

CAMTEC SEMINAR

Technology

TITLE:Laser Refrigeration of Physiological Buffers with Solid State
Nanocrystals

SPEAKER:	Dr. Peter Pauzauskie Department of Materials Science & Engineering, University of Washington
DATE:	Tuesday, January 12 th , 2016
TIME:	3:00 – 4:00 pm

LOCATION: ECS 660

Abstract: Solid-state laser-refrigeration materials have been developed in the last 10 years that are capable of cooling to cryogenic temperatures without mechanical vibrations to enable a range of advanced optoelectronic sensing applications. The current world record for cooling bulk (Czochralski) single-crystals in vacuum via anti-Stokes photoluminescnece is 91K when starting from room temperature (298K). However, to date it has remained an open question whether solid-state laser refrigeration materials can also be used to refrigerate condensed phases such as liquid water and physiological buffers. In this presentation I will demonstrate recent results showing it is possible to cool colloidal dispersions of nanocrystalline ytterbium-doped yttrium-lithium-fluoride materials (Yb:YLiF4) in liquid water based on calibrated control experiments with ion-implanted silicon nanowires. The temperature of water surrounding individual YLF crystals is observed to decrease by nearly 20°C from room temperature based on interferometric measurements of a particle's Brownian motion using a single-beam laser trapping instrument, suggesting a range of potential future applications for solid-state laser refrigeration materials.

Please contact Dr. Reuven Gordon for further information (250) 472-5179.