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Abstract 
 

In this work a model for the wetting and swelling of pores with water within a Nafion 

membrane is developed. This model is based on minimizing all contributions to the 

total free energy of the proposed system. We find that equilibrium state depends on 

entropic mixing forces and energetic surface forces. The wetting of the pore relies on 

the entropic forces exceeding the energetic forces. Specifically this indicates a critical 

pore size in which liquid is the favorable state. If the pore fills with liquid it will swell 

until balanced by the energy of the deforming membrane. Several factors including 

pressure relative to saturation and the phase which bounds the membrane are shown 

to dramatically affect the final equilibrium state of the system. 
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Chapter 1

Introduction

With an ever increasing awareness of the hazards of global warming, alternative fuels and their

applications have been receiving more public awareness. Fuel cells have the potential to dramat-

ically impact carbon emissions by replacing many existing fossil fuel dependant technologies;

however, we have yet to see a large scale adoption of fuel cell technology. Invariably the rea-

sons are multifaceted; nevertheless, some of it still comes down to science. Fuel cells are very

complex and the focus of intense academic research but fundamental insights are yet to be had

if fuel cells and hydrogen are to be the way of the future.

A fuel cell offers a means to harness the difference in energy when hydrogen and oxygen are

combined to form water. In a polymer electrolyte membrane (PEM) fuel cell, a polymer mem-

brane, usually Nafion, separates the two reactants. The hydrogen gas is oxidized on the surface

of the electrolyte into protons and electrons. The oxidation reaction is catalyzed by the pres-

ence of platinum particles. The membrane acts as an electronic insulator, but allows protons

to pass. The electrons are given a path through which they perform work such as powering an

electric motor. The reaction is completed as the electrons are diverted to the anode side of the

membrane where they react with the protons and oxygen to form water (see Figure 1.1) [1].

The level of protonic mobility in the membrane is a function of the level of water content. As

water content increases there is a greater interconnection of the liquid phase in the membrane.

Bulk water offers extremely high protonic conductivity and as water content increases, polymer

electrolyte membranes attain more bulk-like transport characteristics [2]. It is therefore critical
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Figure 1.1: Hydrogen-Oxygen Fuel Cell Diagram [1].

to examine the nature of water uptake in a PEM.

In this work we study the sorption of water, in a Nafion membrane in particular, as it is the

most commonly researched ionomer in the literature due to its excellent thermal, chemical and

mechanical stability and wide commercial availability [3]. In this section physical characteristics

of Nafion which affect the sorption of water and transport of protons are detailed.

1.1 Nafion Chemical Structure

Nafion is a perfluorosulfonate ionomer (PFSI); it is comprised of a polytetrafluoroethylene

(PTFE) backbone (or matrix), and side chains ending in sulfonic acid groups, see Fig. 1.2 [4].

The PTFE backbone of Nafion is hydrophobic, while the acid groups attract water which leads

to a high degree of phase separation in hydrated membranes. The counterion of the sulfonate

group is predominantly H+; however, depending on pretreatment it may also be Na+ and K+

[5]. A common form is Nafion 117 which has an equivalent weight (EW) of 1100 grams of dry

Nafion per mole of sulfonic acid groups and has a nominal thickness of 0.007 inches [6]. Nafion
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Figure 1.2: Nafion chemical structure [4].

115 and Nafion 112 are also widely available forms.

Spectroscopy studies performed by Zecchina et al. have shown that exposing the -SO3H acid

groups in the Nafion membrane to water leads to a decrease in the number of such groups with

a corresponding increase in the number of -SO−3 groups [7]. This is caused by the formation of

H+(H2O)n groups as the proton dissociates from the acid group and bonds to one or more water

molecules which are in turn strongly electrically attracted to the -SO−3 group. The protons do

not return to the -SO−3 groups even after desorption past initial levels. This indicates that there

is a high level of thermodynamic stability associated with the dissociation of the acid groups

in water [7].

In a hydrated Nafion membrane, liquid is a mixture of water and H+(H2O)n ions. The entropy

of mixing alters the chemical potential from the of the bulk saturated liquid or vapor at the

boundaries of the membrane. This difference in chemical potential in turn draws more water

into the membrane. As the membrane takes up water it swells to accommodate the solvent. The

membrane backbone, however, is hydrophobic. The swelling of a polymer network in a solvent

is typically viewed as a competition between the osmotic and elastic pressures which balance

in equilibrium [8]. This equilibrium depends on whether there is saturated vapor or saturated

liquid at the boundary of the membrane because a liquid-vapor interface is an additional force

opposing water uptake. This difference is known as Schroeder’s paradox [9].
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Figure 1.3: Evaporation in Nanopores [12].

1.2 Water in Hydrophobic Confinement

When water is confined by hydrophobic surfaces as it is in Nafion, one observes a critical sep-

aration distance at which the vapor becomes thermodynamically favorable. When confined

by hydrophobic surfaces at a separation below the critical value, liquid becomes unstable and

evaporates. It is suggested that a vapor film forms on the hydrophobic surfaces because the

surface-particle attraction is so small that the attraction from the bulk effectively pulls the

particle away from the surface [10]. There have been extensive experiments carried out by

Christenson et al. documenting the cavitation of liquid water confined by hydrophobic surfaces

[11]. They find that as two hydrophobic surfaces immersed in liquid water are brought to-

gether evaporation occurs. Christenson et al. conclude that since the interfacial free energy of

a hydrophobic surface is lower against vapor than against water, it is energetically favorable

for liquid water to evaporate, and thus the free energy of the system is minimized [11]. Sim-

ilar results were found by Beckstein and Sansom when conducting molecular dynamics (MD)

simulations of water in hydrophobic nanopores [12]. Figure 1.3 shows liquid in a 1 nm pore;

however, in the 0.55 nm pore a decrease in the density of the fluid is observed, which approaches

that of vapor. Oscillations between the two states occur by capillary evaporation and conden-

sation, which are driven by small pressure variations in the bulk. Granick et al. carried out

experiments confining liquid water between a hydrophilic surface and a hydrophobic surface

[13]. They found a very dynamic response in both the spatial and shear dimensions of the
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fluid. They concluded that such a response indicates that a vapor film forms on the surface

of the hydrophobic material. This physical phenomenon is important when one considers the

morphology of Nafion, in particular the hydrophobicity of the fluorocarbon backbone and the

hydrophilicity of the sulfonate acid groups.

1.3 Nafion Proton Conductivity

The protonic conductivity of Nafion is of primary interest in fuel cell applications. Protons

have a much higher level of conductivity in water than other ions; therefore, it is informative to

observe the behavior of water in the presence of a protonic ‘defect’. The dominant intermolecular

interaction in water is hydrogen bonding [14]. The binding power of a water molecule depends

on the number of hydrogen bonds it is involved in. For water at low temperature there is a well

connected hydrogen bond network in water and as a result the activation energy to break a

single bond is less than a third that of the average hydrogen bond energy; this leads to the rapid

breaking and forming of hydrogen bonds. With the introduction of a proton a hydronium ion,

H3O+, forms. The hydronium ion becomes hydrated by three neighbouring water molecules to

form what is known as an Eigen ion, H9O+4 . The proton may also find itself as part of a dimer

in the form of a Zundel ion, H5O+2 . Both configurations appear with equal probability and

oscillate between each other on the order of 10−13 s, forming various intermediate structures in

the process (see Figure 1.4) [14].

As the proton fluctuates between Zundel and Eigen configurations, it can facilitate spatial diffu-

sion of the proton. This structural diffusion mechanism is known as the Grotthuss mechanism.

One can visualize this diffusion in Figure 1.4, if the same proton is translated horizontally

through the fluctuation of ionic species. In bulk water proton diffusion occurs primarily by the

Grotthuss mechanism [14], but also occurs by traditional mass diffusion [15]; both mechanisms

combined give water a high protonic conductivity. In the bulk, there are no set fixed and free
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Figure 1.4: Zundel and Eigen Ions [14].

protons, they are all interchangeable, allowing for fast proton transport [16].

Bulk water can be seen as the upper limit of protonic conductivity, and when aqueous systems

interact with some environment it serves to decrease that level of conductivity [17]. Therefore,

a critical factor in determining the protonic conductivity of a PEM fuel cell is the distribution

of the aqueous phase within the ionomer. Figure 1.5 shows a plot of conductivity against water

content [18]. One can immediately notice that there is a very steep gradient in the curve as

the membrane takes on water. At high water contents, the protonic conductivity in Nafion is

very high. It is therefore thought that a well-connected hydrophilic domain of bulk-like water

exists within the membrane which carries the majority of the water and proton transport [14].

Water that is close to the sulfonate groups is polarized towards the anion and has much smaller

protonic mobility due to the strong electrostatic attraction to the SO−3 group [14]. It is apparent

that determining the morphology of a Nafion membrane, in particular the distribution of water

upon hydration, is key to understanding the mobility of protons and hence determining an

accurate model for proton and water transport
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Figure 1.5: Conductivity vs Water Content [18].

1.4 Nafion Morphology

Despite intense focus from the academic community and a wealth of experimental data in the

literature a ‘universally accepted morphological model for the solid-state structure of Nafion

has yet to be defined’ [6]. The difficulty in establishing a morphological model stems from the

random chemical structure of Nafion and the fact that the membrane has structural details

which span a wide variety of length scales. Here we highlight some important experimental

analyses and morphological models in order to frame the importance of the thermodynamic

analysis presented in later sections. For further reading we suggest the review by Heitner-

Wirguin [19], and the recent review by Mauritz and Moore [6].

In some of the earliest studies, Gierke et al. examined Nafion with small angle X-ray spec-

troscopy (SAXS) and wide-angle X-ray diffraction (WAXD) [20], [21],[3]. They found a scat-

tering maximum at small angles which increased in intesity with the specific weight of the
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Figure 1.6: Cluster-network model [6].

membrane which they took this as evidence of some crystalline organization within the fluo-

rocarbon matrix. They also observed a scattering peak at angles yielding a Bragg spacing1 of

3-5 nm, this ‘ionomer peak’ was found to shift to lower angles and increase in intensity upon fur-

ther hydration; therefore, Gierke et. al. concluded that it was due to regions high in sulfonate

sites that would agglomerate with water (ionic clusters). They postulated these ionic clusters

to be spherical inverse micellar in structure. In order to explain the high ionic conductivity

found in Nafion, Gierke et al. proposed these clusters were connected by channels yielding a

cluster network (see Figure 1.6).

Gierke et al. then estimated the size of the clusters by the amount of water sorbed by the mem-

brane, under the assumption that the clusters were distributed in a cubic lattice configuration.

They calculated the diameters to range between 30-50Å.

Hsu and Gierke presented a model for the hydration and swelling of an ionic cluster [21],

[3]. They proposed that the swelling of the membrane can be modeled as the stretching of a

continuous medium with a tensile modulus as a function of water content. Their thermodynamic

1Bragg spacing (or d spacing) refers to the spacing between scattering ‘planes’; in a crystalline object it refers
to the distance between planes in the atomic lattice. Constructive interference forms a scattering peak which
indicates the d spacing by Bragg’s law.
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treatment includes contributions to the free energy of the system from the elastic energy of the

backbone, interactions between the sulfonate groups and the backbone, the sulfonate groups

with each other, and the interactions of three distinct layers of water: water hydrating the

sulfonate groups, bulk water, and a layer in between. These interactions are linear in mole

number and quantified by interaction parameters.

Weber and Newman refer to the pathways between clusters in Hsu and Gierke’s model as

‘collapsed channels’ [22]. They coin this term because they believe the channel can be expanded

and filled by liquid water. In Weber and Newman’s model, the channels are regions of the

membrane having a low enough concentration of sulfonate heads as to remain hydrophobic.

These collapsed channels are assumed to be continuously forming and deforming in ambient

conditions due to the movement of free sulfonic acid sites and polymer in the matrix between

clusters.

Ioselevich et al. in a recent work suggest a detailed structural model for Nafion-type membrane

[23]. In their analysis they assume the micelle-channel model of Gierke and give arguments as

to how that structure might be formed by the polymer chains. They argue that Nafion polymer

chains attract each other to form bundles, and these bundles form cage-like structures within

the membranes. These cages are ion rich and as the membrane sorbs water from a dry state,

the cages accommodate the water, forming micellae. At higher water contents these cages are

connected by water channels, however. Since there are no jumps in the conductivity curve of

Nafion with increasing water content, the formation of channels must not all occur simultane-

ously; this implies a heterogeneity in the structures. They argue that these channels control

the proton conductance; however, there is very little information available on the formation of

these necks. Despite this, Ioselevich et al. insist the channels are required to explain the high

protonic conductivity of Nafion as in the Gierke model. They outline a methodology in which

the formation of channels may be investigated using the minimization of free energy which is a
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similar strategy to the analysis employed in this work.

Due to its simplicity, the cluster-network model has served as the foundation of the vast ma-

jority of interpretations of experimental data, and for models of the transport phenomena;

nevertheless, alternative morphologies have been presented which are also consistent with small

angle scattering (SAS) results. An example of the limited nature of SAS results is given by the

disagreement on whether the Bragg peak is indicative of interparticle scattering or intraparticle

scattering. Due to the complex nature of Nafion, SAS and WAXD studies reveal little mor-

phological detail; therefore, a number of alternative descriptions of Nafion morphology differ

significantly in their proposed spatial distribution of ionic domains [6].

A core-shell model was proposed by Fujimura, similar to the Gierke model, where an ion rich

core is surrounded by an ion poor shell which are dispersed in a matrix of fluorocarbon chains

[24], [25].

Another early model, by Yeager and Steck, proposed the existence of three distinct regions

within the membrane: (A) a hydrophobic matrix, (B) an interfacial zone and, (C) ionic clusters

[26]. They propose that the ionic clusters are regions within the membrane with a higher

concentration of sulfonate acid sites at which the water will tend to agglomerate.

Litt found that SAXS data showed d spacings proportional to the volume of absorbed water

in Nafion. From this result he drew the conclusion that ionic domains are hydrophilic layers

separated by thin lamellar PTFE crystallites [27]. Upon sorption water separates the PTFE

layers yielding a volume growth that is proportional to d spacing. This model leads to parallel

shifts of the ionic domain and the crystalline domain. Mauritz notes that in SAS data, the small

peak thought to represent the crystalline domain has a dissimilar shift upon sorption than the

ionic peak and therefore concludes that this model is likely an oversimplification [6].

Haubold et al. proposed a similar structure to that of Litt, where the side chains and sulfonate



Chapter 1 11

Figure 1.7: Sandwich Structure [28].

groups form shell layers which bound a core layer that can be either dry or filled with solvent,

forming a ‘sandwich’ structure (see Figure 1.7) [28]. These liquid regions interconnect to provide

continuous pathways for proton conduction. The core layer and the two shells are estimated to

have a total cross section of approximately 6 nm.

A local order model was introduced by Dreyfus et al. which is based on the existence of a short

range order, long range gas-like disorder and a fixed number of neighbouring ionic aggregates

[29]. In this model the scattering maximum is due to the presence of four first neighbours

leading to a diamond lattice structure. Gebel and Lambard found that the local order model

produces a better fit to SAS data than does the Fujimura depleted zone shell-core model [30];

however, the local order model has numerous fitted parameters.
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Figure 1.8: Microstructure of Nafion according to Kreuer [31].

In solutions of Nafion (dissolution is achieved at high temperatures) the mixture appears as

a colloidal dispersion of rod-like particles. In a model of the structural evolution of Nafion

from dry membrane to solution Gebel proposed a dry membrane has isolated spherical ionic

clusters [4]. Upon absorption of water these clusters swell, at a volume fraction of water of 0.3

percolation occurs between the clusters, leading to a cluster-network. At a volume fraction of

0.5, a structural inversion is postulated to occur where the polymer is seen as the interconnected

network in water and this network goes on to become dispersed in the solvent at higher volume

fractions. Mauritz notes that no thermodynamic justification is given for the inversion and that

scattering profiles near the inversion point do not show significant change [6].

Kreuer provided an interpretation of SAXS data which is based on the idea of a random arrange-

ment of low dimensional polymeric objects with spaces which can be filled by water (See Fig-

ure 1.8) [31]. Kreuer referred to the hydrated region of a Nafion membrane as “well-connected,

even at low degrees of hydration i.e., there are almost no dead-end pockets and very good

percolation”[32]. Kreuer finds that the water distribution forms continuous pathways through-

out the membrane. The permeation of the liquid phase explains the high conductivity of Nafion
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Figure 1.9: Cluster Network Model according to Karimi and Li [33].

and other transport features such as the high electroosmotic drag. Kreuer states that SAXS

data alone cannot resolve whether a morphological model such as the cluster-network model

is more appropriate. One can see how the cluster-network model can be obtained by simplify-

ing the Kreurer representation, where narrow regions are channels and wide pores are seen as

clusters as shown in Figure 1.9 [33].

A number of other methods have been used to investigate the morphology of Nafion membranes

in an attempt to contrast the information obtained by SAS techniques. Using a thermodynamic

method of standard porosimetry (SPM), Divisek et al. investigated the capillary porous and

sorption properties of Nafion membranes [34]. They found that the membranes contain a

connected system of pores of a wide range of sizes. They detected pore sizes from 1-100 nm,

however the average pore size was found to be 2 nm and the dominant contribution of volume

is from the very smallest pores.
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Figure 1.10: AFM Imaging of Nafion [36].

Blake et al. conducted molecular dynamics (MD) simulations to investigate the structure of

hydrated Na+ Nafion [35]. They find that at very low water contents (5 wt %) water forms

small droplets of size 5-8Å. Upon hydration the Na+ is dissociated and a percolating hydrophilic

network forms. The water forms irregular curvilinear channels of cross section 10-20Å which

branch in all directions. Due to the small cross section, the ion concentration in the channels

was found to be quite high. Blake et al. also note that the side chains tend to line up along the

channel walls with the SO−3 sticking out into the hydrophilic domain, in an effort to minimize

the surface free energy.

McLean et al. investigated K+ form Nafion membranes using Atomic Force Microscopy (AFM).

AFM involves developing an image which contrasts surface or near surface elasticity [36]. In

tapping mode the AFM probe undergoes low energy oscillations incident to the membrane

surface. The soft regions are deemed regions which contain ionic groups at or near the surface

whereas fluorocarbon backbone is purported to be the harder regions. The results of the AFM

imaging in tapping mode are shown in Figure 1.10. The images show 300 nm × 300 nm sections
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of Nafion 117. The ionic species are shown in light regions whereas the darker regions represent

stiffer backbone. Figure 1.10A is from the membrane exposed to ambient conditions. We find

ionic ‘clumps’ with sizes which range from 4-10 nm. However in Figure 1.10B, which shows the

membrane in contact with saturated liquid, we see that the clump sizes have grown to 7-15 nm

and the ionic regions appear to form continuous channels which would provide pathways for

proton conduction. It is interesting to note that we see no long range pattern of clusters in

the AFM imaging and in fact the well hydrated image is very similar to the representation put

forward by Kreuer discussed earlier. It is important to note that, while this imaging was done

on the neutral K+ form Nafion, Gebel and Lambard show that neutral forms of Nafion seem to

have extremely similar SAS profiles upon sorption [30].

As we noted earlier, information on the morphology of Nafion yields insight important for

formulating consistent transport models for protons and water through the membrane. Eikerling

et al. presented a theory for transport based on the cluster-network model [5]. In their model,

clusters and channels are connected at random. Furthermore they postulated that there are two

different types of clusters and channels (which we call pores): those which fill with bulk water

and swell upon sorption and those that contain only surface water (i.e., water strongly bound

to sulfonate sites in upon dissociation), which do not swell with bulk water and retain their

original shape. The pores containing bulk water have a much higher conductivity than those

without. In Figure 1.11A we see an illustration of the network of filled and unfilled pores, and

in Figure 1.11B we see a representation of the surface of a filled pore. Although their model

does not include an analysis on which pore fills, Eikerling et al. note that the equilibrium size

of the water filled pore is a balance between elastic and osmotic forces and go on to stipulate

that determining the factors governing swelling of pores is an important step in the optimizing

of membrane design.

In an analysis [37] on Schroeder’s paradox [9] and subsequent work on membrane sorption and



Chapter 1 16

Figure 1.11: Eikerling 2-pore model [5].

transport [38] [15], Choi et al. model the membrane as a series of pores of equal radius. In

Figure 1.12 we see the pore structure for the transport model. In their model, when the water

content is low, the hydrophilic phase is small, with a low enough water content not all acid sites

are dissociated [15]. With less water molecules, there is a decreased level of interaction of water

through hydrogen bonding, and this therefore leads to a higher energy requirement to break

bonds and a lowered dielectric constant [15]. There is therefore at low levels of water content a

low rate of proton transfer, which is primarily limited to the surface region through a proton.

To describe sorption of the Nafion membrane Choi et al. incorporate a model for water uptake

proposed by Futerko and Hsing using Flory-Huggins theory which fits sorption isotherms to the

Flory-Huggins equation by means of the Flory interaction parameter [39].

In another model using the cylindrical pore approach Paddison et al. [40] focus on water filled

cylindrical pores of variable L and r, and they state that it is critical to determine the water-

containing phase as it is the region through which conduction occurs.
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Figure 1.12: Bulk and Surface Water in a Pore [15].

1.5 Objectives of this Work

Since the transport through bulk water presents an upper limit for protonic conductivity, it

is important to determine the permeation of the liquid phase and its connectivity in order to

quantify the various modes of proton transport. The morphological models presented in the

previous section are wide ranging. We tend to favour the interpretation of Kreuer [31], which

is reflected in the AFM imaging conducted by McLean et al.[36]; however, it is easy to see that

the morphological models which present more order, such as the cluster network model or the

‘sandwich’ structured model are merely distillations of such an interpretation.

In this work, along with the work in [41], we aim at adding analytical insight to the wealth of

experimental work done in determining the morphology of Nafion. Previous work such as that

done by Choi et al.[37] [38], and Futerko and Hsing [39], determine sorption in the membrane as

a whole in order to quantify sorption isotherms. The present work focuses on the sorption on

the scale of micropores [34], in order to help quantify the complex microstructure of Nafion as
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it sorbs water, in particular the distribution and connectivity of the hydrophilic domain which

dramatically impacts the protonic conductivity. We noted earlier that geometric conditions

affect the stability of liquid water in hydrophobic confines and we shall examine in particular

the stability of water in a single microscopic pore by means of a parametric analysis of the

wettability of a Nafion micropore. In other words, this paper aims to determine in which

regions of a Nafion membrane water would be stable in the liquid phase, in order to give insight

on the permeation of the liquid phase. In the context of the work of Eikerling et al. we

determine the factors which determine which pores are liquid filled, and those which contain

only surface water.

Kreuer suggests that the different regions within a Nafion membrane do not conform to geo-

metric ideals; however, in this work we simplify the structure much the same as in the cluster-

network model. We model regions in the Nafion membrane as spherical pores of water such as

those introduced by Hsu and Gierke [3], and cylindrical shaped pores (or channels).

As is done by Hsu and Gierke in [3], the relevant thermodynamic forces contributing to the

total free energy are modeled. For a cylindrical pore (or channel) we shall compute and plot

the free energy of the pore filled with liquid of length L against a vapor filled reference state.

We determine which state is stable for a given pore radius r0. We find a critical radius rc for

which liquid is never stable, and show that there exists a critical liquid length Lcrit (r) for all

pore radii larger than rc. For pores that fill with liquid we show how swelling occur and how.

the increase in free energy due to swelling leads to a minimum of the free energy of the system.

For the spherical pore the results are compared to those proposed by Hsu and Gierke [3].

In this work we specify, under the given assumptions, the thermodynamic conditions necessary

for the sorption and swelling of water in Nafion pores. If this work is coupled with a suffi-

ciently flexible pore size distribution model, a complete picture of water connectivity within the

membrane can be established. These results also help form some intuition regarding the SAXS
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experimental results prevalent in the literature. We also discuss how this model accounts for a

difference in uptake between saturated liquid and saturated vapor equilibrated membranes, and

gives support to Weber and Newman’s [22] notion that some channels fill or collapse depending

on the phase at the boundary.
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Chapter 2

Thermodynamics of Sorption

2.1 System

In order to detail the thermodynamic forces which govern the equilibrium state of water in

Nafion, a section of a Nafion membrane is considered in a closed system with a given pressure

p and temperature T , such as one might find in an experimental apparatus. The system is

considered large in comparison to the size of the membrane such that liquid condensing into

the membrane represents an insignificant mass fraction of the total water in the system. Two

scenarios are modeled: a cylindrical pore open at both ends to the environment (see Figure 2.1)

which may fill with liquid water, and a spherical pore within the Nafion membrane (see Figure

2.2).

As discussed further in this section, the environment considered is at or near saturation and

therefore the chemical reaction dissociating the sulfonate sites is considered to have occurred,

whether or not bulk-like liquid fills the pore. Also, while water is considered here, this analysis

should be equally applicable to similar solvent systems as the unique aspects of water protona-

tion discussed in the introduction do not feature in this analysis. This is reasonable because,

as discussed earlier, experimental results on the sorption of neutral form Nafion shows little

difference to the standard acidic form
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Figure 2.1: Cylindrical Pore System.

Figure 2.2: Spherical Pore System.
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2.1.1 Cylindrical Pores

In the analysis of liquid stability in a cylindrical pore it is assumed that the liquid agglomeration

fills the pore radially and the filling length L is varied to determine stable configurations, or

the pore is assumed empty. Situations in which the radius of the liquid r is smaller than the

unswollen radius of the pore r0 are not considered.

The surface area of liquid in the pore, Al, is composed of the area of the cylindrical portion Ac

and the area of the ends Aend,

Al = Ac + 2Aend . (2.1)

Al is a function of radius r, length L and contact angle θ,

Al = 2πrL+ 2πr
2aθ (2.2)

where

aθ =
2

1 + sin θ
. (2.3)

Likewise, the volume of liquid in the pore, Vl, is comprised of the volume of the cylindrical

region Vc and the volume in the curved ends, Vend,

Vl = Vc + 2Vend . (2.4)

The explicit expression is

Vl = πr2L+ 2
π

3
r3bθ (2.5)
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where

bθ = 2 sec
3 θ [sin θ − 1] + tan θ . (2.6)

It is important to note that in this description, even when the length L of the liquid agglomer-

ation is zero, Vl refers to a ‘lentil’ of volume 2Vend, due to the curved ends. The derivation of

aθ, and bθ is given in Appendix A.

2.1.2 Spherical Pores

As with the cylindrical pores, the spherical agglomerations are considered to fill the region they

are in, however the collection of water is permitted to have fractional contact with the backbone.

As shown in Figure 2.2, the spherical agglomeration of liquid water has partial contact with

the Nafion backbone and a liquid-vapor interface where connected to channels. We introduce

a constant n, such that the area of the solid-liquid interface is nAl and the area of the liquid-

vapor interface is then (1− n)Al. We assume that contact with the backbone does not alter

the shape of the agglomeration from that of a perfect sphere in order to keep the mathematics

reasonable. The area of the liquid is therefore given simply by

Al = 4πr
2 (2.7)

and the volume is given by

Vl =
4

3
πr3. (2.8)

2.2 Nature of Equilibrium

From the first and second laws of thermodynamics, for a system with fixed external pressure

and temperature, one finds

dG
dt
≤ 0 (2.9)
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where G = F + pV is the total free energy (sometimes also referred to as available free energy

[42]) of the system. Equation (2.9) states that the total free energy of the system decreases in

time, such that G assumes a minimum in equilibrium. All contributions to the free energy must

be included in order to determine equilibrium conditions. A formal approach is followed here

as laid out by laid out by Müller in his classic treatise on thermodynamics [43], this approach

is also used by Morro and Müller [44], and by Bensberg [45], for the case of polyelectrolyte gels.

Writing out all contributions to G in terms of the Helmholtz free energy in the unmixed state,

Fα = fα(v)mα, and the Gibbs free energy of mixing, Gα,mix, gives

G = Fl +Gl,mix + Fp +Gp,mix + Fv + Fs + Fm + p (Vl + Vp + Vv + Vm) . (2.10)

The subscripts α = l, p, v, s, and m refer to the liquid, protons, vapor, surface and membrane,

respectively. Since the membrane is phase-separated there is no mixing of the polymer chains

with the liquid in the pore and thus no corresponding entropic contributions.

Equation (2.10) is our governing equation in its most general form. We now transform this

equation through constitutive relations and mathematical techniques along with various as-

sumptions into a function of variables (namely those which define the geometry of the system)

we are concerned with.

With the free energy of mixing given explicitly, (2.10) yields

G = [fl +RlT ln al]ml + [fp +RpT ln ap]mp + f0pm
0
p

+ fvmv + Fs + Fm + p
¡
Vl + Vp + V 0p + Vv + Vm

¢
. (2.11)

Here, R denotes the gas constant. The protons within the liquid mixture are referred to by mp

and Vp while the protons outside the liquid boundary are denoted by m0
p and V 0p . The total
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mass of protons in the pore

mT
p = mp +m0

p, (2.12)

is constant. Under the assumption that the protons are incompressible, the total volume of the

protons stays constant. The activity aα is defined as

aα = γaαXα (2.13)

where γaα is the activity coefficient and Xα is the mole fraction in the mixture. The mole

fraction of the liquid water in the mixture is given by

Xl =
Nl

Nl +Np
, (2.14)

and the mole fraction of the protons in the mixture Xp = 1−Xl.

By means of (2.13) the free energy of the system can be rewritten as

G = [fl +RlT lnXl]ml + [fp +RpT lnXp]mp + f0pm
0
p

+ fvmv + Fs + Fm + p
¡
Vl + Vp + V 0p + Vv + Vm

¢
+RuT

¡
Nl ln γ

a
l +Np ln γ

a
p

¢
. (2.15)

The last term represents the excess Gibbs free energy of mixing GE
mix, that is the energy

difference with respect to ideal mixing. This can be expressed in terms of a Flory interaction

parameter χαβ [46], as

GE
mix

RuT
=
¡
Nl ln γ

a
l +Np ln γ

a
p

¢
= NpXlχpl (T ) . (2.16)
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With (2.16), Equation (2.15) can be written as

G = [fl +RlT lnXl]ml + [fp +RpT lnXp]mp + f0pm
0
p

+ fvmv + Fs + Fm + p
¡
Vl + Vp + V 0p + Vv + Vm

¢
+RuTNpXlχpl. (2.17)

To determine equilibrium states, we must minimize the total free energy G with respect to those

variables that will change in time as equilibrium is approached: the mass of liquid in the pore

ml, the mass of vapor mv, the volume of vapor Vv, and the volume of liquid Vl. Since we are

considering a closed system, the total mass stays constant,

mw = ml +mv = const . (2.18)

Hence, the conditions for equilibrium are

∂G
∂ml

=
∂G
∂Vl

=
∂G
∂Vv

= 0 . (2.19)

The details of setting each derivative equal to zero reveal further information about equilibrium

states.

Minimizing the total free energy with respect to the mass of liquid, ml, yields

∂G
∂ml

= fl +RlT lnXl +ml
∂fl
∂vl

∂vl
∂ml

+mlRlT
∂ lnXl

∂ml

+mpRpT
∂ lnXp

∂ml
− fv −mv

∂fv
∂vv

∂vv
∂mv

+mpRpTχpl
∂Xl

∂ml
= 0 . (2.20)

With the Gibbs-Duhem relation [47],

mlRlT
∂ ln al
∂ml

+mpRpT
∂ ln ap
∂ml

= 0 (2.21)
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and the Maxwell relation [47], µ
∂fα
∂vα

¶
t=const.

= −pα (2.22)

this simplifies to

∂G
∂ml

= fl +RlT
¡
lnXl + χplX

2
p

¢
+ plvl − fv − pvmv = 0 . (2.23)

where pl represents the pressure of the mixture pmix. Using the relation between free energies

gα = fα + pαvα (2.24)

(2.23) can be rewritten as

gl +RlT ln al = gv (2.25)

Equation (2.25) states the classical result that the chemical potentials of the liquid and vapor

are equal in equilibrium.

Minimizing the total free energy with respect to the volume of the vapor yields

∂G
∂Vv

= mv
∂fv
∂vv

∂vv
∂Vv

+ p = 0 . (2.26)

This reduces to

−pv + p = 0 (2.27)

which means that the pressure of the vapor is equal to the external pressure imposed on the

system.
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Minimizing the total Gibbs free energy with respect to the volume of the liquid gives

∂G
∂Vl

= ml
∂fl
∂vl

∂vl
∂Vl

+mlRlT
∂ lnXl

∂Vl
+mpRpT

∂ lnXp

∂Vl
+ fp

∂mp

∂Vl

+RpT lnXp
∂mp

∂Vl
+ f0p

∂m0
p

∂Vl
+ p+

∂Fs
∂Vl

+
∂Fm
∂Vl

+RpTχpl

∙
Xl

∂mp

∂Vl
+mp

∂Xl

∂Vl

¸
= 0 . (2.28)

Simplifying this with (2.12) and the Gibbs-Duhem relation leads to

∂G
∂Vl

=
∂fl
∂vl

+
£
fp − f0p +RpT

¡
lnXp + χplX

2
l

¢¤ ∂mp

∂Vl
+ p+

∂Fs
∂Vl

+
∂Fm
∂Vl

= 0 . (2.29)

We define the surface pressure,

ps =
∂Fs
∂Vl

, (2.30)

which is due to the change in surface free energy with the liquid volume, and the membrane

pressure,

pm =
∂Fm
∂Vl

, (2.31)

which is due to the change of membrane free energy with liquid volume. We also define a proton

pressure

pp =
£
fp − f0p +RpT

¡
lnXp + χplX

2
l

¢¤ ∂mp

∂Vl
=
£
fp − f0p +RpT ln ap

¤ ∂mp

∂Vl
(2.32)

which is related to the energy required to add more protons to the mixture as the boundary of

Vl expands. We can thus rewrite (2.29) as

pmix = p+ ps + pm + pp (2.33)

which states that the pressure of the liquid/proton mixture is a function of the energies of the

surface, membrane, and protons in the mixture.
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We can also, of course, consider the liquid to be incompressible a priori and we can therefore

couple two of these variables by means of ml = ρVl. The results are naturally identical to the

above; details are given in Appendix B.

We now can substitute the pressure of the mixture (2.33) into the total free energy (2.11),

replace the specific Helmholtz free energy f with the Gibbs free energy g, and use (2.18) to find

G = [gl +RlT lnXl]ml +
£
gp +RpT ln

¡
Xp + χplXl

¢¤
mp + g0pm

0
p

+ gvmw − gvml + Fm + pVm − (ps + pm + pp) (Vl + Vp) + Fs . (2.34)

Since we take vapor as an ideal gas we have

gv (pv) = gv (psat) +RvT ln

µ
p

psat

¶
= gl (psat) +RvT ln

µ
p

psat

¶
(2.35)

where we used the equilibrium relation

gv (psat) = gl (psat) .

We can approximate the Gibbs free energy at saturation by performing a Taylor series expansion

about our reference pressure

gl (psat) = gl (p) +
∂gl
∂p
(psat − p) +

1

2

∂2gl
∂p2

(psat − p)2 + ... (2.36)

Since we assume water is incompressible, all second order and higher terms vanish, and the

approximation becomes exact. Using the Maxwell relation

µ
∂gα
∂pα

¶
t=const.

= vα (2.37)
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with (2.36), (2.35) becomes

gv(pv) = gl (p) + (psat − p)vl +RvT ln

µ
p

psat

¶
. (2.38)

We use a similar Taylor expansion to arrive at

gl(pmix) = gl(p+ ps + pm + pp) = gl(p) + vl (ps + pm + pp) . (2.39)

We also assume that the protons are incompressible so that

gp (pmix) = gp + vp (ps + pm + pp) . (2.40)

We then substitute (2.38), (2.39) and (2.40) into the total free energy (2.34) with pr = p/psat,

Rl = Rv = Rw, and Xp = 1−Xl, to obtain

G =
∙
(p− psat) +

RwT

vl
ln

µ
Xl

pr

¶¸
Vl

+
£
gp (p) +RpT

¡
ln (1−Xl) + χplXl

¢¤
mp

+ g0pm
0
p + gvmw + Fm + pVm + Fs . (2.41)

We see that the pressure within the pore pmix is no longer explicit.

We introduce as a reference state, the free energy of a vapor filled pore

G0 = gvmw + g0p (p)m
T
p + F 0m + pV 0m + F 0s . (2.42)
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Subtracting this reference from (2.41) gives

G − G0 =
∙
(p− psat) +

RwT

vl
ln

µ
Xl

pr

¶¸
Vl

+
£
gp (p)− g0p (p) +RpT

¡
ln (1−Xl) + χplXl

¢¤
mp

+ Fm − F 0m + p
¡
Vm − V 0m

¢
+ Fs − F 0s . (2.43)

We are interested in determining whether liquid or vapor is energetically favorable in a given

pore. By subtracting the free energy of a vapor filled pore, we know that if the difference G − G0

is negative, then the free energy of the vapor state is lower and therefore the vapor filled state is

stable in equilibrium. Subtraction of G0 also conveniently eliminates various constants if r = r0,

which occurs when we do not consider membrane swelling. We still have unknown functions

remaining in the free energy of the protons gp (p) − g0p (p), the free energy of the membrane

Fm−F 0m, and the free energy of the surfaces Fs −F 0s . The subsequent sections detail revealing

the structure of these functions.

2.2.1 Dissociation

Initially the H+(H2O)n is very strongly bound to the −SO−3 group where the proton originated.

As more waters are attracted to this acid site, a fraction of the water is strongly bound in proton-

transfer complexes [39]. This reduces the effective water content of the membrane, and in turn

increases the mobility of the dissociated proton. It was proposed by Futerko et al. to treat

the fraction of waters strongly bound to the acid site λC (akin to chemisorption) as part of

the polymer, separate from the water that is free to equilibrate the chemical potential of the

system λF [39]. Therefore the total number of waters per acid site in the membrane is given as

λ = λF + λC .

Choi and Datta describe the formation of the hydration shell as a stepwise equilibrium in which
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the binding of the solvent molecules in the shell is assumed to occur in n sequential reactions

between the polymer acid groups and the polar solvent molecules [37]. The first of those steps

is the formation of the hydronium ion and subsequent steps represent further solvation. Choi

and Datta delineate that solvent molecules with equilibrium constants K ≤ 1 may be assumed

weakly bound enough to be accounted for in physical equilibrium. This yields the number of

strongly bound waters as

λC = λm
K1a

1− a

Ã
1− (n+ 1) (a)n + n (a)n+1

1 + (K1 − 1) a−K1 (a)
n+1

!
(2.44)

where K1 is the equilibrium constant for the first (and dominant) reaction step, a is the activity

of the water, and λm is an empirical solvation parameter to adjust for the fact that only K1 is

used.

A key point in our analysis is that for the vapor filled reference state we assume that the

dissociation reaction has taken place and λC water molecules are strongly bound to the sulfonate

site. The number of these waters is evaluated through the law of mass action as described by

Choi and Datta. These waters are strongly bound and exist regardless of whether a liquid

phase fills the pore. For the purpose of this work, we assume that the subsequent waters which

form the liquid phase do not significantly alter the free energy of the protons, therefore the

gp (p)−g0p (p) term is negligible and the bulk-like waters λF contribute in altering the total free

energy due to mixing only.

2.2.2 Elastic Free Energy

The change in the free energy of the membrane describes elastic forces and only contributes

when the membrane swells to r > r0, to allow more water into the pore. We assume that

when the membrane swells, the volume of the membrane backbone itself remains constant, i.e.,

Vm = V 0m for all r. The change in volume of the system is therefore only due to the increasing
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water volume.

The change in free energy of a polymer is entropic. In Nafion, as in rubber [42], when the mate-

rial is stretched the polymer chains have their configurational entropy reduced. The complexity

with Nafion is that water is strongly attracted to the acid sites while the PTFE backbone

(Teflon) is hydrophobic which induces a phase separation within the membrane.

A model was constructed by Flory and Rehner for the swelling of a polymer network [46], which

assumes random mixing of solvent and monomers, and linear strain in the deformation of the

chains comprising the network [8]. The classical Flory-Rehner model also assumes a Gaussian

distribution of polymer chain lengths. The Gaussian assumption is only reasonable for chain

lengths which are very long, such as in rubber with 400 or more monomers in the chains between

cross-links; the Gaussian assumption fails for chain lengths of less than about 100 monomers

[48]. Flory [46] finds the change in free energy

Fm − F 0m = ∆Fel =
kTνe
2

£
α21 + α22 + α23 − 3− ln (α1α2α3)

¤
(2.45)

where k is the Boltzmann constant and αβ is the linear deformation factor. νe is the elastically

effective number of chains in the polymer network. If crosslinks are present then νe represents

the chain segments between crosslinks. We use the effective number of chains because polymers

other than Nafion may contain crosslinks; evidence of the effect of crosslinking on sorption in

polymide membranes is detailed in [49]. A slight modification of (2.45) is used by Morro and

Müller in [44].

Freger points out that for a phase-separated polymer network such as Nafion, the assumption

made in Flory-Rehner theory may not be appropriate; that neglecting the interaction of the

aggregates upon swelling is too large a simplification [8]. Freger has developed an adaptation of

the classical Flory-Rehner model which describes the phase-separated swelling of the hydropho-
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bic matrix as an ‘inflation’ rather than a dilution. Freger proposes [8], for isotropic swelling

(αβ = α), the form

∆Fel =
kTνe
2V0

h
2α−2/3 + α4/3

i
. (2.46)

In this analysis we use Flory’s form, despite the concerns raised by Freger over its accuracy

with respect to the complex morphology of Nafion. Since we consider a single microscopic pore,

the phase separation is already considered explicitly. Also Freger’s form is not used as it would

give a nonphysical finite elastic free energy in the undeformed state.

To define the number of chains that a pore is stretching we assume that the volume of membrane

being swollen is linearly proportional to the volume of the pore

V T
m =

V0
φ
. (2.47)

Here V T
m refers to the total membrane volume, which includes pore and backbone. The constant

φ is a measure of the porosity of the dry membrane and V0 refers to the volume of the unswollen

pore in the membrane. What this means is that each pore stretches a region of the membrane

which is proportional to its own volume. This divides the membrane in pores and the volume of

membrane that bounds in a strategy similar to that employed by Freger. Therefore the number

of chains is assumed to be

νe =
V0Av

φV̄ T
m

(2.48)

2.2.3 Surface Free Energy

The surface free energy is the additional free energy required to remove a molecule from the

bulk in order to create an interface between two coexisting phases [50]. This energy is linearly

proportional to the surface area of the interface,

Fs = γ

Z
dA , (2.49)
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where γ is the interfacial tension which has units of energy per unit area. In our system we

have three phase interfaces, and thus the surface free energy of the system is

Fs = γsvAsv + γslAsl + γlvAlv (2.50)

where γsv, γsl and γlv are the interfacial tensions of the solid-vapor, solid-liquid and liquid-vapor

interfaces, respectively [50]. We also note that Young’s equation [51],

γsv − γsl
γlv

= cos θ , (2.51)

relates the surface tensions to the contact angle at the three phase point.

2.2.4 Chemical Potential

The equality of the chemical potentials of liquid and vapor (2.25) can be used in conjunction

with the conditions of mechanical equilibrium (2.27), and (2.33) to indicate the equilibrium of

the system, however, in our case this approach lacks sufficient flexibility to observe the effects

of pore size change. We can eliminate the unknown Gibbs functions as done previously; using

the liquid and vapor pressures and assuming the liquid is incompressible and that the vapor is

an ideal gas, we can rewrite (2.25) as

gl (p) + vl (ps + pm + pp) +RlT lnXl = gv(psat) +RvT ln

µ
p

psat

¶
. (2.52)

With gl (psat) = gv(psat), we get

gl (p) + vl (ps + pm + pp) +RlT lnXl = gl(p) + vl (psat − p) +RvT ln

µ
p

psat

¶
(2.53)
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or

pmix − psat =
RwT

vl
ln

µ
pr
Xl

¶
. (2.54)

The relation requires the evaluation of the pressure of the mixture, pmix, which contains terms

that are in differential form. We therefore prefer to seek a minimum of total free energy (2.43),

rather than evaluating the conditions of its derivatives (2.25) , (2.30), (2.31) and (2.32).

2.3 Cylindrical System

We now impose the geometry of the cylindrical pores. The mass of the protons may be expressed

through the surface density of sulfonate sites Sp (which are assumed to be ionized) and the

surface area of the unswollen pore in contact with liquid Ac as

mp =MpSp2πr0L (2.55)

where Mp is the molar mass.

The surface energy Fs given by (2.50) for a liquid agglomeration of length L in a cylindrical

pore of total length Lt becomes

Fs = γsv2πr(Lt − L) + γsl2πrL+ 2γlvπr
2aθ . (2.56)

Using Young’s equation (2.51) to relate the interfacial tensions to the contact angle with the

membrane, (2.56) can be rewritten as

Fs = γsv2πrLt − 2πrLγlv cos θ + 2γlvπr2aθ . (2.57)

The reference state is vapor filled and therefore remains at an unswollen radius r0. The surface
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free energy of the reference state is therefore given simply by

F 0s = γsv2πr0Lt . (2.58)

The number of ions Np in a pore is

Np = AcSp = 2πr0LSp (2.59)

and the number of water molecules in the pore is

Nl =
ρw
Mw

Vl =
ρw
Mw

¡
πr2L+ 2πr3bθ

¢
. (2.60)

The mole ratio of liquid water is then

Xl =
r2L+ 2r3bθ

2βr0L+ r2L+ 2r3bθ
(2.61)

where β = SpMw/ρw .

For the swelling of a cylindrical pore we constrain Lt such that α1 = 1. The stretching of

the length of the perimeter of the cylinder α2 = r/r0. Because we assume Vm = V 0m, then

α1α2α3 = 1 therefore α3 = 1/α2. Equation (2.45) becomes

∆Fel =
kTπr20LtAv

2φV̄ T
m

"µ
r

r0

¶2
+
³r0
r

´2
− 2
#

(2.62)
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Now mp, Vl, Fs, F 0s , Xl and ∆Fel are substituted into (2.43) which yields,

G − G0 =
∙
(p− psat) +

RwT

vl
ln

µ
r2L+ 2r3bθ

pr [2βr0L+ r2L+ 2r3bθ]

¶¸µ
πr2L+

2πr3

3
bθ

¶
+RuT

∙
ln

µ
1− r2L+ 2r3bθ

2βr0L+ r2L+ 2r3bθ

¶
+

r2L+ 2r3bθ
2βr0L+ r2L+ 2r3bθ

χpl

¸
2πr0LSp

+
kTπr20LtAv

2φV̄ T
m

"µ
r

r0

¶2
+
³r0
r

´2
− 2
#
+ γsv2π(r − r0)Lt − 2πrLγlv cos θ + 2γlvπr2aθ . (2.63)

Equation (2.63) is the governing equation for the cylindrical system. It is entirely defined by

the geometric parameters L and r and the state variables p and T which are imposed on the

system.

2.3.1 Capillary Pressure

We briefly consider the surface pressure in a cylindrical pore. Substituting our definition of Fs

(2.57) into (2.30) yields

ps =
∂Fs
∂Vl

=
∂

∂Vl

£
γsv2πrLt − 2πrLγlv cos θ + 2γlvπr2aθ

¤
. (2.64)

If r is constrained to r0, and the liquid volume Vl can grow in L as the column of water extends

down the pore, then

ps =
∂Fs
∂Vl

=
∂Fs
∂L

∂L

∂Vl
= −2γlv cos θ

r0
, (2.65)

which is the classical Laplace equation for capillary pressure.

2.4 Spherical System

In a similar manner we impose the spherical geometry onto the equilibrium conditions. The

mass of the protons in the mixture is given by the area of the liquid agglomeration in contact
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with the backbone and the density of the sulfonate sites on that surface,

mp =MpSpn4πr
2
0. (2.66)

The spherical agglomeration of liquid water has partial contact with the Nafion backbone such

that the area of the solid-liquid interface is nAl and the area of the liquid-vapor interface is

then (1− n)Al. The surface energy from (2.50) can be written as

Fs = γsln4πr
2 + γlv (1− n) 4πr2 + γsvA

c (2.67)

where Ac represents the constant area of the backbone that contacts only vapor.

The free energy of the vapor filled reference state is given by

F 0s = γsvn4πr
2
0 + γsvA

c. (2.68)

The number of ions Np in the sphere is

Np = n4πr20Sp , (2.69)

and the number of water molecules in the sphere is

Nl =
ρw
Mw

Vl =
ρw
Mw

4

3
πr3 . (2.70)

The mole ratio of liquid water is then

Xl =
r3

r3 + 3βnr20
(2.71)
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where β = SpMw/ρw as before .

As in the cylindrical geometry, we assume that the term gp (p)−g0p (p) term is negligible, and we

assume that when the membrane swells, the volume of the membrane backbone itself remains

constant, Vm = V 0m. For the change in free energy we use Flory’s elastic term (2.45). For the

swelling of a spherical pore α1 = r/r0, α2 = r/r0 and with Vm = V 0m, then α1α2α3 = 1 therefore

α3 = (r0/r)
2. With (2.48), the elastic free energy (2.45) then becomes

∆Fel =
2kTπr30LtAv

3φV̄ T
m

"
2

µ
r

r0

¶2
+
³r0
r

´4
− 3
#
, (2.72)

for a spherical pore.

We substitute mp, Vl, Fs, F 0s , Xl and ∆Fel into (2.43) which yields,

G − G0 =
"
(p− psat) +

RwT

vl
ln

Ã
r3

pr
£
r3 + 3βnr20

¤!# 4
3
πr3

+RuT ln

µ
1− r3

r3 + 3βnr20

¶
Spn4πr

2
0 +

2kTπr30LtAv

3φV̄ T
m

"
2

µ
r

r0

¶2
+
³r0
r

´4
− 3
#

+ γsvn4π(r
2 − r20) + γlv(1− n− n cos θ)4πr2 . (2.73)

Equation (2.73) is our governing equation for the spherical pore.
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Chapter 3

Finding Minima

In the previous section we determined governing equations for the total free energy of both

a cylindrical pore (2.63), and a spherical pore (2.73). In this section we constrain the radius

of the pore to determine whether liquid or vapor is favourable. Since in our formulation we

subtract the constant free energy of a vapor filled pore G0, we know that if G − G0 is negative

then liquid is favorable, if not then the free energy of vapor is lower and thus vapor is favorable.

After determining conditions for liquid sorption we define a channel such that sorption occurs

to determine the level in which the pore swells.

To compute the surface density of protons we assume Sp = C
¡
V̄ T
m · S

¢−1, where V̄ T
m is the

specific molar volume of the membrane, S is the specific pore surface area, and C is a constant

we use to vary the value. We take the values, V̄ T
m = 537 cm3/mol and S = 210m2/cm3

for Nafion 117 from [38], and [34], respectively; with C = 1, Sp = 8.87 × 10−6mol/m2. To

compute G − G0 we use a value of θ = 98◦ taken from Zawodzinski et al. [52], which was

measured at pr = 1. As mentioned earlier Zawodzinkski et al. finds that θ varies with water

content; however, we are primarily concerned with hydration near saturation therefore we hold

θ constant. The measurement of varying contact angle perhaps couples the attraction of the

protons with the repulsion of the backbone and should be investigated.
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3.1 Fluid Phase Stability Criteria

3.1.1 Unswollen Cylindrical Pores

In the following we consider unswollen pores to determine which regions of the membrane would

contain liquid water in equilibrium, at a given pressure and temperature. When the pore is not

swollen r = r0 and the total free energy of the cylindrical pore, (2.63) becomes

G − G0 = 2πr0L
½
r0
2

∙
(p− psat) +

RwT

vl
ln

µ
Xl

pr

¶¸
+RuT ln (1−Xl)Sp − γlv cos θ

¾
+ fend .

(3.1)

The last term is an abbreviation for

fend =

∙
(p− psat) +

RwT

vl
ln

µ
Xl

pr

¶¸
2πr30
3

bθ + 2γlvπr
2
0aθ ; (3.2)

it represents the end effects, which is the energy of the lentil that is present when L = 0.

Figure 3.1 shows G − G0 against L for various pore radii in saturated conditions (pr = 1). We

see in the figure that the free energy is essentially independent of L at a certain critical pore

radius which we compute to be rc = 0.492 Å. For all pores wider than this, growth of a liquid

agglomeration reduces the free energy of the system. However, L must be larger than a certain

critical value Lcrit (r) for liquid stability: indeed, stability for liquid occurs when G − G0 is

negative, so that the free energy of liquid is lower than that of vapor. Therefore, the critical

length Lcrit (r) is obtained as the solution of G − G0 = 0. In Figure 3.2 we plot Lcrit (r) vs r with

pr = 1. Pores must be longer than the critical length for a certain pore width, Lt > Lcrit (r),

in order to fill with liquid. If so, they will fill completely since then the minimum of G − G0 is

obtained for L as large as possible, as can be seen in Figure 3.1. If the pore fills completely, it

will stretch radially until balanced by the elastic energy. For very narrow channels, with radii

smaller than r0 = 0.1nm, liquid stability is unlikely, since the critical length required for a pore
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Figure 3.2: Critical Length vs r0 - Cylindrical Pore.



Chapter 3 44

becomes very large (Figure 3.2). This is because entropic effects, which favor liquid, scale with

volume, while the surface forces, which favor vapor, scale with surface area. In pores with very

small radii, the surface forces dominate. Experimentally measured ‘clusters’ of radii 5− 25 Å,

observed in various diffraction and microscopic studies [19], are certainly within the calculated

range of stability.

It is important to focus mainly on the trends in the plots as the values are sensitive to the para-

meters chosen, such as surface density of sulfonate sites and contact angle of the backbone. The

surface density of sulfonate sites was computed using the pore-specific surface value proposed

by Divisek et al. using SPM methods [34]. In their calculation Divisek et al. assume the entire

volume of micropores to be composed of pores with a radius of 1nm. Although differential

curves of pore surface area seem to imply a sharp peak in the contributions to surface area

centered around pores of radii of 1.5 nm, the value used for Sp can only be taken as an ap-

proximation if indeed the SPM method produces accurate results. Also it is generally thought

that there is not a uniform distribution of sulfonate sites in the membrane when considering

the micro/nano scale [6]. In light of these assertions we plot the critical liquid length versus

radius while varying the sulfonate site density in Figure 3.3. We find the expected result, that

when the density of sulfonate sites is decreased, there is a corresponding increase in the critical

radius for sorption and also an increase in the critical length for a given r0 > rc.

The value of the contact angle of the pore ‘surface’ can also only be considered an approximation.

In the oft cited work by Zawodzinski et al., the contact angle of liquid water and Nafion was

measured at the surface of the membrane where the properties may be dissimilar to those within

the membrane. It has been proposed that the membrane may be covered with a nanoscopic

hydrophobic ‘skin’ [52][36]. Certainly the results reported by Zawodzinski et al. carry some

question marks with them. The fact that the receding angle measured was often negligible

and that the contact angle was found to vary dramatically with pr seems to indicate that the
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Figure 3.3: Critical Length vs r0 (varying Sp with C = 1, 1/2, 1/4, 1/8) - Cylindrical Pore.

measurement of the surfaces forces present can not be extricated from the influence of the other

thermodynamic forces present (using the contact angle of Teflon might be more appropriate).

In Figure 3.4 we show the critical length versus radius for contact angles of θ = 98◦, 107◦, 116◦

as measured by Zawodzinski1. We see that when the contact angle is increased there is a

corresponding increase in the critical radius for sorption and also and increase in the critical

length for a given r0 > rc. A larger contact angle indicates a greater degree of hydrophobicity

and we see consequently, a stronger desire for the surface to form a solid-vapor interface. To

compensate entropic forces must be higher for liquid to remain stable and since the entropic

forces scale with volume thus we see an increase in the critical length and critical radius as a

result.

Figure 3.5 shows Lcrit (r) for various pressure ratios pr. The curves indicate that the stability of

1The values of θ = 98◦, 107◦, 116◦ were measured at pr = 1, 0.82, 0 respectively; however, we vary only θ but
not pr here.
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Figure 3.6: Critical Length vs r0 (pr = 0.8 : 1.2) - Cylindrical Pore.

liquid depends on the external pressure. The effects of the pressure ratio pr are much stronger

for wider pores, where the entropic effects begin to dominate. Figure 3.6 presents a log-log

plot over a wider range of values that shows this trend to a greater degree. We see that in

under-saturated environments very wide pores become totally unstable, regardless of length,

while in over-saturated environments, the opposite is true, very wide pores become stable, for

any filling length. These plots indicate that the water content in Nafion is drastically reduced in

under-saturated environments, as shown in [53]. We propose that the interconnection of liquid

pathways would sharply decrease due to under-saturation, which explains the drastic reduction

in conductivity of the membrane in under-saturated states [2].

Recall that we only consider pores where liquid fills the whole pore radius, and consider vari-

ations in L which would lead to a lower free energy than the vapor filled state. We do not

consider liquid agglomeration of radii lower than the unswollen pore diameter, r < r0. These

situations are considered unlikely to be stable due to the high interfacial energy between liquid
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and vapor.

The above observations concern equilibrium states. Liquid agglomerations would have to tran-

sition through unstable configurations when filling a pore to reach a final stable state. In a

similar analogy, a droplet of rain in the atmosphere transitions to a critical radius in which

growth is favorable, through smaller unstable radii, with the help of a particle of dust [43].

The intermediate non-equilibrium states in the membrane are certainly interesting but are not

considered here.

3.1.2 Schroeder’s Paradox

Here we consider various scenarios in which the end effects are altered. Due to complexity

which arises in such cases, we restrict these analyses to comparisons of full, L = Lt, or empty

cylindrical pores L = 0. In these scenarios we use the physical constants specified at the start

of the chapter, and consider only saturated conditions (pr = 1).

If a channel were to form a closed loop within the membrane, then the effects of the liquid-

vapor interface would be dropped, if we consider only the case when the channel is either full

(L = Lt). In such a situation fend does not appear in (3.1) and we are left with

G − G0 = 2πr0Lt

½
r0
2

∙
(p− psat) +

RwT

vl
ln

µ
Xl

pr

¶¸
+RuT ln (1−Xl)Sp − γlv cos θ

¾
. (3.3)

The mole ratio becomes

Xl =
r0ξ

2 + rξ
(3.4)

where ξ = β−1.
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We can rearrange the term in the square brackets

(psat − p) +
RwT

vl
ln

µ
Xl

pr

¶
= psat

∙
1− p

psat
+

RwT

psatvl
ln

µ
Xl

pr

¶¸
= psat

∙
1− pr +

vv
vl
ln

µ
Xl

pr

¶¸
.

(3.5)

We know

1− pr <<
vv
vl
ln

µ
Xl

pr

¶
(3.6)

because vv/vl is on the order of 103 and therefore the (p− psat) is negligible. We find then,

that the solution of

r0
2

RwT

vl
ln

µ
r0ξ

pr [2 + r0ξ]

¶
+RuT ln

µ
1− r0ξ

2 + r0ξ

¶
Sp − γlv cos θ = 0 (3.7)

for r0 yields a critical radius for the stability of liquid which is rc = 0.049 Å. If r0 < rc,

(3.3) is minimum with vapor and if r0 > rc then liquid at L = Lt is favorable. This critical

radius is negligibly small, in a range where the continuum nature of this analysis is no longer

valid. We see then that we would expect such a loop to be always stable in equilibrium which

indicates that the entropic forces are more influential than the energetic interfacial forces in

such a scenario.

We also consider the case where a liquid pore ends in a dead end. In this case, the surface area

of one end is considered to have a solid-liquid interface, while the other remains a liquid-vapor

interface. Fig. 3.7 shows the difference in stability requirements if one liquid-vapor interface

is eliminated. The critical length for this case is considerably smaller than for the case where

both ends are in contact with vapor. This shows that a pore with one side fills easier than one

which is bounded by liquid-vapor on both ends.

The most important alternate scenario we consider is the case where the membrane is bounded

by saturated liquid rather than saturated vapor. In such a case, when the pore is full of liquid,
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Figure 3.7: Critical Length vs r0 (with 1 and 2 Liquid Vapor Interfaces) - Cylindrical Pore.

there exists no liquid-vapor interface; however, if the pore is empty there exists a liquid-vapor

interface identical to that of a liquid filled pore in a saturated vapor environment. In such a

case the sign of the free energy of the end effects changes, fend = −2γlvπr20aθ, and the free

energy of the system becomes

G − G0 = 2πr0Lt

½
r0
2

∙
(p− psat) +

RwT

vl
ln

µ
Xl

pr

¶¸
+RuT ln (1−Xl)Sp − γlv cos θ − γlvaθ

r0
Lt

¾
.

(3.8)

In this case we find a dependence on the ratio of the pore radius to the pore length as expressed

in the final term of (3.8). In the limit of the length of the pore being very large in comparison

to the radius, then we get the first scenario discussed, where fend goes to zero. As the ratio

becomes significant, it serves to further reduce the critical radius from rc = 0.049 Å, which

was already negligibly small. Therefore we find that in saturated liquid, sorption of the liquid

water phase is dominant. This serves to explain how Nafion absorbs significantly more water

in a saturated liquid environment. It is important to note however that the phenomenon of
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Schroeder’s paradox is not necessarily coupled with a porous structure, as detailed in [54].

Nevertheless, we see here that given a porous structure we can expect a considerable difference

in sorption with a change in the phase at the boundary.

3.1.3 Unswollen Spherical Pores

We now consider the case of spherical pores; we again restrict the analysis to rigid pores with

r = r0 in the governing equation for the total free energy of a spherical pore system (2.73),

which yields

G − G0 =
∙
(psat − p) +

RwT

vl
ln

µ
Xl

pr

¶¸
4

3
πr30+

RuT ln (1−Xl) 4πr
2
0Spn+ [(1− n)− n cos θ] γlv4πr

2
0 , (3.9)

with

Xl =
r0

r0 + 3βn
. (3.10)

Figure 3.8 shows (3.9) plotted against r0 for values of surface coverage n = 0.4, 0.5, 0.6. Recall

that the surface coverage represent the ratio of solid-liquid interaction to the total area of

the liquid droplet, whereas 1 − n represents the ratio of the pore that is open to channels,

yielding a liquid-vapor interface for a liquid filled pore. Since r is restricted to r0 this plot

represents droplets of various sizes throughout the membrane, not droplet growth. We see

in the plot that as the surface coverage increases the critical radius for the stability of liquid

decreases. These results may seem counterintuitive at first glance, considering that Nafion

is a hydrophobic surface; however, (3.9) stipulates that as we increase surface coverage (i.e.

solid-liquid interface) we decrease liquid-vapor interface (1−n) proportionally. The factor cos θ

therefore means that an increase in the solid-liquid interface will have a lesser effect on the

total free energy of the system than the corresponding decrease of the liquid-vapor interface.
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Figure 3.8: Total Free Energy vs r0 (n = 0.4, 0.5, 0.6) - Spherical Pore.

Increasing the surface coverage also increases the fraction of protons to water molecules that

are in the mixture. In Figure 3.8 we see that for a fractional surface coverage of n = 0.6,

liquid is stable in regions of radii larger than approximately 1.3nm. If we decrease the surface

coverage to n = 0.5, the stability criterion for liquid stability shifts to 3.4nm and even higher

values for further decreasing coverage. Conversely, as the surface coverage goes to n = 1, i.e.,

no liquid-vapor interface at all, the critical radius is negligibly small (0.75 Å), similar to the

case of a cylindrical pore in a closed loop. We see again that at saturation (pr = 1) the entropic

desire for liquid dominates the hydrophobic repulsion of backbone surface. The inclusion of a

liquid-vapor interface strongly impacts the system and we see that larger agglomerations are

required for stability with decreasing surface coverage.
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3.1.4 Cluster and Channel Configuration

The cluster-channel morphology introduced by Gierke et al. (see Figure 1.6) can be decon-

structed into the cylindrical and spherical pores discussed above. For a channel separating two

clusters, the energetics of the clusters would be described as above with n equal to the ratio of

the area of polymer interface over the total area of the spherical region. From the dimensions

shown in Figure 1.6, this would imply n ≈ 0.95, and therefore liquid would be very favorable

in saturated conditions. A channel between two liquid filled clusters is indeed equivalent to

a cylindrical pore that is bounded by saturated liquid. From that analysis we know that in

saturated conditions a liquid filled channel is energetically very favorable in comparison to va-

por filled. It is also interesting to note, that if the clusters were not liquid filled, the channel

between the clusters (L = 1nm and r0 = 0.5nm) would not be filled with liquid as well (see

Figure 3.2). What we see then, in general, is that with the geometry described by Gierke et

al., shown in Figure 1.6, spherical pores (or clusters) will fill first, and if there is a cylindrical

pore (channel) joining two clusters it will then proceed to fill. It is important to stress the

effect of the parameters θ, and Sp, which we described as approximate. In Figure 3.9 we show

the stability criteria can change by plotting the free energy of a spherical pore of n = 0.95,

with θ = 107◦ and C = 1, 1/2, 1/4. We see that an increase in contact angle, and a decrease

in sulfonate site density, dramatically increases the critical radius for the stability of the liquid

phase.

3.2 Pore Swelling

In this section we prescribe an initial configuration, for a cylindrical pore and a spherical pore,

such that the pore will be filled with liquid, according to the analysis in the previous section.

We then allow the pore to swell past the initial radius in order to observe the effects of the

deformation of the membrane on the total free energy of the system.
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Figure 3.9: Total Free energy vs r0 (θ = 107◦ and C = 1, 1/2, 1/4) - Spherical Pore.

3.2.1 Cylindrical Pore Swelling

Liquid growth in L is constrained to boundary minima, at either L = Lt or L = 0 (see Figure

3.1). A full pore will, however, begin to swell, to r > r0, in order to take on more water and

thus increase the entropy of mixing, but this also increases the free energy, due to an increase

in interfacial surface area, and due to the swelling of the membrane. Nafion is known to swell

significantly in the presence of water. The pore comes to an equilibrium point in r when the

change in free energy of the membrane due to swelling balances the entropic desire to take on

more water.

To compute the amount of swelling for a given pore we use the governing equation for the total

free energy of a cylindrical pore system (2.63) with the same values of the constants as before,

θ = 98◦, pr = 1, χpl = 0, V̄ T
m = 537 cm3/mol, S = 210m2/cm3, T = 300K. Moreover, we

assume that the solid-vapor surface tension is negligibly small and accordingly set γsv = 0. We

specify the geometry of the undeformed pore as r0 = 0.5nm, and Lt = 2nm. We use Gierke
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Figure 3.10: Total Free Energy vs r (φ = 1/2, 1/3, 1/4) - Cylindrical Pore
(r0 = 0.5nm, Lt = 2nm).

et al.’s radius but double the length of the pore (see Figure 1.6) to ensure the stability of the

liquid phase as indicated in Figure 3.2. The porosity of the membrane, φ, specifies the ratio of

the undeformed pore size to the amount of membrane that it stretches as given by (2.47).

In Figure 3.10 we plot the G − G0 as a function of r for values of φ = 1/2, 1/3, 1/4. We see

that despite the liquid filled state being favorable, no swelling would occur, which is contrary

to experimental evidence. The problem is that we specify that the channel will swell uniformly,

which would cause the liquid-vapor interface to grow along with the channel radius. The liquid-

vapor interface is a dominant contribution to the free energy and therefore the total free energy

of the system grows when r is increased. In all likelihood, we presume, the channel would

rather deform in an irregular fashion, keeping the liquid-vapor interface relatively constant. To

approximate such a situation, we restrict the liquid-vapor interface to r0, while allowing the

rest of the channel to deform to r. Figure 3.11 shows the total free energy of the cylindrical

pore system with a constant liquid-vapor interface of radius r0 over r > r0 for values of porosity
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Figure 3.11: Total Free Energy vs r (φ = 1/2, 1/3, 1/4) - Cylindrical Pore
(r0 = 0.5nm, Lt = 2nm) with a constant liquid-vapor interface.

φ = 1/2, 1/3, 1/4. The figure shows distinct minima of total free energy at values of r > r0,

and increasing with porosity. Increasing porosity implies an decrease in the effective amount of

polymer that is deformed, accordingly the equilibrium radius of the swollen pore is increases.

At a porosity of 1/2 the pore is deforming to up to three times its radius, which would lead to a

two-fold membrane deformation; at a porosity of 1/4 the pore size doubles which would give a

125% growth of the entire membrane2. Divisek gives a pore volume to membrane volume ratio

of 0.38 for Nafion 117 in a saturated vapor environment, and up to 0.44 for Nafion 112. The

value of porosity for Nafion 117 translates to λ = 18.3 [34], indicating that some of the water

is likely surface water; therefore, Nafion 117 is probably in the lower range of porosity values

used here.

Keeping the liquid-vapor interface constant is an idealization that is perhaps too great to yield

2We relate pore volume to membrane volume using (2.47).
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accurate results. Nevertheless, we can see that the contribution of the liquid-vapor interface to

total free energy is dominant enough to predict rather non-uniform swelling of a liquid filled

cylindrical pore with such an interface. Equation (2.63) shows that the contribution of the

liquid-vapor interface, to the total free energy of the system, does not depend on Lt and thus

if the length of the liquid in the pore is very large (facilitated by a large Lt), compared to

the radius of the liquid-vapor interface then the significance of the interface becomes marginal.

An example would be if the pore extended from one side of the membrane straight through

to the other; then the length of the liquid in the pore would be much greater than the radius

(Lt = 0.1778mm for Nafion 117), and the swelling would be virtually identical to that shown

for a constant liquid-vapor interface.

3.2.2 Spherical Pore Swelling

We repeat the analysis for the swelling of a spherical pore. The constants specified above are

again used, and the initial radius of the pore is set to r0 = 2nm which is the value set by Gierke

and Hsu [21] [3]. In Figure 3.12 we study the swelling of a spherical pore swelling with φ = 0.25

for values of n = 0.8, 0.95, 1. We see that no swelling occurs at lower values of the surface

coverage parameter n, and increases with larger n. This, again, shows that the liquid-vapor

interface plays a dominant role in swelling behaviour.

For further study, we consider a fixed surface coverage of n = 0.95, so that the that the spherical

pore has a large solid-liquid interface in comparison to the liquid-vapor interface; this is similar

to the Gierke model shown in Figure 1.6. Figure 3.13 shows the total free energy of this pore

for varying values of porosity φ = 1/2, 1/3, 1/4. We again see that as the amount of polymer

per pore decreases, we see a increase in the final equilibrium radius of the pore, here from

2.35nm− 2.6nm, between φ = 1/4 and 1/2 respectively.

As in the cylindrical case, in an effort to simulate nonuniform swelling, we fix the liquid-vapor
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Figure 3.12: Total Free Energy vs r (n = 0.8, 0.95, 1) - Spherical Pore (r0 = 0.5nm).
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Figure 3.13: Total Free Energy vs r (φ = 1/2, 1/3, 1/4) - Spherical Pore (r0 = 0.5nm).
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Figure 3.14: Total Free Energy vs r (φ = 1/2, 1/3, 1/4) - Spherical Pore (r0 = 0.5nm) with a
constant liquid-vapor interface.

interface to be constant. The liquid-vapor interface is held at (1− n) 4πr20, while the rest of the

pore grows with r. Figure 3.14 again shows a spherical pore swelling with n = 0.95 for values

of φ = 1/2, 1/3, 1/4; however, this time with the liquid-vapor interface constrained. We see

somewhat more swelling with this modification, despite the small liquid-vapor interface with

n = 0.953. We see that the initial radius of r0 = 2nm swells to a radius between 2.5nm−3nm,

depending on porosity.

In a similar analysis on the equilibrium size of spherical clusters of water in Nafion [21] [3],

Hsu and Gierke find that for Nafion 117, clusters of diameter 3.99nm should be observed in

a saturated environment. Hsu and Gierke do not focus on regions which may support liquid

wetting, instead their analysis presupposed uniform dry cluster sizes of 2nm throughout the

membrane, which swell to 4nm in equilibrium with a saturated vapor. We find somewhat

3n is defined at r0, since we are holding the liquid-vapor interface constant and allowing the pore to grow in
r, n is effectively increasing as well.
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less swelling here with an equilibrium radius of 3nm or under resulting from our analysis.

Hsu and Gierke make the assumption that each cluster stretches an infinite and continuous

elastic medium, which is defined by an empirical tensile modulus G (c). Freger points out

that approximating the polymer as a Hookean medium to yield an elastic energy for polymer is

imprecise [8], we here used a change in free energy derived from the change in entropy of polymer

chains as they are stretched [46]; this could explain some of the difference in the results4.

4Hsu and Gierke [3], do not use interfacial tension, define the contact angle or include the entropy of mixing.
They instead rely on interaction parameters fitted to experimental data; therefore, it is difficult to decipher where
other fundamental differences may lie.
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Chapter 4

Future Work

In this section we hint at possible future work that could result as a consequence of the theory

presented. In the previous section we have shown thermodynamic criteria necessary for the

wettability of pore within a Nafion membrane. We presented arguments indicating a critical

radius and critical length of a pore. In order for such insight to bear fruit, it is necessary to

develop a sufficiently flexible pore size distribution model. The analysis presented here can be

coupled with such a model in the development of theory to determine the connectivity of the

liquid phase throughout the membrane.

We can think of a pathway for proton transport through the membrane to consist of a series

of pores connected in a random manner. The size of the pore determines the bulk-like water

content, then the level of resistivity and other transport properties such as electroosmotic flow.

Many transport models are based on a porous assumption, but, due to limited knowledge of

details on the morphology of Nafion, a simplified structure is often used such as the parallel

pore idealization of Choi and Datta [37]. Eikerling et al. present a transport model based on

the cluster-network structure of pores [5]; they rightly predict that some pores will be filled

with bulk-like water while others will contain only surface water which hydrates the sulfonate

group. They propose a random distribution of these pores but are forced to fit their model

using conductivity data for lack of sufficient morphological insight. With the theory presented

here the goal is to be able to predict the formation of these pore networks.
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A simple analogy of the problem would be to consider a box of randomly sized balls which

conduct protons. The critical radius determines if a ball is a good conductor or a poor one;

however, the critical radius is a function not only of variables imposed by the environment

but also is a function of the state of the surrounding balls and dependant on the ball-size

distribution. The complexity of this simple analogy illustrates the difficulty in extending the

concept to the microstructure of Nafion.
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Chapter 5

Conclusions

The conductivity of a Nafion membrane has been shown to depend strongly on the amount of

water sorbed. Experimental analysis of membranes has lacked sufficient detail to determine a

conclusive morphological model of a Nafion membrane upon sorption. Bulk water can be seen as

the upper limit of protonic conductivity, therefore it is important to determine the permeation

of bulk-like water throughout the membrane in order to establish rigorous transport models.

In this work we proposed a thermodynamic model for the wetting of idealized membrane pores

to gain an understanding of the nature of the liquid phase within a Nafion membrane.

We showed how the wetting of pores in a Nafion membrane is dictated by a competition of

energetic and entropic forces. The energetic forces are due to the interfaces present, and ac-

cordingly scale with interfacial surface area. The entropic forces arise from mixing and the level

of saturation; these forces scale with volume.

It was shown that there exists a critical pore radius below which liquid water is unstable. For a

cylindrical pore we found a critical length for any pore size greater than the critical radius; below

the critical length, a pore cannot be filled. For a spherical pore we show that the stability of the

liquid phase depends strongly on the cross sectional area of channels which are adjacent. This

model was also used to show how pressure, relative to saturation, affects liquid agglomeration.

We found that for a cylindrical pore in an oversaturated environment the critical length can

go to zero, and conversely, in an under-saturated state the critical length can become infinite.



Chapter 5 64

We show how decreasing the surface density of sulfonate sites decreases the entropic desire for

liquid water and also how increasing the hydrophobicity of the surface increases the energetic

desire for vapor, both leading to an increase of the critical radius and critical length for the

stability of liquid.

Our model was used to study how thermodynamic forces change depending on the phase at the

pore bounds. The results show that pores bounded by saturated liquid have a much smaller

critical radius. This indicates how Nafion sorbs so much more water when in saturated liquid as

opposed to saturated vapor (Schroeder’s paradox). Similarly, the model shows that a cylindrical

channel bounded by two water filled pores is very likely to sorb liquid water as this removes

the liquid-vapor interfaces.

Nafion is known to swell as it takes on water. To gain insight into this phenomenon we modeled

the swelling of pores on the microscopic level. We showed how, if present, a liquid-vapor interface

is a dominant contribution to the total free energy of the system, in particular for short pores.

This leads to the assumption that swelling at a pore size level would be non-uniform.

This work, therefore documents the criteria necessary for the permeation of the liquid phase

within a Nafion membrane. The results presented should be coupled with a probabilistic pore

size distribution model in order to determine the connectivity of the liquid phase throughout

the membrane as a function of state variables imposed by the system. In our view this would

be a large step towards developing a more rigorous model of proton transport through the

membrane.
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Appendix A - Derivation of aθ and bθ

The area of the ends of the liquid columns in the pores can be computed by

A =

srZ
s0

2πZ
0

xdϕds (A.1)

with S = αR, x = R sin (α), A.1 then becomes

A =

α1Z
0

2πZ
0

R2 sin (α) dϕdα. (A.2)

Now relating to contact angle and pore radius α1 = θ − π/2, and r = R sin (α1) we get

A = πr2
2

1 + sin θ
. (A.3)

We define

aθ (θ) =
2

1 + sin θ
. (A.4)

The volume of the ends can be computed by integrating an ‘ice cream’ cone and subtracting

off the cone

Vend =

2πZ
0

α1Z
0

RZ
0

ρ2 sin (φ) dρdφdθ − 1
3
πr2h (A.5)

which gives

Vend =
2

3
πR3 [1− cos (α1)]−

1

3
πr2R cos (α1) (A.6)

which reduces to

Vend =
1

3
πr3

©
2 sec3 (θ) [sin (θ)− 1] + tan (θ)

ª
. (A.7)
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We define

bθ (θ) = 2 sec
3 (θ) [sin (θ)− 1] + tan (θ) (A.8)

72



Appendix B - A Priori Incompressibility

We fix another variable by assuming that water is incompressible vl = const., therefore the

volume of liquid is proportional to the mass of liquid,

Vl = vlml. (B.1)

We also assume that the protons are incompressible. Minimizing the total free energy with

respect to the mass of liquid, ml, yields

∂G
∂ml

= fl +RlT ln al +ml
∂fl
∂vl

∂vl
∂ml

+mlRlT
∂ ln al
∂ml

+ [fp +RpT ln ap]
∂mp

∂Vl

∂Vl
∂ml

+mp
∂fp
∂vp

∂vp
∂mp

∂mp

∂ml
+mpRpT

∂ ln ap
∂ml

+
∂f0p
∂v0p

∂v0p
∂m0

p

∂m0
p

∂ml
+ f0p

∂m0
p

∂ml
+ fv

∂mv

∂ml

−mv
∂fv
∂vv

∂vv
∂mv

+
∂Fs
∂Vl

∂Vl
∂ml

+
∂Fm
∂Vl

∂Vl
∂ml

+ p
∂Vl
∂ml

+ p
∂Vp
∂ml

+ p
∂V 0p
∂ml

= 0. (B.2)

From the incompressibility assumption we know ∂vl, ∂v0p and ∂vp = 0 therefore

ml
∂fl
∂vl

∂vl
∂ml

= mp
∂fp
∂vp

∂vp
∂mp

∂mp

∂ml
=

∂f0p
∂v0p

∂v0p
∂m0

p

∂m0
p

∂ml
= 0. (B.3)

Due to the Gibbs-Duhem relation

mlRlT
∂ ln al
∂ml

+mpRpT
∂ ln ap
∂ml

= 0 (B.4)

Since dVp = −dV 0p , then

p
∂Vp
∂ml

+ p
∂V 0p
∂ml

= 0. (B.5)
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Applying (B.3), (B.4), (B.5) and the Maxwell relation

∂fα
∂vα t=const.

= −pα (B.6)

to (B.2) yields

∂G
∂ml

= fl +RlT ln al +
£
fp − f0p +RpT ln ap

¤ ∂mp

∂Vl
vl

− fv − pvvv +
∂Fs
∂Vl

vl +
∂Fm
∂Vl

vl + pvl = 0. (B.7)

We define the surface pressure,

ps =
∂Fs
∂Vl

, (B.8)

which is due to the change in surface free energy when to the liquid volume changes, and the

membrane pressure,

pm =
∂Fm
∂Vl

, (B.9)

which is due to the change membrane free energy with a change in liquid volume. We also

define a proton pressure

pp =
¡
fp − f0p +RpT ln ap

¢ ∂mp

∂Vl
(B.10)

which is the energy required to add more protons to the mixture as the boundary of Vl expands.

Therefore (2.23) can be rewritten as

fl +RlT ln al + (p+ pp + ps + pm + ps) vl = fv + pvvv (B.11)

Assuming p+ pp + ps + pm + ps = pmix and using the Gibbs free energy gα = fα + pαvα, (B.7)

becomes

gl +RlT ln al = gv (B.12)
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