

Hicibas-II: A Balloon Platform To Probe Turbulence at 40km

Ophélie Légaré, Koichi Watanabe-Brouillette, Valentina Pieters, Mykola Posternak, Simon-Gabriel Beauvais, Guillaume Allain, Denis Brousseau, Anne-Sophie Poulin-Girard, Simon Thibault COPL
Centre d'opphotonique
CRAQ
Comprendre l'Univers

COPL, Université Laval, 2375 De la Terrasse St, Quebec City, Quebec G1V 0A6 Group website : http://lrio.copl.ulaval.ca/

Abstract

Advances in space-based instruments for planetary observation come at a significant cost. With a previous FAST (CSA) grant, we performed the first HiClBaS (High-Contrast Imaging Balloon System) mission to study and mitigate two key issues that limit

suborbital balloon flight for precision astronomy. Building on gained experience and knowledge, HiClBaS-II proposes to develop and test instrumentation for experiments aboard sub-orbital balloons at a fraction of the cost of full-fledged orbiting space instruments. Our main technical objectives are to use a wavefront sensor at 36-40 km, to measure and gather data on the high altitude atmospheric dynamic and fly optical systems in a space-like environment. Another key objective is to train HQPs so they are fully ready to integrate the job market in the space industry. We also want to improve the HiClBaS pointing system to a generic pointing system usable in high-contrast imaging. The proposed project is a great opportunity to position Canada as a world leader for this technology while advancing knowledge in the field on the long term. The impact for Canada is broad, from benefits to industry competitiveness to innovative research in academia, and from new international collaborations to participation in major projects in the future.

Improved Mechanical Design

The optical payload is located directly at the rear of the telescope and not on a second floor unlike HiClBaS-I. This helps to bring the center of mass nearer the telescope's primary mirror.

The mount can also be mechanically balanced once all components are integrated to reduce unwanted forces on the elevation motor.

Space Situational Awareness

We will add a SSA experiment using the Nüvu Caméras' EMCCD to the HiClBaS-Il's mission.

- Reduction of noise by a factor of 10 to 100.
- Cannot be matched in situations requiring fast exposure times or in environments bearing little light.

Simplified Optical Design

Coarse guiding camera + Objective F1.3 - FFOV of 8.65°

Schmidt-Cassegrain telescope - Diameter: 14" (355.5 mm)

Fine guiding camera - FFOV of 0.2°

Fast steering mirror - Piezo tip/tilt platform

S-H wavefront sensor

Shack-Hartmann Wavefront Sensor

- Number of lens: 9 x 9

- Microlens pitch: 0.5 mm

- Sensor pixel size: 5.86 μm

- Number of pixels per spot:
Between 2 and 3

- Resolution: 0.1 arcsec.

- Max frequency: 166 Hz

Project main goals

Among the many technical goals of the HiCIBaS project, the main ones are as follow:

- → Test a S-H based fine pointing systemat an altitude of 40 km
- → Measure the atmospheric dynamics at high altitude to gather information for future balloon-borne missions
- → Fly Canadian technologies in a space-like environment
 The project also aims at training the next generation of
 scientists and engineers in the field.

General Mission Information

Launch Location: Timmins
Launch Date: Sept. 2023
Preferred Launch Time:
Late evening
Temperature: down to -60°C

Temperature: down to -60°
Pressure: down to 0.5 kPa
Altitude: >36 km
Duration of flight: > 4h

We expect similar atmospheric conditions and flight path as those seen by HiCIBaS-I.

Project Milestones

Funding &

Recruiting

Final design reviews:

- Optical design
- Mechanical design
- Optomechanics

Procurement:

- Motors
- Shack-Hartmann sensor
- Cameras

2022

Mechanical and optical assembly

Motor control & Communication in ROS

Integration and functional tests

Performance test outside

2023

Complete integration acceptance test

Pre-flight acceptance test at the Mont-Mégantic Observatory

September: Flight Window

