less 
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than the maximum charging rate the control algorithm is given by expression (A.76) but 

the charging power is defined as                   . 

                  
                                

               
              

                               

                           
                             

 
                                                    
                                                           

                                                                
        

                            
                     

 
                                               
                                                  

                     

 (A.76) 

If the deficit power is greater than or equal to the maximum discharging rate of the 

ESD the operation control algorithm is given by expression (A.77). If the deficit power is 

less than the maximum discharging rate the control algorithm is given by expression 

(A.77) with the discharge power being defined as             
         . 
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